Table 2:
Figure | Statistics | F (DFn, DFd) | P value | Statistics details | |
---|---|---|---|---|---|
Figure 3 | A | Two-way ANOVA | F81, 1449 = 4.571 | P < 0.001 | **P < 0.01, ***P < 0.001 MP compared to 8 weeks old WT mice |
B | Two-way ANOVA | F81, 1448 = 5.030 | P < 0.001 | **P < 0.01, ***P < 0.001 MP compared to 8 weeks old WT mice | |
C | Two-way ANOVA | F81, 1364 = 2.127 | P < 0.001 | **P < 0.01, ***P < 0.001 MP compared to 8 weeks old WT mice | |
D | Two-way ANOVA | F81, 1442 = 4.213 | P < 0.001 | *P < 0.05, ***P < 0.001 MP compared to 8 weeks old WT mice | |
Figure 4 | A | One-way ANOVA | F9, 143 = 25.62 | P < 0.001 | *P < 0.05, ***P < 0.001 MP compared to 8 weeks old WT mice |
B | One-way ANOVA | F9, 143 = 26.99 | P < 0.001 | **P < 0.01, ***P < 0.001 MP compared to 8 weeks old wWT mice | |
C | One-way ANOVA | F9, 134 = 9.883 | P < 0.001 | *P < 0.05, **P < 0.01, ***P < 0.001 MP compared to 8 weeks old WT mice | |
D | One-way ANOVA | F9, 140 = 23.03 | P < 0.001 | ***P < 0.001 MP compared to 8 weeks old WT mice | |
Figure 5 | A | Two-way ANOVA | F1, 59 = 8.524 | P < 0.001 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) |
Two-way ANOVA | F1, 56 = 10.56 | P =0.002 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 140 = 122.4 | P < 0.001 | *** p < 0.001 WT vs. MP | ||
B | Two-way ANOVA | F1, 53 = 3.138 | P = 0.082 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) | |
Two-way ANOVA | F1, 56 = 6.862 | P = 0.011 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 140 = 122.4 | P < 0.001 | *** p < 0.001 WT vs. MP | ||
C | Linear regression |
F 1, 122 = 93.2 | P < 0.0001 | Equation Y = 865.1*X + 23.59 R2 = 0.4331, R = 0.65 (1P/25Hz) |
|
Linear regression |
F 1, 94 = 53.82 | P < 0.0001 | Equation Y = 671.9*X + 30.49 R2 = 0.3641, R = 0.63 (10P/25Hz) |
||
D | Linear regression |
F 1, 122 = 121.4 | P < 0.0001 | Equation Y = 2140*X − 395.0 R2 = 0.4988, R = 0.7 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 142.7 | P < 0.0001 | Equation Y = 968.8*X − 360.4 R2 = 0.5391, R = 0.73 (10P/25Hz) |
||
E | Two-way ANOVA | F1, 59 = 8.524 | P < 0.001 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) | |
Two-way ANOVA | F1, 56 = 10.56 | P =0.002 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 139 = 32.57 | P < 0.001 | *** p < 0.001 WT vs. MP | ||
F | Two-way ANOVA | F1, 53 = 3.138 | P = 0.082 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) | |
Two-way ANOVA | F1, 56 = 6.862 | P = 0.011 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 139 = 32.57 | P < 0.001 | *** p < 0.001 WT vs. MP | ||
G | Linear regression |
F 1, 122 = 55.28 | P < 0.0001 | Equation Y = 175.9*X + 39.51 R2 = 0.3118, R = 0.55 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 53.14 | P < 0.0001 | Equation Y = 146.9*X + 33.44 R2 = 0.3034, R = 0.55 (10P/25Hz) |
||
H | Linear regression |
F 1, 122 = 77.66 | P < 0.0001 | Equation Y = 452.9*X − 52.74 R2 = 0.3890, R = 0.62 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 83.26 | P < 0.0001 | Equation Y = 201.4*X − 42.34 R2 = 0.4056, R = 0.63 (10P/25Hz) |
||
Figure 6 | A | Two-way ANOVA | F1, 59 = 8.524 | P < 0.001 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) |
Two-way ANOVA | F1, 56 = 10.56 | P =0.002 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 140 = 25.04 | P < 0.001 | * p < 0.05, ** p < 0.01, *** p < 0.001 WT vs. MP | ||
B | Two-way ANOVA | F1, 53 = 3.138 | P = 0.082 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) | |
Two-way ANOVA | F1, 56 = 6.862 | P = 0.011 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 140 = 25.04 | P < 0.001 | * p < 0.05, ** p < 0.01, *** p < 0.001 WT vs. MP | ||
C | Linear I regression |
F 1, 122 = 142.2 | P < 0.0001 | Equation Y = 106.0*X − 9.917 R2 = 0.5383, R = 0.73 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 146.8 | P < 0.0001 | Equation Y = 90.37*X − 14.80 R2 = 0.5461, R = 0.73 (10P/25Hz) |
||
D | Linear regression |
F 1, 122 = 88.01 | P < 0.0001 | Equation Y = 215.5*X − 42.38 R2 = 0.4191, R = 0.64 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 138.6 | P < 0.0001 | Equation Y = 105.7*X − 45.89 R2 = 0.5319, R = 0.72 (10P/25Hz) |
||
E | Two-way ANOVA | F1, 53 = 3.138 | P = 0.082 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) | |
Two-way ANOVA | F1, 56 = 10.56 | P =0.002 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 140 = 91.89 | P < 0.001 | *** p < 0.001 WT vs. MP | ||
F | Two-way ANOVA | F1, 53 = 3.138 | P = 0.082 | ### p < 0.001 WT (1P/25Hz) vs. MP (1P/25Hz) | |
Two-way ANOVA | F1, 56 = 6.862 | P = 0.011 | $ $ $ p < 0.001 WT (10P/25Hz) vs. MP (10P/25Hz) | ||
One-way ANOVA | F10, 140 = 91.89 | P < 0.001 | *** p < 0.001 WT vs. MP | ||
G | Linear regression |
F 1, 122 = 344.6 | II P < 0.0001 | Equation Y = 65.44*X − 17.62 R2 = 0.7385, R = 0.86 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 453.9 | III P < 0.0001 | Equation Y = 57.24*X − 21.58 R2 = 0.7882, R = 0.89 (10P/25Hz) |
||
H | Linear regression |
F 1, 122 = 248.7 | IV P < 0.0001 | Equation Y = 143.8*X − 41.97 R2 = 0.6709, R = 0.81 (1P/25Hz) |
|
Linear regression |
F 1, 122 = 386.8 | P < 0.0001 | Equation Y = 66.65*X − 40.99 R2 = 0.7602, R = 0.87 (10P/25Hz) |
||
Figure 7 | C | One-way ANOVA | F9, 66 = 80.17 | P < 0.001 | *** p < 0.001 WT vs. MP |
D | One-way ANOVA | F9, 66 = 134.7 | P < 0.001 | *** p < 0.001 WT vs. MP | |
Figure 8 | A | One-way ANOVA | F9, 141 = 17.56 | P < 0.001 | Tonic: *** p < 0.001 WT vs. MP |
One-way ANOVA | F9, 145 = 18.49 | P < 0.001 | Phasic: ** p < 0.01, *** p < 0.001 WT vs. MP | ||
B | One-way ANOVA | F9, 133 = 12.52 | P < 0.001 | Tonic: ** p < 0.01, *** p < 0.001 WT vs. MP | |
One-way ANOVA | F9, 133 = 14.11 | P < 0.001 | Phasic: * p < 0.05, ** p < 0.01, *** p < 0.001 WT vs. MP | ||
Figure5-1 | A | Two-way ANOVA | F9, 242 = 72.32 | P < 0.001 | *** p < 0.001 WT vs. MP |
B | Two-way ANOVA | F9, 234 = 13.16 | P < 0.001 | ** p < 0.01, *** p < 0.001 WT vs. MP | |
C | Two-way ANOVA | F8, 208 = 12.25 | P < 0.001 | * p < 0.05, *** p < 0.001 WT vs. MP | |
D | Two-way ANOVA | F9, 235 = 9.380 | P < 0.001 | ** p < 0.01, *** p < 0.001 WT vs. MP |
ANOVA followed by a Bonferroni post hoc test for multiple comparisons