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Abstract

Diffusion kurtosis imaging (DKI) is a diffusion MRI (dMRI) technique to quantify brain 

microstructural properties. While DKI measures are sensitive to tissue alterations, they are also 

affected by signal alterations caused by imaging artifacts such as noise, motion and Gibbs ringing. 

Consequently, DKI often yields output parameter values (e.g. mean kurtosis; MK) that are 

implausible. These include implausible values that are outside of the range dictated by physics/

biology, and visually apparent implausible values that form unexpected discontinuities, being too 

high or too low comparing with their neighborhood. These implausible values will introduce bias 

into any following data analyses (e.g. between-population statistical computation). Existing studies 

have attempted to correct implausible DKI parameter values in multiple ways; however, these 

approaches are not always effective. In this study, we propose a novel method for detecting and 

correcting voxels with implausible values to enable improved DKI parameter estimation. In 

particular, we focus on MK parameter estimation. We first characterize the relation between MK 

and alterations in the dMRI signal including diffusion weighted images (DWIs) and the baseline 

(b0) images. This is done by calculating MK for a range of synthetic DWI or b0 for each voxel, 

and generating curves (MK-curve) representing how alterations to the input dMRI signals affect 

the resulting output MK. We find that voxels with implausible MK values are more likely caused 

by artifacts in the b0 images than artifacts in DWIs with higher b-values. Accordingly, two 

characteristic b0 values, which define a range of synthetic b0 values that generate implausible MK 

values, are identified on the MK-curve. Based on this characterization, we propose an automatic 

approach for detection of voxels with implausible MK values by comparing a voxel’s original b0 

signal to the identified two characteristic b0 values, along with a correction strategy to replace the 

original b0 in each detected implausible voxel with a synthetic b0 value computed from the MK-

curve. We evaluate the method on a DKI phantom dataset and dMRI datasets from the Human 

Connectome Project (HCP), and we compare the proposed correction method with other 

previously proposed correction methods. Results show that our proposed method is able to identify 
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and correct most voxels with implausible DKI parameter values as well as voxels with implausible 

diffusion tensor parameter values.

1. Introduction

Diffusion kurtosis imaging (DKI) (Jensen et al., 2005) is a clinically feasible extension to 

diffusion tensor imaging (DTI) (Basser et al., 1994), providing additional important 

microstructural information (Cheung et al., 2009). DTI relies on an assumption that the 

probability density function of water molecule displacement follows a Gaussian distribution. 

However, the diffusion of water molecules in biological tissues such as the human brain, can 

deviate considerably from a Gaussian distribution due to restriction and hindrance (e.g., 

cellular membranes) (Jensen et al., 2005), and due to partial volume effects, where multiple 

microstructural compartments reside in the same voxel (Westin et al., 2016; Yang et al., 

2012). DKI uses a diffusion model that extends DTI to characterize non-Gaussian water 

molecule diffusion by estimating the excess kurtosis of the probability density function 

(Jensen et al., 2005). Changes in kurtosis are believed to reflect microstructural changes that 

alter molecular restrictions and tissue heterogeneity (Steven et al., 2014).

In DKI, a typical approach is to parameterize the diffusion MRI (dMRI) data by a diffusion 

tensor and by a kurtosis tensor (Tabesh et al., 2011). Therefore, in addition to the standard 

diffusion tensor parameters such as mean diffusivity (MD) and fractional anisotropy (FA) 

(Pierpaoli and Basser, 1996), DKI estimates kurtosis-tensor-specific parameters including 

mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK) (Hui et al., 2008; Jensen 

et al., 2005; Lu et al., 2006). These additional DKI parameters have been suggested to 

indicate the complexity of the microstructural environment of different brain tissues (Steven 

et al., 2014), and have been found useful in the identification and characterization of 

neurological changes in aging (Falangola et al., 2008; Grinberg et al., 2017), in rodent brain 

maturation (Cheung et al., 2009), as well as in neurological disorders, such as brain tumors 

(Raab et al., 2010), Alzheimer’s disease (Benitez et al., 2014), traumatic brain injury (Zhuo 

et al., 2012), and many more, as described in two recent reviews (Marrale et al., 2016; 

Steven et al., 2014).

DKI parameter maps (e.g. MK) that are calculated directly from the dMRI data, with no 

additional processing, often have implausible values. Physical considerations and empirical 

evidence from biological tissue indicate that MK should be positive and lower than 3 (Jensen 

et al., 2005; Tabesh et al., 2011). A broader definition of implausible voxels includes voxels 

with visually implausible MK values, which are defined here as voxels with too high or too 

low values that form unreasonable spatial patterns with neighboring voxels from the same 

brain tissue. Most visually implausible voxels have MK values that are outside of the 

expected range of 0–3. However, many of the visually implausible voxels are within the 

empirically set range, and still appear as very dark or very bright comparing with their 

neighborhood. Most common are implausibly low values which in their extreme case appear 

as very dark voxels within brain tissue. Typically, the number of voxels with visually 

appearing implausible values is considerable (as demonstrated in Figure 1a). If not 

corrected, these implausible values would introduce large biases in the processing of DKI 
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parameters, incorrectly describing the true tissue microstructure, and affect any following 

DKI data analyses such as between-population statistical comparisons (Shaw and Jensen, 

2017a). Resolving voxels with implausible values is therefore an important preprocessing 

task for any DKI analyses.

Not all causes for implausible DKI parameter values are known yet, but they include image 

artifacts such as Gibbs ringing (Perrone et al., 2015; Veraart et al., 2016a), noise and subject 

motion (Shaw and Jensen, 2017a; Tabesh et al., 2011). These factors typically have more 

effect on DKI than DTI (Perrone et al., 2015; Shaw and Jensen, 2017a; Tabesh et al., 2011). 

Previously proposed approaches to resolve implausible parameter values mainly include 

imposing constraints during the model fitting and performing signal denoising. In the 

constrained fit approach, the empirically expected range is enforced during the model fit 

(e.g., constrained linear least squares (Tabesh et al., 2011)). As a result, when estimated by 

constrained fit, the DKI parameter values of all voxels are within the predefined parameter 

range. However, this approach does not correct visually apparent implausible values that are 

within the allowed range (e.g. positive values of MK that are near zero). Another common 

approach to resolve implausible parameter values is signal denoising, which is typically 

based on spatial operators that are applied on the dMRI data. For example, Gaussian 

smoothing has been applied to reduce the variability between neighboring voxels (Tabesh et 

al., 2011). More advanced signal denoising methods have applied techniques such as non-

local formulation filtering (Chen et al., 2017; Zhou et al., 2015) and principal component 

analysis (PCA) (Manjón et al., 2013; Veraart et al., 2016c), as reviewed by Shaw and Jensen 

(Shaw and Jensen, 2017a). Denoising increases the signal-to-noise-ratio (SNR) in dMRI 

data, which could improve kurtosis/diffusion tensor parameter estimation and is expected to 

reduce the occurrence of implausible values. However, denoising is normally applied on the 

entire image, which also affects voxels where the parameter values do not require altering. 

This could reduce the contrast variability and remove subtle spatial details that may be of 

clinical/neurological importance. In addition, most denoising methods assume that 

neighboring voxels are from the same brain structure and thus share similar dMRI 

information. This assumption is not valid for voxels at tissue boundaries, whose neighbors 

include multiple brain structures. Other approaches reduce the occurrence of implausible 

kurtosis values by specifically reducing the effect of Gibbs ringing (Kellner et al., 2016; 

Perrone et al., 2015; Veraart et al., 2016a). However, these approaches are less effective in 

voxels where the implausible values are not directly caused by Gibbs ringing. While 

applying the above mentioned approaches reduces the occurrence of implausible parameters 

in DKI, they are not effective enough to resolve it completely.

In this study, we propose a novel method for detecting and correcting voxels with 

implausible DKI parameters, focusing on MK. We characterize the relation between 

artifactual alterations to the input dMRI signals in a single image (i.e., the baseline (b0) or a 

diffusion-weighted image (DWI)) and the resulting output MK values. To do so, we perform 

voxel-wise experiments where we synthetically alter one value (either b0 or DWI) and 

recalculate MK. These synthetic alterations include a large range of possible values to 

encompass possible alterations due to effects like noise, Gibbs ringing, motion, etc. As a 

result, we obtain a curve representing MK as a function of synthetic DWI or b0 (the MK-

curve) for each image voxel.
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We identify that implausible MK values are more likely caused by artifacts in the b0 images 

than artifacts in DWIs with higher b-values. Further, we identify two characteristic b0 values 

on the synthetic b0 MK-curve for each voxel, which help us identify a range of synthetic b0 

values that generate implausible MK values. Based on this characterization, we propose an 

automatic approach to detect voxels with implausible MK values, and we demonstrate 

successful detection performance in in-vivo human dMRI data. Finally, based on the 

characterization of the MK-curve we propose a correction approach, where the original b0 in 

each detected implausible MK voxel is replaced with a synthetic b0 value computed from 

the curve.

Instead of changing the entire dMRI volume, our proposed method minimally changes the 

dMRI data by correcting only the b0 signals of those voxels that were detected to have 

implausible MK values. Moreover, the proposed detection and correction method is voxel-

specific, based on the actual measurements of each voxel from its MK-curve without 

requiring any global constraints (e.g. empirically set range of MK values) or spatial 

neighborhood information. We evaluate the method on a DKI phantom dataset (Kuder et al., 

2012) and on 10 dMRI datasets from the Human Connectome Project (HCP) (Van Essen et 

al., 2013), and we compare the quality of the correction with other previously proposed 

correction methods.

2. Methods

2.1 DKI model fit, computation of DKI parameters, and evaluation datasets

The DKI model expresses the DW signals as (Tabesh et al., 2011):

ln S(n, b)
S0

= − b ∑
i = 1

3
∑
j = 1

3
nin jDi j + 1

6b2D2 ∑
i = 1

3
∑
j = 1

3
∑

k = 1

3
∑
l = 1

3
nin jnknlKi jkl (1)

where S(n, b) is the DW signal of a voxel given the diffusion weighting b along the gradient 

direction n=[n1, n2, n3], S0 is the non-DW b0 signal, Dij and Kijkl are the elements of the 

diffusion tensor D and the kurtosis tensor K, respectively, and D= trace(D) / 3 is the mean 

diffusivity. A weighted linear least square (WLLS) fitting (Veraart et al., 2013) was applied 

to compute the kurtosis tensor K and the diffusion tensor D. MK was computed as the 

average of the directional kurtoses derived from K (Tabesh et al., 2011). In addition to MK, 

we computed two other kurtosis tensor parameters: axial kurtosis (AK), which is the kurtosis 

in the direction of the highest diffusion, and radial kurtosis (RK), which is the mean 

diffusional kurtosis perpendicular to the direction of the highest diffusion (Tabesh et al., 

2011); as well as two diffusion tensor parameters derived from D: mean diffusivity (MD) 

and fractional anisotropy (FA) (Pierpaoli and Basser, 1996).

The proposed method for detection and correction of voxels with implausible MK values is 

evaluated with in-vivo human multi-shell dMRI datasets from the Human Connectome 

Project (HCP) (Van Essen et al., 2013). 10 HCP datasets (age: 29.1 ± 4.0 years; gender: 5 

females and 5 males) were randomly selected from the HCP repository1. The HCP datasets 

were acquired with a high quality image acquisition protocol using a customized 
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Connectome Siemens Skyra scanner and were processed following the HCP minimum 

processing pipeline (Glasser et al., 2013), which includes brain masking, motion correction, 

eddy current correction and EPI distortion correction. The acquisition parameters used for 

the diffusion MR data were TE = 89.5 ms, TR=5520 ms, phase partial Fourier = 6/8, and 

voxel size =1.25×1.25×1.25 mm. A total of 288 images were acquired in each dMRI dataset 

(acquired in both AP and PA phase encoding, to correct for EPI distortions), including 18 

baseline images with a low diffusion weighting b = 5 s/mm2 and 270 diffusion weighted 

images evenly distributed at three shells of b=1000/2000/3000 s/mm2. An average b0 image 

across the 18 b0 images was computed for the DKI model fit. The HCP-provided brain 

masks were used to exclude background voxels (e.g. from the skull and non-brain regions).

We also performed experimental evaluation on a DKI phantom dataset (Kuder et al., 2012) 

to quantify difference from ground truth values, and to help in tuning parameters of the 

proposed method. (Kuder et al., 2012) phantom consists of parallel polyester fibers wound 

on a circular spindle immersed in agarose gel. Full description of this phantom is available 

in (Laun et al., 2009) and in (Kuder et al., 2012). Water molecule displacement is restricted 

between the densely packed fibers, yielding diffusivity and kurtosis levels similar to those of 

white matter. The gel region is isotropic and has low kurtosis, resembling cerebrospinal fluid 

(CSF). Diffusion data of the phantom was downloaded from the open source project: “Fiber 

Phantom for Kurtosis Imaging”2. The data acquired on a 3T MR scanner (Magnetom Trio; 

Siemens Healthcare, Erlangen, Germany) using a single-shot, twice refocused spin-echo 

echo-planar imaging diffusion sequence. The acquisition parameters were TE = 165 ms, TR 

= 2000 ms, partial Fourier = 6/8, single slice with voxel size = 2.5×2.5×2.5 mm, and 16 b-

values from 0 to 10,000 s/mm2. In our study, we used the images from b=0/1000/2000/3000 

s/mm2 to be consistent with the in-vivo human data. The fiber and agarose gel regions were 

segmented based on the computed MD map (using a threshold at 0.001 mm2/s) using the 

SlicerDMRI extension (http://dmri.slicer.org) (Norton et al., 2017) in 3D Slicer 

(www.slicer.org).

Finally, our proposed method was also applied on an additional dataset with a more 

conventional DKI acquisition parameters, that are more likely to be used in clinical studies. 

This data was acquired on a 3T MR scanner (Magnetom Verio; Siemens Healthcare, 

Erlangen, Germany) and acquisition parameters were TE = 109 ms, TR = 15800 ms, phase 

partial Fourier = 6/8, voxel size = 2×2×2 mm3, 5 b0 images, and two shells of b=1000/3000 

s/mm2, with the same 30 directions in each shell. An average b0 image across the 5 b0 

images was used for DKI model fit of this data. This data was acquired with approval of the 

local ethics board. We used this data to demonstrate the performance of the proposed 

method on data that was expected to have more imaging artifacts than the HCP data that was 

acquired using a high quality imaging protocol and processed using a more sophisticated 

pipeline.

1https://www.humanconnectome.org/
2https://www.nitrc.org/projects/diffusion-data
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2.2 Method overview

Below we propose a processing approach that is designed for detection and correction of 

voxels with implausible MK values to enable improved DKI parameter estimation. The 

method includes (see Figure 1 for an overview) an automatic approach for detection of 

voxels with implausible MK values, followed by a voxel-specific correction strategy for 

these detected voxels. The computational steps are listed in the pseudocode in Algorithm 1 

and are detailed in the next two sections.

2.3 Generating the MK-curve

To detect voxels with implausible MK values, we first characterized the relation between 

alterations in the dMRI signal (b0 or DWIs) and their resulting MK value. The 

characterization took place by generating novel MK-curves: “MK versus synthetic b0” and 

“MK versus synthetic DWI” curves. The MK-curves synthetically simulate all possible 

values that a single acquired dMRI signal (either b0 or DWI) may have. Therefore, the MK-

curve represents all possible artifactual MK values that could be caused by a change to a 

single b0 or DWI value.

To generate the MK versus b0 curve, for each voxel we replaced the original b0 value with a 

range of synthetic values while not altering any DWIs. To generate synthetic b0 values, we 

used 200 equally spaced values in the range of 0.1 to 2 times the average b0 (calculated from 

the entire volume, within the brain mask). This synthetic b0 range was large enough to 

include very small and very large b0 values that could possibly result from any imaging 

artifacts. We used a weighted linear least square (WLLS) fitting (Veraart et al., 2013) to 

estimate MK (as described in Section 2.1) for each synthetic data experiment. As a result, 

we could plot the MK value for each synthetic b0 signal (Figure 1b). The MK versus 

synthetic DWI curve was similarly generated by replacing a single DWI with a range of 

synthetic values and calculating MK for each synthetic dataset. As demonstrated below in 

the Results, in certain ranges, slight b0 differences yielded dramatically variable MK values, 

whereas differences in DWIs only led to small MK variability, which suggests that noise or 

artifacts in the b0 are more likely to cause voxels with implausible MK values than noise or 

artifacts in the DWIs.

The MK versus synthetic b0 curves have a similar shape for all brain tissue/regions (see 

Figure 1b for the MK-curve from one example voxel; see Figure 2 for the MK-curves from 

multiple voxels): Looking from right to left, and starting from the maximal synthetic b0, as 

the synthetic b0 value decreases, the MK values slightly increase until reaching a peak, 

which we define as a characteristic b0 value and call max- MK b0. The curve then continues 
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with a sharp decrease in the MK value, which crosses MK=0 (i.e., zero mean kurtosis) at 

another characteristic b0 value that we define and call zero-MK b0. Then, when the 

synthetic b0 value is further reduced, the MK value enters an unstable phase where MK 

fluctuates dramatically, often reaching extreme low and high values, where very small 

changes in the b0 value cause very large changes in the MK value. As a comparison, for the 

MK versus synthetic DWI curves (Supplementary Figure S1), voxels had different MK-

curve shapes, and there was not a typical unstable region on the curves.

2.4 Detection and correction of voxels with implausible MK using the MK-curve

The two identified characteristic b0 values, i.e., zero-MK b0 and max-MK b0, divide the 

MK-curve into three regions (Figure 1b) that help in detecting which voxels have 

implausible values. The leftmost region (Region 1), with b0 values below the zero-MK b0 

value, is an unstable region where small changes in the synthetic b0 result in erratic MK 

changes reaching extreme values. This region is characterized by having very low or 

negative diffusion tensor eigenvalues. Therefore, all voxels whose original b0 was in this 

range were defined as implausible, even if by chance the MK fluctuations resulted in 

positive values. The rightmost region (Region 3) is a stable region (i.e., small changes in b0 

yield small changes in MK) with b0 values higher than the max-MK b0 value. MK values in 

this region are always positive and within the plausible range. Therefore, all voxels whose 

original b0 was higher than max-MK b0 were identified as plausible. The remaining region 

on the MK-curve is in the range between the zero-MK and max-MK b0 values (Region 2). 

MK and diffusion tensor eigenvalues in this range are always positive. However, many 

voxels that had an original b0 within this range visually appear as implausibly low.

To determine the implausibility of MK values in voxels whose original b0 was within 

Region 2, we set a threshold on the MK-curve for each voxel, and we defined its MK value 

as implausible if its original b0 was below this threshold. The threshold is defined as a 

function of the zero-MK b0 and the max-MK b0, as:

b0threshold = (1 − λ) ⋅ b0zero − MK + λ ⋅ b0max − MK (2)

Where λ ∈ [0, 1] is a weighting parameter (the suggested range for λ is 0.3–0.5 see below). 

Since the computed b0threshoid is voxel-specific, each voxel can have a different range of 

values which are defined as implausible, rather than setting a global MK threshold for all 

voxels.

Then, all voxels that were identified to have implausible values were corrected by replacing 

their original b0 with their voxel-specific b0threshoid. In this way, we could make the smallest 

change to the b0 image, while correcting MK to a value that will no longer be detected as 

implausible.

2.5 Quantitative evaluation

The definition of implausible values is based on visual inspection, and as such many of the 

evaluations are qualitative rather than quantitative. However, the availability of the phantom 
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data allows for a more quantitative evaluation approach. The ground truth MK values of the 

phantom data are not known. However, due to the construction of this phantom it is 

reasonable to assume that the MK values in the polyester fiber area would be homogenous, 

and higher than the MK values in the isotropic agarose gel area. Therefore, and assuming no 

systematic bias in MK, we can expect that noise and other image artifacts would generate a 

distribution that is centered at the real MK value. The expected underlying MK value was 

thus identified by plotting the histogram of MK of all voxels from the fiber region, versus 

those from the gel region, verifying that the peak of the distribution in the fiber region is 

higher than that of the gel region, and assigning the peaks as the “ground truth” MK value 

for the fiber region and for the gel region (see Figure 3). To quantify deviation from the 

ground truth we then calculated for each voxel, v, its absolute bias: | MKv - MKpeak | / 

MKpeak and then calculated the mean and standard deviation (std) of the absolute bias across 

all voxels in a region (fiber region or gel region). Using the mean and std of the absolute bias 

we can then compare the performance of our algorithm for different λ values, as well as 

compare with other correction methods, or with the uncorrected raw data.

2.6 Comparison with other correction methods

We compared the proposed method (referred to as the MK-curve method in the rest of the 

paper) with four correction approaches that are currently used in leading DKI 

implementation packages: 1) The Gaussian smoothing method (Tabesh et al., 2011) to 

average signals of neighboring voxels (implemented in the Dipy package3), 2) The 

constrained fit method (Tabesh et al., 2011), which imposes constraints on minimum and 

maximum kurtosis values to ensure physically and/or biologically plausible parameter 

estimates (implemented in the NYU-DiffusionMRI repository via the Diffusion-Kurtosis-

Imaging package4), 3) The Gibbs removal method (Kellner et al., 2016) that is designed to 

remove Gibbs ringing based on local subvoxel-shifts (implemented in the unring package5), 

and 4) The Marchenko-Pastur-BasedPCA (MPPCA) method (Veraart et al., 2016c) that 

exploits data redundancy by estimating spatial noise level in a local neighborhood of each 

voxel (implemented in the NYU-DiffusionMRI repository via the mppca_denoise 

package6). Tuning parameters for each method were set to those suggested by the software 

packages. Quantitative comparisons were made on the DKI phantom data, and qualitative 

visual comparisons were made on the in-vivo data. We note that MPPCA could not be 

applied on the DKI phantom data, since it requires more than a single slice. For the in-vivo 

data, the different methods were applied on the already preprocessed HCP data. This is not 

optimal for the MPPCA, Gibbs removal and Gaussian smoothing methods which should 

ideally be applied prior to any preprocessing. On the other hand, the constrained fit method 

and our proposed MK-curve method are model-based approaches that require fitting the DKI 

model, which is more accurate as a step that follows any image corrections and 

preprocessing. Nevertheless, additional experiments (see Supplementary Figure S2) showed 

that the order of application made little difference to the ability to correct implausible MK 

values.

3http://nipy.org/dipy/examples_built/reconst_dki.html
4https://github.com/NYU-DiffusionMRI/Diffusion-Kurtosis-Imaging
5https://bitbucket.org/reisert/unring
6https://github.com/NYU-DiffusionMRI/mppca_denoise
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3. Results

In this section, we first demonstrate how the MK-curve characterizes voxels with 

implausible MK values, we then select the free parameter λ, followed by showing the 

detection and correction results on the test datasets. Finally, we quantitatively and visually 

compare the proposed MK-curve method with other correction methods.

3.1 Characterization of voxels with implausible MK values

To characterize the relation between dMRI signals (b0 or DWI) and MK values, we 

constructed MK versus synthetic b0 curves and MK versus synthetic DWI curves. Plotting 

the MK versus synthetic b0 curves for all the voxels within an example image slice of a 

single subject (Figure 2a) shows that all curves had a similar shape. The similar shape leads 

to the definition of the zero-MK b0 and max-MK b0 of the curve (see Section 2.2). We note 

that these two characteristic b0 value can be identified for all voxels, except for some 

background noise voxels that entered the brain mask. At b0 values below zero- MK b0, the 

curves had an erratic behavior, fluctuating between extreme MK values (see Figure 2b). To 

demonstrate the features of the MK versus b0 curve we chose 8 example voxels that their 

unprocessed MK values were visually plausible or visually implausible (Figure 2a), from 

either white or gray matter. The curves show that in some b0 ranges, altering the b0 value 

leads to large changes in MK. In voxels with originally plausible MK (Figure 2b), changing 

the b0 may lead to implausible MK values. In voxels with originally implausible MK 

(Figure 2c), changing the b0 may lead to plausible values.

As explained in the Methods (Section 2.2), the two identified characteristic b0 values divide 

the MK versus synthetic b0 curve into three regions. All voxels with original b0 that is lower 

than zero-MK (Region 1) had visually apparent implausible MK values (Figure 2e). All 

voxels with b0 higher than max- MK (Region 3) had visually plausible MK values (Figure 

2f). The remaining voxels in the region between zero-MK and max-MK b0 values (Region 

2) had both apparent plausible and apparent implausible MK values.

Unlike the synthetic b0, the MK versus synthetic DWI curves do not show common patterns 

(Supplementary Figure S1). Changes of the synthetic b=1000, b=2000 or b=3000 values in 

voxels that originally had visually plausible MK values did not have much effect on the MK 

value, and did not lead to implausible MK values. This suggests that an artifact in a single 

DWI would only subtly change the MK value, and is not typically sufficient to cause 

implausible MK values. In voxels that originally had visually implausible MK voxels, 

changing the DWI signal did not always map the MK value back to the plausible range, and 

when it did, it often required a very large increase in the signal value. This suggests that 

altering a single DWI is less likely to provide a sufficient solution for correcting voxels with 

implausible MK values.

3.2 Detecting and correcting voxels with implausible MK values

Applying the MK-curve detection and correction method requires a selection of a λ value. 

To select a λ value we quantitatively compared the bias measure on the DKI phantom, and 

qualitatively compared the results of the in-vivo data for varying λ values.
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Similar to the in vivo data, the DKI phantom data displayed many voxels with visually 

implausible MK values (“black holes”), all in the fiber region (see Figure 3a). These 

implausible values appeared despite the high quality of the acquisition, and despite the lack 

of motion artifacts. Plotting the histogram of the MK values in the fiber region and in the gel 

region identified a peak value of MK = 0.6 for the gel region, and MK = 1.3 for the fiber 

region. In the uncorrected data the distribution of the MK values in the fiber area had a long 

tail towards small and negative values (Figure 3b), which yielded a mean absolute bias of 

0.759 with std of 1.100, reflecting the visually implausible MK values and the 

inhomogeneous appearing MK map. In the gel region, the distribution of the MK was 

relatively homogeneous, yielding a bias measure of 0.188 with std of 0.129. All voxels in the 

fiber and gel regions showed the distinctive shape of the MK versus synthetic b0 curves 

(Figure 3c), which enables the application of the MK-curve method. Following the 

application of the MK-curve detection and correction algorithm, the mean and std bias 

scores for varying λ values show improvement comparing with the raw data for all λ values 

(Figure 4a). The lowest mean absolute bias was 0.122 with std of 0.120 at λ = 0.3. Across 

the different λ values, the range between 0.2 to 0.5 resulted with a similar mean absolute 

bias values that were lower than that of the gel region. The low bias scores in this range of λ 
is aligned with a visual inspection (Figure 4b), showing that after correction all visually 

implausible MK values were no longer implausible. Histograms of the corrected MK values 

under λ = 0.3 and 0.5 in the fiber region show that after correction the MK values of all fiber 

voxels are mapped to values larger than MK=1, while the peak MK value of the corrected 

data remains the same as the peak MK value of the original data. However, with a lower λ 
value (e.g. λ = 0.1), visually implausible MK voxels were not sufficiently corrected; on the 

other hand, with a larger λ value (e.g. λ = 0.7 and 0.9), the peak MK value of the histogram 

of the corrected MK values deviated from the peak MK value of the original data, suggesting 

over estimation. Our method did not detect, and therefore did not change any voxels in the 

agarose gel region regardless of λ selection. Of note, in this phantom dataset RK had a 

similar pattern of implausible values as MK (Supplementary Figure S3), and following 

correction (using λ = 0.3), had much reduced bias. AK, FA, and MD did not show clear 

implausible values on the original images. Still, the computed mean absolute bias was 

slightly improved following the application of the MK-curve method. The histogram of 

values preserved its peak, and the maps look very similar to the uncorrected maps 

(Supplementary Figure S3).

In the in vivo human data, which has a larger distribution of underlying MK values than the 

DKI phantom (due to multiple tissue types, partial volume effects, etc.), we do not have a 

ground truth measure to compare with, and therefore we visually compared the results for 

varying λ values. For λ = 0.1, many voxels with apparently low MK values were not 

detected. For λ = 0.3 and λ = 0.5, almost all visually implausible voxels were detected and 

corrected. λ = 0.5 resulted with slightly better performance compared to λ = 0.3 for voxels 

in the interface between white and gray matter region (see arrows in Figure 4c). As λ 
increases to 0.7 and 0.9, more voxels were identified as implausible including many that 

originally appeared to be plausible.

Taken together, the phantom and in vivo experiments suggest that 0.3 to 0.5 is a preferred 

range for the selection of λ. This range provides a balance in detecting and correcting as 
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many as possible voxels with visually implausible MK values, while avoiding changing 

voxels that appeared to have visually plausible values. The fiber area in the phantom 

resembles white matter areas in the brain, however, it appears that a higher lambda is more 

efficient in the interface between gray and white matter, which was not appropriately 

modeled in the phantom experiment. Therefore, in the following in-vivo experiments we 

used λ = 0.5.

Applying our detection and correction algorithm on the 10 HCP datasets (Figure 5) shows 

that all voxels with visually apparent low MK values (dark voxels) and visually apparent 

high MK values (a small number of bright voxels, typically outside the brain boundary) in 

the original MK maps were successfully identified by the detection method as implausible 

MK voxels. The locations of identified voxels were in highly organized white matter 

structures (e.g., the corpus callosum) and at the gray/white matter interface. The detection of 

voxels with implausible MK values delineated the gray/white matter interface. All of the 

voxels with MK values outside the plausible range of 0 to 3 were identified as implausible, 

except for a very small number of voxels outside the brain, where an overinclusive mask 

caused some background voxels to be analyzed (less than 0.001% of the voxels). After 

correction, voxels that initially had implausible MK values appeared to now have visually 

plausible values, no longer appearing as too dark or too bright.

Similar to the DKI phantom (Supplementary Figure S3), the MK-curve correction resulted 

also in improved RK on the human data, where many implausible values were visible on the 

original map, and no longer appeared implausible on the corrected map (Figure 6). Changes 

in AK, MD and FA are more subtle (Figure 6). The effect of the correction methods on AK 

was similar to that on MK and RK, i.e., the original maps had apparently implausible values 

(dark voxels), while the corrected maps appeared to be plausible after correction. There were 

only a few voxels with implausible MD (dark voxels) and FA (bright voxels) values on the 

original maps, and most of them appeared to be plausible after corrections. These voxels 

with implausible MD and FA are more visible in the data obtained with conventional 

acquisition, and were associated with negative diffusion tensor eigenvalues. Even though our 

algorithm did not directly aim to detect and correct voxels with implausible DTI parameters, 

all voxels with negative diffusion tensor eigenvalues across all datasets under study were 

detected as implausible (see Supplementary Figure S4c for a visualization), and all of these 

voxels except for some background voxels (less than 0.001%) were corrected to a plausible 

range with positive diffusion tensor eigenvalues (see Supplementary Table S1). Of note, in 

the original b0 image of the datasets included in this study (see Supplementary Figure S4d 

for an example), the detected (and the visually appearing) implausible MK voxels did not 

have visually implausible b0 values. Composing maps from the voxel-wise computed zero- 

MK b0 and max-MK b0 (Supplementary Figures S4f and S4g) shows that in the white 

matter the contrast of these maps is very similar, and close to the original b0 image, 

demonstrating again that slight b0 differences can cause large MK changes. Comparing with 

white matter voxels, voxels with CSF appear much darker on both the zero-MK b0 and max-

MK b0 maps, and these values were much lower than the actual original b0 values in the 

same voxels. This means that the actual b0 values of all CSF voxels were in the rightmost 

region on the MK-curve (i.e., Region 3 where MK values are plausible; see Figure 1), 

suggesting that CSF voxels (low anisotropy and high diffusivity) are less likely to show 
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implausible MK values, similar to the agarose gel region in the DKI phantom that did not 

show any implausible MK values.

3.3 Comparison with other correction methods

Quantitative comparison of the bias measure on the DKI phantom data for the different 

correction methods shows that all methods improved the bias measure versus the original 

uncorrected data, which had mean absolute bias of 0.759 with std of 1.10 (Figure 7b). Of the 

four methods compared (MPPCA could not applied since it required more than one slice) 

our proposed MK-curve method had the lowest mean absolute bias (0.122 with std of 

0.120). Visually comparing the corrected MK maps on the phantom data (Figure 7a) agrees 

with the quantitative bias measure, ranking the MK-curve resulted MK map as having the 

least remaining visually implausible voxels, followed by the constrained fit method, 

Gaussian smoothing and finally the Gibbs removal approach which resulted with the most 

remaining visually implausible voxels. The differences between the correction methods can 

also be appreciated with a visual comparison of an example HCP dataset (Figure 7c). In the 

white matter, MK-curve and constrained fit resolve most if not all implausible voxels. Most 

differences are visible in the white-gray matter interface, where many of the dark MK voxels 

remain dark following the constrained fit but appear plausible following the MK-curve 

correction. The MK-curve also performed well in eliminating negative diffusion tensor 

eigenvalues comparing with the other methods (Supplementary Table S1). Similar to the 

phantom dataset, the MK-curve correction yielded MK distributions that were more aligned 

with the expected, i.e., did not have long tails that reached to extreme values, and was 

concentrated around the biological/physical expected ranges of 0–3 (Supplementary Figure 

S5).

4. Discussion

By generating the MK-curve that characterizes the relation between the b0 and MK values 

we were able to propose a novel method to detect and correct voxels with implausible MK 

values.

We showed that variations in the b0 (e.g., caused by noise or artifacts) are more likely to 

result in implausible MK values, when compared to variations in the DWIs. Changes in the 

b0 might have large effects on the MK since the b0 image is used to normalize the DWIs, 

and thus noise in the b0 propagates to all normalized DWIs. In addition, some imaging 

artifacts (e.g., Gibbs ringing) have more effect on the images when the b-value is lower 

(Perrone et al., 2015; Veraart et al., 2016a). Contrary to changes to the b0, we show that even 

extreme changes in the value of a single DWI do not change the computed MK noticeably 

(Supplementary Figure S1). This may be due to the fact that there are many DWIs, and the 

effect of noise on a single DWI averages out during the model fitting. Therefore, in our 

approach we chose to modify the b0 alone, without altering the DWIs. While changing the 

b0 helps to correct implausible MK values, it may introduce bias to the b0 image itself; 

however, our experiments show that if such bias exists, its effect is small as compared to the 

improvement to the MK image. Nevertheless, we recognize that even though it is less likely, 

some of the implausible parameter values might be caused by artifacts in the DWIs. For 
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example, if several DWIs were affected simultaneously, or if there were specific DWIs that 

were more sensitive to changes than others. We note, however, that such voxels are probably 

very few, since the b0 correction corrected almost all voxels with implausible MK values.

Our experiments reveal several advantages of our method. First, the MK-curve approach had 

excellent visual and quantitative results, effectively reducing the number of voxels with 

apparent implausible MK values and the number of voxels with negative MK and negative 

DTI eigenvalue, as well as other DKI and DTI parameters. Second, the MK-curve based 

correction only changes MK values in voxels that are detected as implausible, thus 

minimally changing the dMRI data. Third, our correction approach only requires the MK 

versus b0 curve, which is derived from the actual measurements of each voxel. Therefore, 

our method avoids potential partial volume effects introduced when the neighboring voxels 

are from different brain tissues. This is unlike some of the previous denoising methods that 

are based on local neighborhoods (Manjón et al., 2013; Shaw and Jensen, 2017b; Veraart et 

al., 2016b), in which case adaptive smoothing is required (Tabelow et al., 2015). We note 

that advanced adaptive smoothing approaches could be considered as an alternative 

correction method that could be applied on voxels identified as implausible, e.g., using the 

MK-curve for detection. Disadvantages of our method, as discussed below, include 

heuristically selected parameters and potential bias that may be introduced when parameters 

are inappropriately selected.

Our detection method requires setting a threshold to determine what b0 values are 

considered to be too low. Setting a threshold on the b0 is translated to an adaptive MK 

threshold, that is different in each voxel. This is different from methods such as the 

constrained fit, which enforce the same MK range on all voxels. Nevertheless, setting a 

threshold that is higher than the zero-MK b0 also means that voxels with true positive MK 

values that are close to zero (but lower than the threshold) would be wrongly identified as 

implausible. In practice, while low kurtosis values may be expected in a perfectly Gaussian 

signal, it appears that no such voxels can be found in the brain. For example, in the CSF as 

well as in the agarose gel, where the diffusion propagator should be close to a Gaussian, the 

(uncorrected) MK is significantly higher than zero. Setting λ to a lower value would reduce 

the number of false positives, but it would also increase the number of false negatives. Our 

experiments suggest that there is a range of λ values that is appropriate for analysis. On the 

phantom data that has a very narrow distribution of MK values (similar to white matter), we 

identified that λ=0.3 resulted in the lowest mean absolute bias. However, on the in-vivo data 

that has a broader distribution of MK values it appears that slightly higher value of λ=0.5 

provides better identification of visually implausible values.

The selected λ = 0.5 resulted in the b0 threshold to be midway between the zero-MK and 

max-MK b0 values, providing a balance in detecting and correcting as many as possible 

visually implausible MK voxels, while avoiding changing voxels that appeared to be 

plausible. We have selected λ = 0.5 heuristically based on our experiments. Setting the 

threshold to a higher value would over-identify implausible MK voxels. This, however, 

would only slightly affect the correction, considering that changes in MK are more subtle 

when the synthetic b0 used for correction is closer to the max-MK b0. Setting λ to a lower 
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value, i.e., a synthetic b0 close to the zero-MK b0, increases the number of voxels with 

implausible MK values that are not detected.

Our phantom and in-vivo experiments suggest that the optimal λ value might depend on the 

underlying true diffusivity and kurtosis. In our experiments any selection of λ appeared to 

improve the quantitative and visual results comparing with the uncorrected data. 

Nevertheless, as the underlying diffusivity and kurtosis may be different across brain 

regions, the selection of a single λ value might introduce bias in some regions in the brain 

for which the chosen λ is inappropriate. Additional studies are thus required to further 

optimize the selection of λ. For example, λ could be determined based on tissue type (e.g., 

white matter, white matter/gray matter interface, or a specific pathology), and take into 

account acquisition parameters such as resolution and signal to noise ratio. We note that the 

phantom we use requires assumptions of homogeneity and lack of systematic bias in order to 

achieve a ground truth experiment. Therefore, future studies could benefit from additional 

realistic ground truth experiments, either phantoms that have pre-known MK distributions 

that are more similar to in-vivo distributions, or simulations that are able to correctly model 

sources of variability that are expected in vivo (Kristoffersen, 2011). Currently, without such 

experiments, and without an analytic proof for the correction properties, our method may be 

considered a useful heuristic, especially since the mechanism for the MK-curve based 

method is not yet fully understood.

As a result of our detection approach, we found that most voxels with implausible MK 

values were on the gray/white matter interface. Potential explanations for artifacts in the 

interface areas could include partial volume effects (Westin et al., 2016; Yang et al., 2012) 

and Gibbs ringing (Perrone et al., 2015; Veraart et al., 2016a). Some of these voxels may be 

false positives; however, visual inspection of the gray/white matter interface clearly shows 

implausibly low values in many interface areas. In the context of partial volume effects, it is 

interesting to note that previous studies (e.g., Jbabdi et al., 2012) also noticed that gray/white 

matter partial volume effects are a major cause of model fitting issues, which might be the 

reason for the implausible MK values observed there. Analyses based on bi/multi 

exponential models may shed some light on the mechanism behind it. While other correction 

methods specifically target artifacts caused by Gibbs ringing (Perrone et al., 2015; Veraart et 

al., 2016a), our approach effectively corrects almost all implausible DKI parameter values 

regardless of if they were caused by Gibbs ringing or by other image artifacts. Nevertheless, 

since our method is applied on the dMRI signal itself, combining methods can be easily 

achieved. For example, it is possible to first directly correct for noise and Gibbs artifacts and 

then apply our method as a second step, which would improve the resulted MK map (see 

Supplementary Figure S2d for an example). Similarly, since our correction method is 

applied on the raw dMRI signal, the corrected data may be used for other analyses beyond 

DKI, although this should be validated for each additional parameter. Although in this sense, 

our detection method is limited to datasets that support the fitting of the MK model, i.e., 

multi-shell data with sufficiently high b0 (Jensen et al., 2005; Jensen and Helpern, 2010; Lu 

et al., 2006).

We detected a large number of voxels with implausible MK values. While these high 

numbers might reflect overinclusive detection, the high frequency of implausible MK voxels 
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is clearly visible upon inspection of the MK maps, demonstrating the sensitivity of the DKI 

acquisition to artifacts. This is despite the fact that the HCP datasets were acquired using a 

high quality imaging protocol and processed using a sophisticated pipeline. The number of 

artifacts is increased as the acquisition protocol is of lesser quality, resembling conventional 

DKI acquisitions (see Figure 6b and Supplementary Figure S2d). The high occurrence of 

implausible MK values stresses the need for a robust correction method. While the 

quantitative assessment suggests that our method corrected more implausible MK voxels 

than the other correction methods, this kind of evaluation may be considered circular, since 

the amount of detected implausible voxels is directly affected by our detection method (e.g., 

the selection of λ), which favors our correction method over the other correction 

approaches. Nevertheless, our quantitative evaluations also showed that our method 

corrected almost all negative diffusivity and MK voxels (Supplementary Table S1). The 

performance is similar to the constrained fitting method that is a more principled method to 

fix negative kurtosis values. This suggests that the approach may be applicable to datasets 

with a range of data qualities.

Currently, our approach requires many repeated DKI model fits (e.g., 200 fits for each voxel) 

in order to delineate the MK-curve of all voxels from the entire brain (taking about 30 

minutes to calculate on a standard Mac computer using parallel computing). These repeated 

DKI model fits are required to get sufficient sampling of the MK-curve to accurately find its 

two characteristic b0 values. We point out that while the zero-MK b0 can be analytically 

identified without generating the curve, we do not yet know whether there is an analytic 

expression for the max-MK b0 point. Here we chose to generate many synthetic b0 values in 

order to demonstrate the full shape of the MK-curve and to provide accurate estimations of 

the two characteristic b0 values using exhaustive search. However, future applications may 

dramatically reduce the number of synthetic b0 values (and the resulting runtime) either by 

analytically solving for zero-MK b0 and max-MK b0, or by applying more sophisticated 

search approaches that take into account the now known shape of the MK curve, and search 

for a peak point to identify max-MK b0. The range of synthetic b0 that forms the search 

space for max-MK b0 and zero-MK b0 could also be optimized by, for example, limiting the 

range to b0 values that result in positive diffusion tensor eigenvalues, or by setting a 

different search space for each individual voxel. Estimating the zero-MK and max-MK b0 

values in each voxel forms new b0 maps that potentially have meaningful contrasts 

(Supplementary Figure S4). However, a thorough characterization of the maximal MK as 

well as the max-MK b0 contrast is left for future work.

We note that there are subtle differences in the shape of the MK versus synthetic b0 curve of 

voxels from different brain tissues (Figure 2), e.g., gray matter, white matter and CSF. A 

future work could include investigation of the MK-curve characteristics in different brain 

structures, as well as in brains with lesions such as tumors or edema. Such work would 

require further validation for the MK value ranges that are expected in pathologies. 

Furthermore, future work could explore the applicability of the proposed method to other 

diffusion kurtosis estimation approaches such as the fast diffusion kurtosis imaging (Hansen 

et al., 2016, 2013) and the generalized kurtosis (Ning et al., 2015).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Method overview:
Implausible MK values are clearly visible in the initial MK map (a) as dark voxels. To 

characterize the relation between MK and b0, we construct the MK-curve (MK versus 

synthetic b0 as shown in (b); here, the MK-curve of one example voxel annotated in (a) is 

displayed). The curve identifies a range of low b0 values that generate unstable MK values, 

reaching to extremely low (and in some cases extremely high) MK values (left plot in b). In 

the stable MK region (right plot in b) we identify and calculate two characteristic b0 values 

of the MK-curve: the point where MK crosses 0 (zero-MK b0), and the point it reaches 

maximum (max-MK b0). These characteristic b0 values split the curve into three regions, 

where Region 1 is unstable with negative MK, Region 2 is a transition phase with positive 

MK, and Region 3 is stable with positive MK. Detection is performed by marking all voxels 

where the original b0 is lower than a voxel-specific threshold b0 value computed from the 

voxel’s zero-MK b0 and max-MK b0 (c). The detected voxels coincide with the visually 

apparent implausible MK values. Detected voxels are corrected by replacing their b0 value 
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with the voxel-specific threshold b0, and recalculating MK (d). The resulting MK maps no 

longer show visually apparent implausible MK values.
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Figure 2. Characterization of MK using the MK-curve.
MK versus synthetic b0 curves from all voxels on the example image slice (a) have a similar 

shape (b), allowing the definition of zero-MK b0 and max-MK b0. The definition is 

demonstrated for 8 example voxels shown as circles in (a), including 4 that are visually 

plausible (V1, V3, V5 and V7 with MK-curves in (c)) and 4 that are visually implausible 

(V2, V4, V6 and V8 with MK-curves in (d)), from white and gray matter. Over the entire 

slice, voxels whose original b0 value was lower than the zero-MK b0 values (colored in 

green as shown in (e)) had visually implausible MK values. Voxels whose original b0 value 

was higher than the max-MK b0 values (colored in green as shown in (f)) had visually 

plausible MK values.
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Figure 3. Detection and correction of implausible MK voxels on DKI phantom data.
The phantom consists of a fiber region and an agarose gel region (a). Homogenous and high 

MK is expected in the fiber region, however many voxels on the original MK map in this 

region have very low values. In the agarose gel region MK values appear homogeneous. 

Histogram of the MK values in the original data (b) shows a wide distribution of MK values 

in the fiber region extending to low or negative values that overlap with the distribution of 

MK values in the agarose gel region. The peak of the MK distribution in the fiber region (b) 

is selected as a reference point (“ground truth” MK value) to which bias is estimated (see 

Figure 4). MK versus synthetic b0 curves from all voxels were computed (c), showing the 

characteristic shape of the MK-curve. After correction (using λ = 0.3 which had the lowest 

mean absolute bias - Figure 4), the MK map appears homogeneous and with values that are 

higher than the agarose gel values (d). The b0 and MD maps after correction are visually 

similar to the original data.
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Figure 4: The effect of the weighting parameter λ.
Evaluating the mean and std absolute bias in the fiber region of the DKI phantom for varying 

λ values shows that the mean absolute bias was always lower than the original mean 

absolute bias on the raw data, suggesting that MK estimation is improved for all λ values 

(error bars in (a) represent std/3). The lowest bias was for λ = 0.3, although similar values 

were found in the range of 0.2 to 0.5. The corrected MK maps show that with a lower λ 
value (e.g. λ = 0.1), visually implausible MK voxels were not sufficiently corrected. The 

histograms suggest that for a larger λ value (e.g. λ = 0.7 and 0.9) MK was overestimated. 

The in-vivo data provided best results for λ = 0.5 and λ = 0.3 (c), although λ = 0.5 was 

more inclusive in the identification of implausible voxels in the interface between gray and 

white matter (red arrows). For λ = 0.1 not all visually implausible MK voxels were detected. 

Higher λ values (λ = 0.7 and 0.9) resulted in overinclusive detection of voxels that visually 

appeared to be plausible.
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Figure 5. Detection and correction of voxels with implausible MK values on each of the 10 
datasets.
An inset image for Subject-1 enlarges part of the image, showing that in this high resolution 

data the gray/white matter interface is visually implausible. Accordingly, the detected voxels 

almost perfectly delineate the gray/white matter interface, in addition to voxels in deep white 

matter structures that are detected as having implausible MK values.
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Figure 6: Correction of additional DKI and DTI parameters.
The output of the MK-curve approach is compared with the original images for the mean 

kurtosis (MK), axial kurtosis (AK), and radial kurtosis (RK), as well as two diffusion tensor 

parameter maps: mean diffusivity (MD) and fractional anisotropy (FA). For each parameter 

map, the values are truncated to the range displayed on the colorbar. For demonstration 

purposes, results are shown in randomly selected subjects, although similar results were 

observed for all subjects. Images are shown from the high quality HCP data and from a 

dataset with more conventional DKI acquisition protocol, in which the derived DKI and DTI 

parameters are more affected.
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Figure 7: Comparison between correction methods.
The corrected MK map computed from the phantom data using each correction method is 

shown in (a), and the mean and std of the absolute bias after correction is reported in (b)

(error bars in (b) represent std/3). The MK maps of one example HCP dataset is presented in 

(c) following application of the various correction methods. The inset focuses on deep white 

matter and on white matter/gray matter interface where most implausible MK values are 

located.
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