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ABSTRACT
Basal-like breast cancer (BLBC) and triple-negative breast cancer (TNBC) are aggressive forms of
human breast cancer with poor prognosis and limited treatment response. Molecular under-
standing of BLBC and TNBC biology is instrumental to improve detection and management of
these deadly diseases. Tumor suppressors WW domain-containing oxidoreductase (WWOX) and
TP53 are altered in BLBC and in TNBC. Nevertheless, the functional interplay between WWOX and
p53 is poorly understood. In a recent study by Abdeen and colleagues, it has been demonstrated
that WWOX loss drives BLBC formation via deregulating p53 functions. In this review, we highlight
important signaling pathways regulated by WWOX and p53 that are related to estrogen receptor
signaling, epithelial-to-mesenchymal transition, and genomic instability and how they impact
BLBC and TNBC development.
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Introduction

Human breast cancers are a group of heterogeneous
diseases, harboring different genetic alterations and
differentially responding to therapy. The classical
molecular classification of breast cancer is mainly
based on the expression of estrogen receptor (ER),
progesterone receptor (PR) and the receptor tyro-
sine-protein kinase ErbB-2 (HER2). Breast cancer is
hence classified into five subtypes: Luminal A (ER+
PR+, HER2- and Ki67-), Luminal B (ER+ PR±,
mostly HER2- and Ki67+), HER2/ErbB2 subtype
(ER- PR-, HER2+) where HER2 is usually amplified
or overexpressed, normal-like subtype expressing
adipose and other non-epithelial genes, basal-like
subtype (BLBC) (ER- PR-, HER2- and high expres-
sion of basal genes such as cytokeratins CK-5 and
CK-14 and EGFR/HER1) [1–3]. Most BLBCs are
triple negative (TNBC); however, some ER-positive
tumors and HER2-positive tumors display a basal-
like gene expression profile. Other tumors are
believed to acquire basal-like features through
a trans-differentiation process known as EMT
(epithelial-to-mesenchymal transition). BLBC is
usually associated with increased aggressiveness,
invasiveness and metastatic potential hence resulting
in poor prognosis [4]. In 2007, Herschkowitz et al.

introduced a new breast cancer subtype, called
Caludin-low, which is characterized by the low
expression of genes involved in tight junctions and
cell-cell adhesion, including Claudins 3, 4, 7,
Occludin, and E-cadherin [5].

Some of the most known genetic alterations in
tumor suppressor genes in BLBC and TNBC are
mutations in TP53, as well as the loss of RB1 and
CDKN2A [6,7]. In fact, it has been reported previously
that up to 80% of BLBC harbor TP53 mutations,
which commonly include nonsense and frameshift
mutations [8]. Recently and based on RNA-based
method, it was reported that the RNA of 99.4% of
BLBC cases harbor TP53 mutant-like status [9].

In a recent report, our group has demonstrated that
tumor suppressor WWOX (WW domain-containing
oxidoreductase) is frequently alerted in breast cancer
and its targeted deletion in murine mammary epithe-
lial glands drives the development of BLBC-like
tumors via inactivation of Trp53 [10]. Several studies
by a number of groups have further demonstrated
that the WWOX locus is targeted in BLBC and
TNBC tumors. For example, it has been shown that
WWOX protein levels are reduced or absent in 96.6%
of BLBC tumors [11]. More recently, Chang and
colleagues have reported that WWOX protein
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expression is commonly absent in TNBC and this loss
drives tumor metastasis [12]. Lately, our group has
also determined thatWWOX reduced expression and
copy number variation are correlated with advanced
stages of TNBC, further highlighting the significance
of WWOX function in TNBC development [13].
Beside genomic rearrangements and loss of protein
expression, hypermethylation of the regulatory region
of WWOX has been documented in neoplastic but
not in paired adjacent non-neoplastic tissues [14–16].

WWOX tumor suppressor functions have been
proposed to be mediated via its protein adaptor cap-
abilities, through which WWOX’s first WW domain
binds with proline-rich motifs of partner proteins
hence regulating their localization, stability, and trans-
activation [17–20]. The consequence of these interac-
tions resulted in regulating cellular pathways
including apoptosis [21], DNA repair [22,23], cellular
metabolism [24,25] and others [26–30]. Of particular
interest, WWOX physical and functional interaction
with p53 has been proposed to enhance apoptosis
in vitro (reviewed in [31,32]). It was also reported
that WWOX enhances the cytotoxic function of
tumor necrosis factor (TNF) by down-regulating
apoptosis inhibitors Bcl-2 and Bcl-xL and up-
regulating apoptotic p53 [33]. Our recent findings
indicate that the WWOX-p53 functional interaction
is important in BLBC and TNBC development [10] as
shown previously in other malignancies including,
glioblastoma [34] and osteosarcoma [35]. In this
review article, the crosstalk of WWOX-p53 in aggres-
sive breast cancer is discussed in an attempt to better
understand the complexity of this fatal disease hoping
this would help in improving its detection and
management.

Wwox and Trp53 conditional knockout (cKO)
in mice

Genetically engineered mouse (GEM) models of
cancer have been developed to model tumors
with genetic alterations that resemble human can-
cer. Similar to human BLBC, inactivation of
WWOX or p53 in the mammary gland epithelium
is associated with BLBC-like in murine models.
Previous studies revealed that conditional ablation
of Trp53 using MMTV-Cre and WAP-Cre trans-
genic mice in C57BL/6 strain displays high percen-
tage of tumor incidence, though at a later stage of

life; in the MMTV case high percentage of mice
(47%-100%) developed mammary tumors with
latency of 14.5 months (Average of two different
MMTV-Cre models) [36]. These tumors were clas-
sified as BLBC [36].

The fact that WWOX DNA sequence is highly
conserved suggests its essential role in physiology
and explains the pathophysiologies associated with
its loss. For this reason, we and others have modeled
WWOX loss of expression in different animal mod-
els (reviewed in [37]). Our lab has pioneered in
studying conventional and conditional deletion of
murineWwox GEMmodels and contributed several
research studies supportingWWOX tumor suppres-
sor function [10,38–44], WWOX’s role in cellular
metabolism [25,43] and other functions [45,46].

Using these GEM models, it has been demon-
strated that aged germline Wwox-heterozygous
mice in mammary susceptible C3H genetic back-
ground develop mammary tumors with ~50% pene-
trance [40]. These mammary tumors were mostly
ER-negative and PR-negative, expressing cytokeratin
(CK)-14, hence reminiscent of the commonWWOX
inactivation in BLBC. Conditional knockout of
Wwox in the mammary glands (using MMTV-Cre)
resulted in mammary tumors (latency of 270 days)
[10]. These tumors were also characterized as BLBC-
like tumors: ER-negative, PR-negative and show
high mRNA expression of the basal markers includ-
ing Ck-14, Ck-17, Cav1, Cav2 and low expression of
Foxa1 andGata3 [10]. In the same study, conditional
knockout of Trp53 in mammary glands (using
MMTV-Cre transgenic line) resulted in mammary
tumors (latency of 262.5 days) with basal-like fea-
tures. Tumors of both conditional Wwox and Trp53
knockout mice were indistinguishable and displayed
hallmarks of BLBC both at immunohistochemical
staining and RNA sequencing [10]. Furthermore,
when RNA of Wwox-knockout tumors wascom-
pared to that of new and previous Trp53-knockout
models [47], all the analyzed tumors clustered
together. These findings indicate the existence of an
intimate relationship between WWOX and p53 in
BLBC and TNBC development.

WWOX, p53 and estrogen receptor (ER)

ER is considered as a powerful prognostic marker
and an efficient target for the treatment of hormone-
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dependent breast cancer with antiestrogens [48,49].
ERs are ligand-activated transcription factors [50]
and are known to have a central role in cell cycle
regulation [51,52]. Two forms of ER exist: alpha and
beta. Currently, only the ERα subtype is clinically
considered for clinical decision-making and treat-
ment in breast cancer [50]. ERα is expressed in the
majority of breast tumors (with immunohistochem-
ical staining in approximately two-thirds of breast
tumors) [50]. Therefore, it is generally believed that
breast tumors depend, at least initially, on the stimu-
latory effects of estrogens; however, many breast
tumors eventually progress to an estrogen-
independent growth phenotype [53]. Several factors
have been proposed to contribute to this later phe-
nomenon among which are increased expression of
estrogen-regulated genes [54], activation of mitogen-
activated protein kinase (MAPK) [55], overexpres-
sion of the vascular endothelial growth factor
(VEGF) [56].

Several lines of evidence showed that there is
a close link between WWOX and ER in both
normal and cancer contexts. In cancer, WWOX
is reduced/absent in BLBC and TNBC tumors
(mostly negative for ER and PR) [40]. Absent
WWOX expression significantly associates with
poor distant disease-free survival when compared
with patients that display normal WWOX expres-
sion. This association was maintained in the sub-
group of ER-negative patients but not in ER-
positive patients [57]. An independent study has
also reported that there is a strong correlation
between WWOX expression and ER; ~80% of ER-
negative cases demonstrate loss or reduced expres-
sion of WWOX [58]. Moreover, patients with
strong expression for WWOX are more sensitive
to tamoxifen treatment, while patients with
reduced expression of WWOX are tamoxifen-
resistant [59]. Remarkably, WWOX depletion in
human ER-positive MCF7 breast cancer cell line,
using shRNA constructs or by CRISPR/Cas9,
results in reduced ER expression and function
[10,40]. Along this line, it was shown that in nor-
mal mouse mammary gland development WWOX
protein levels are induced at the age of 3–4 weeks
[42], parallel to ER that is known to be induced at
the same time [60]. Additionally, ER conditional
knockout mice (using MMTV-Cre) display severe-
impaired ductal elongation and side branching

[61], akin to Wwox cKO mice [42,62]. How
WWOX modulates ER levels and activity is largely
unknown, one possibility could be through regula-
tion of ER co-activator WBP2 (WW domain-
binding protein 2) that enhances ER function via
YAP and/or Wnt signaling and reported to physi-
cally interact with WWOX [63–66]. Altogether,
these clinical findings suggest that there is
a positive correlation between WWOX and ER in
normal tissues and imply WWOX is upstream to
ER signaling. In ER+ breast cancer, ER signaling
somehow progresses to be WWOX-independent,
while in ER-cancer it seems that tumor cells initi-
ally lose WWOX and then lose ER expression.

On the other hand, it is known that ERα inhi-
bits p53-mediated cell cycle arrest and apoptosis
through binding p53 and repressing its transcrip-
tional function (MCF7 cells, as well as in a mouse
xenograft model) [67–69]. Moreover, Konduri
et al. reported that ER plays an important role in
the repression of p53-mediated transcriptional
activity [70]. Instead, knockdown of ERα (in
MCF7) resulted in decreased expression of p53
and its downstream targets, MDM2 and
CDKN1A [71]. It was also demonstrated that ERα
activates p53 transcription via binding to estrogen
response element within the p53 promoter [71].

In our mammary-specific Wwox-cKO model, we
presented evidence that the reduction in p53 levels is
due to genomic focal deletion that was validated by
PCR of gDNA [10]. Interestingly, whenWWOXwas
knocked out in vitro (in MCF7 cells), p53 dysregula-
tion was not associated with genomic deletion in the
TP53 locus but likely was due to transcriptional
repression [10]. This observation could imply that
WWOX controls p53 transcription through regula-
tion of ER. Further studies would be required to
delineate the WWOX-ER-p53 axis to better uncover
its dynamics in breast cancer development.

WWOX, p53, and EMT

Epithelial-to-mesenchymal transition (EMT) is
defined by enhanced levels of the mesenchymal mar-
kers (vimentin, smooth-muscle actin, N-cadherin and
cadherin-11), reduced expression of the epithelial
marker (E-cadherin) [72], loss of cellular adhesion
and changes in polarization of the cell and its cytos-
keleton [73]. EMTwas described to be associated with
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malignancy, invasion, and metastasis [73]. As BLBC
and TNBC are the most aggressive breast cancer sub-
types, they display high metastatic ability and
mesenchymal features [73]. Sarrio et al. indeed
reported an up-regulation of the EMT markers and
reduction of the epithelial markers among basal-like
tumors, suggesting that this mesenchymal transition
may be related to the high aggressiveness and meta-
static spread of the basal-like tumors [72]. Choi et al.
also showed that BLBCs have high levels of the EMT
markers [74].

Several lines of evidence demonstrate that inac-
tivation of WWOX affects EMT, which might be
related to tumor progression [10,13,75]. Gourley
et al. reported that loss of WWOX during ovarian
cancer development results in increased levels of
membranous integrins and increased adhesion and
migration of tumor cells on extracellular matrix
and hence speculated that this would enhance
locoregional peritoneal ovarian tumor spread and
metastasis [76]. Consistent with this scenario, loss
of WWOX protein expression has previously been
correlated with advanced stage disease and poorer
survival in ovarian cancer patients [58]. More
recently, Khawaled et al. demonstrated that
manipulation of WWOX expression in TNBC
and BLBC cell lines modulates invasion, metastatic
seeding, and colonization [13]. It was demon-
strated that WWOX, through modulation of
microRNAs, regulates the levels of both epithelial
and mesenchymal markers hence antagonizing
EMT and invasion of TNBC cells [13]. This has
been suggested to be achieved, at least in part,
through negative regulation of c-MYC expression
and activity, resulting in miR-146a accumulation
hence targeting the mesenchymal gene Fibronectin
and supports the epithelial phenotype [13]. These
findings and others suggest that WWOX tumor
suppressor function impacts a plethora of path-
ways to antagonize invasion and metastasis [12].

p53 has been also described to regulate EMT,
often through microRNAs [77–82]. For example,
Ohtsuka et al. reported that loss of p53 induces
EMT and cellular motility in gastric epithelial cells
prior to the development of gastric cancer [83].
Additionally, it was shown that p53 alters ZEB1
and ZEB2 expression, transcription factors known
to promote EMT, by upregulating microRNAs,
including miR-200 and miR-192 family members

[80]. Di Gennaro et al. demonstrated that p53 con-
trols EMT and tumor cell invasion via miR-30a,
which probably acts through upregulation of miR-
200c [84]. p53 transactivates miR-200c through
direct binding to its promoter [77]; when p53 is
lost in mammary epithelial cells this results in
decreased expression of miR-200c and in EMT acti-
vation [77,85]. Altogether, these findings suggest
that both WWOX and p53 may play an important
role in inhibiting the EMT pathway and subse-
quently inhibiting the breast cancer progression.
Whether WWOX loss mediates p53 regulation of
microRNAs in TNBC and BLBC is still unknown
and shall be determined in future studies.

WWOX, p53, and genomic instability

Genome instability is considered as an enabling charac-
teristic of almost all cancer types [86].Genomic instability
can be referred to an increased tendency of alterations in
the genome during the life cycle of cells. These genomic
alterations confer a selective advantage on subclones of
cells, enabling theiroutgrowthandexpansion, resulting in
cancer [86]. Moreover, genomic instability is thought to
play an important role in cancer resistance to therapy
[87,88].Disruption of theDNAdamage response (DDR)
machinery in human cells leads to genomic instability
and an increased risk of cancer progression [86,88].

p53 has been shown to be involved in the DDR.
Induction of DSBs activates ATM [89], which in turn
phosphorylates p53 directly or indirectly, resulting in p53
accumulation and activation [90–93]. ATM could also
phosphorylateMDM2, inhibiting the ability ofMDM2 to
ubiquitinate p53, thus leading to p53 stabilization [94].
The consequence of p53 accumulation and stabilization
results in transcribing its target geneswhich include those
important for cell cycle arrest (to allow repair of theDNA
damage) or apoptosis (to eliminate cells with unrepaired
DNA). The cell cycle arrest mediated by p53 activation is
mainly regulated by p21/WAF [95] while apoptosis is
mediated by different pro-apoptotic genes including
Puma, Noxa, Bax, and others [95]. In case of p53 defi-
ciency, unrepaired damage and genomic instability are
observed [96]. In fact, p53-deficient mammary tumors
display increased genomic instability with aneuploidy,
amplifications, and deletions [97] and are associated
with radioresistance [98].

WWOX has been also shown to play a direct
role in the DDR. Upon DNA damage, WWOX
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levels are induced and accumulate in the cell
nucleus, where it interacts with ATM and
enhances its activation [22]. WWOX depletion
results in reduced ATM signaling and reduced
DNA repair, contributing to increased DSBs
[10,99]. WWOX loss was also associated with
increased chromosomal instability and increased
DSBs [23]. Interestingly, the induction of DSBs
in WWOX deficient cells is associated with
impaired p53 accumulation and signaling [10,22].
More recently, it was shown that WWOX binds
BRCA1 and regulates DNA repair [100].
Altogether, we believe that alteration of WWOX
expression, which is associated with impaired
checkpoint protein signaling, could impair p53
accumulation and activation resulting in improper
DDR and genomic instability further contributing
to BLBC and TNBC formation and progression.

The interplay between WWOX and p53 in breast
carcinogenesis: conclusions and future
perspective

Positive and/or negative regulators, mainly at the pro-
tein level, do control the p53 protein. Upon stress,
kinases including ATM/ATR and Chk1/Chk2 phos-
phorylate p53, thus stabilize its protein product and
promote its DNA binding ability [101]. Another posi-
tive regulationmechanism is recognized by increasing
the p53 stability as shown by Freeman et al. demon-
strating that PTEN stabilizes p53 by increasing its half-
life [102]. On the other hand, Mdm2 negatively reg-
ulates p53 through the ubiquitin-proteasome system
[103–105]. Mdm2 is transcriptionally induced by p53
highlighting a negative feedback loop mechanism in
which p53 controls its own degradation. Other reports
showed thatmicroRNAs could also regulate p53 levels
[106–108]. For example, miR-125b binds to 3′-UTR
of theTP53mRNAresulting in decreasedmRNA level
[107]. Knockdown of miR-125b induced apoptosis
through increasing the levels of p53 in human lung
fibroblasts [107]. MicroRNAs can also positively reg-
ulate p53 by targeting known negative regulators of
p53, such as silent information regulator 1 (SIRT1)
gene [109,110].

Our recent findings demonstrate that WWOX,
gene product of FRA16D, can also regulate p53
levels and activity. Expression of the WWOX gene
is induced upon DNA damage to enhance DNA

repair or apoptosis [22,23]. Furthermore, several
microRNAs were shown to regulate WWOX
expression. One example is overexpression of
miR-29 in lung cancer cell lines which has been
shown to restore normal patterns of DNA methy-
lation and induce expression of WWOX hence
suppressing tumorigenicity both in vitro and
in vivo. Interestingly, miR-29 is induced in
response to DNA damage and occurs in a p53-
dependent manner [111] perhaps contributing to
the suppression of breast carcinogenesis [112,113].

The similar behavior of WWOX and p53 sug-
gests that both act in the same way, at least in
breast cancer. Moreover, the current evidence sug-
gests that WWOX is an upstream regulator of p53.
We showed that WWOX deficiency results in p53
loss/reduction in vitro and in vivo [10,99]. Our
recent study suggests new mechanisms of regula-
tion of p53 that are mediated by WWOX action
(Figure 1). The first mechanism we propose is p53
regulation through ER signaling; p53 is regulated
by ER and WWOX depletion results in reduced
ER levels hence it is possible to speculate that
WWOX through regulating ER levels controls
those of p53. It is possible that the reduction in

WWOX

Genomic 

instability

ER 

pathway

EMT

p53

Figure 1. WWOX regulates p53 function, model of action and
scenarios. I. WWOX modulates the DNA damage response path-
way, antagonizes genomic instability and inhibits loss of p53. II.
WWOX modulates ER expression and function, which in turn
positively or negatively affects p53. III. WWOX inhibits the
epithelial-to-mesenchymal transition (EMT). p53 is known to
inhibit both genomic instability and EMT.
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ER levels in WWOX KO cells is mediated through
WBP2 protein. In fact, it was reported that WBP2
is essential for proper activation of PR and ER
[63]. Intriguingly, WBP2 contains a PPxY motif
that associates with WW domain protein YAP
[114], leading to ER and PR transactivation. As
WWOX is known to interact with PPxY-
containing proteins as well [26], it is possible that
WWOX may associate with WBP2 and regulate
ER/PR signaling. Consistent with this scenario, it
was shown that the WBP2–WWOX interaction
attenuates the transactivation functions of ER
[115]. It is also possible that WWOX may associ-
ate with transcription factors that regulate ER gene
transcription. Further studies should shed light on
such plausible mechanisms.

Mammary tumors developed inWwox and Trp53
mouse models display enhanced expression of EMT
markers and high EMT scores (compared to other
mammary tumor mouse models) [10]. Up till now,
the role of bothWWOX and p53 in EMT is reported
to be mediated by microRNAs. Whether WWOX
has an upstream effect on p53 in the EMT program
is still to be investigated. Recently, it has been
reported that WWOX negatively regulates c-Myc,
a master regulator of microRNA expression [13].
Some of these microRNAs may regulate p53
mRNA levels, though this is yet to be shown.

The third possible mechanism of action for
WWOX is through maintaining genome stability.
The role of WWOX or p53 in the DDR is heavily
investigated, but the connection between both of
them is poorly studied. The Aqeilan’s lab showed
that in response to induction of DSBs or DNA
single-strand breaks (SSBs), WWOX accumulates
and promotes DNA repair through the activation
of ATM or ATR [22,23]. Indeed, WWOX loss is
associated with reduced ATM/ATR activation and
substrate phosphorylation, such as CHK2 and
CHK1 phosphorylation, respectively [22,23].
Reduced ATM signaling could result in reduced
p53 phosphorylation [91] and impaired DDR in
WWOX-deficient cells. Indeed, we observed that
ionizing radiation of WWOX–depleted MCF7 cells
results in reduced ATM phosphorylation and
reduced nuclear p53 accumulation [10], suggesting
that WWOX may affect p53 levels through ATM. It
was also reported by Ouchi et al. that BRCA1 coim-
munoprecipitates with p53 and acts as a p53

coactivator, which enhances p53-dependent gene
expression [116]. Moreover, BRCA1 and/or TP53
alterations are associated with higher homologous
recombination deficiency score [117]. The Huebner
lab has recently shown that WWOX, via its first
WW domain, interacts with BRCA1 and proposed
that the BRCA1–WWOX complex supports non-
homologous end-joining pathway as the dominant
DSB repair pathway in WWOX-sufficient cells
[100]. Whether WWOX affects p53’s level/function
through BRCA1, is still to be investigated.

Since cloning of the TP53 gene [118], thousands
of articles were published describing its critical
roles, functions, and partners in cancer and biol-
ogy. Consequently, p53 is known today as the
master regulator of many cellular pathways
[119,120]. Here we introduce a new regulator of
p53, WWOX. This regulation occurs at three
levels: DNA, RNA, and protein.
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