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Abstract

Goal-driven and feedforward-only convolutional neural networks (CNN) have been shown to be 

able to predict and decode cortical responses to natural images or videos. Here, we explored an 

alternative deep neural network, variational auto-encoder (VAE), as a computational model of the 

visual cortex. We trained a VAE with a five-layer encoder and a five-layer decoder to learn visual 

representations from a diverse set of unlabeled images. Using the trained VAE, we predicted and 

decoded cortical activity observed with functional magnetic resonance imaging (fMRI) from three 

human subjects passively watching natural videos. Compared to CNN, VAE could predict the 

video-evoked cortical responses with comparable accuracy in early visual areas, but relatively 

lower accuracy in higher-order visual areas. The distinction between CNN and VAE in terms of 

encoding performance was primarily attributed to their different learning objectives, rather than 

their different model architecture or number of parameters. Despite lower encoding accuracies, 

VAE offered a more convenient strategy for decoding the fMRI activity to reconstruct the video 

input, by first converting the fMRI activity to the VAE’s latent variables, and then converting the 

latent variables to the reconstructed video frames through the VAE’s decoder. This strategy was 

more advantageous than alternative decoding methods, e.g. partial least square regression, for 

being able to reconstruct both the spatial structure and color of the visual input. Such findings 

highlight VAE as an unsupervised model for learning visual representation, as well as its potential 

and limitations for explaining cortical responses and reconstructing naturalistic and diverse visual 

experiences.
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Introduction

Humans readily make sense of the visual surroundings through complex neuronal circuits. 

Understanding the human visual system requires not only measurements of brain activity but 

also computational models built upon hypotheses about neural computation and learning 

(Kietzmann et al., 2017). A model that truly reflects the brain’s algorithmic mechanism of 

vision should be image-computable and capable of predicting brain responses to any visual 

input (namely encoding) and retrieving visual and conceptual information from brain 

responses (namely decoding). In this sense, evaluating the models’ encoding and decoding 

performance can, at least in part, serve to test and compare hypotheses about how the brain 

learns and organizes visual representations (Wu et al., 2006).

In one class of hypotheses, the visual system consists of feature detectors that progressively 

extract and integrate features for pattern recognition. For example, Gabor and wavelet filters 

have been shown to model low-level features (Hubel and Wiesel, 1962; van Hateren and van 

der Schaaf, 1998), and explain brain responses in early visual areas (Kay et al., 2008; 

Nishimoto et al., 2011). As another example, supervised convolutional neural networks 

(CNNs) encode hierarchical visual features in a fully-computable feedforward model 

(LeCun et al., 2015) and enable intelligent tasks in computer vision (He et al., 2016; 

Krizhevsky et al., 2012; Simonyan and Zisserman, 2014). Recent studies have shown that 

CNNs use similar representations as does the visual cortex (Cichy et al., 2016; Khaligh-

Razavi and Kriegeskorte, 2014), and yield the state-of-the-art accuracy in encoding and 

decoding brain responses to natural image or video stimuli (Eickenberg et al., 2017; Guclu 

and van Gerven, 2015; Horikawa and Kamitani, 2017; Seeliger et al., 2018a; Wen et al., 

2017b; Yamins et al., 2014). Although they are becoming popular models in computational 

visual neuroscience (Kriegeskorte, 2015; Yamins and DiCarlo, 2016), CNNs are unlike the 

brain in many aspects. As perhaps the most notable distinctions, the brain does not always 

learn by supervision but often learns from experiences without supervision (Barlow, 1989), 

and the brain uses bidirectional (both feedforward and feedback) pathways (Bastos et al., 

2012; Salin and Bullier, 1995), whereas CNNs are only feedforward.

In another class of hypotheses, the brain learns from experiences without supervision 

(Barlow, 1989; Hinton et al., 1999; Seung and Lee, 2000). For example, unsupervised visual 

learning may utilize “analysis by synthesis” (Hinton et al., 1995; Yuille and Kersten, 2006). 

In this notion, the bottom-up process infers a representation of the input to support 

perception. The top-down process tries to reconstruct (or predict) the input from the inferred 

representation to ensure its consistency with the input (Yuille and Kersten, 2006) (Fig. 1.A). 

Both bottom-up and top-down processes are optimized such that visual experiences can be 

explainable by the brain (Dayan et al., 1995; Hinton and Zemel, 1994; Rao and Ballard, 

1999). This hypothesis about unsupervised visual learning takes into account both bottom-

up and top-down pathways in the brain and reconciles the humans’ ability to readily 
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construct mental images (e.g. during an imagery or dream). It is thus compelling for 

computational neuroscience (Bastos et al., 2012; Friston, 2010; Rao and Ballard, 1999; 

Yuille and Kersten, 2006) as well as artificial intelligence (Hinton et al., 1995; Lotter et al., 

2016; Mirza et al., 2016).

A similar notion of unsupervised learning has been explored for artificial intelligence. 

Variational auto-encoder (VAE) uses independent “latent” variables to represent input 

images (Kingma and Welling, 2013). VAE learns the latent variables from images via an 

encoder, and samples the latent variables to generate new images via a decoder. Both the 

encoder and the decoder are neural networks trainable from unlabeled images (Doersch, 

2016). As a model of unsupervised learning, VAE is a potentially plausible model of the 

brain’s visual system in the computational level, and may enable an effective way to decode 

brain activity during either visual perception or imagery (Du et al., 2018; Güçlütürk et al., 

2017; Naselaris et al., 2009; Nishimoto et al., 2011; Seeliger et al., 2018b; Shen et al., 2019; 

van Gerven et al., 2010). To test VAE as a brain model, we built and trained a VAE to learn 

latent representations of natural images without requiring any image label assigned for 

training, and evaluated the trained VAE in terms of its usability for encoding and decoding 

human functional magnetic resonance imaging (fMRI) responses to naturalistic movie 

stimuli (Fig. 1B).

Methods and Materials

Theory: Variational Auto-encoder

In general, VAE uses a deep neural network to learn representations from complex data 

without supervision (Kingma and Welling, 2013). A VAE includes an encoder and a 

decoder, both of which are neural nets. The encoder learns latent variables from the input 

and the decoder generates an output based on samples of the latent variables. Given 

sufficient training data, the encoder and the decoder are trainable altogether by minimizing 

the reconstruction loss and the Kullback-Leibler (KL) divergence between the distributions 

of latent variables and independent normal distributions (Doersch, 2016). When the input 

data are natural images, the decoder models the forward process of image formation (namely 

the generative model), the encoder models the inverse process of inference (namely the 

inference model), and the learned latent variables should represent the hidden causes (or 

factors) that have generated the images.

Let z be the latent variables and x be an image. The encoder parameterized with φ infers z 
from x, and the decoder parameterized with θ generates x from z. In VAE, both z and x are 

random variables. The likelihood of x given z under the generative model with θ is denoted 

as pθ(x|z). The probability of z given x under the inference model with φ is denoted as qφ(z|

x). The marginal likelihood of data can be written as the following form.

logpθ(x) = DKL qφ(z | x) pθ(z | x) + L(θ, φ; x) (1)
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Since the KL divergence in Equation (1) is non-negative, L(θ, φ; x) can be regarded as the 

lower-bound of data likelihood and also can be rewritten as Eq. (2). For VAE, the learning 

rule is to optimize θ and φ by maximizing L(θ, φ; x) given the training samples of x.

L(θ, φ; x) = − DKL qφ(z | x) pθ(z) + Ez ∼ qφ(z | x) log pθ(x | z) (2)

In this objective function, the first term is the KL divergence between the distribution of z 
inferred from x and the prior distribution of z, both of which are assumed to follow a 

multivariate normal distribution. The second term is the expectation of the log-likelihood 

that the input image can be generated by the sampled values of z from the inferred 

distribution qφ(z|x). When qφ(z|x) is a multivariate normal distribution with unknown 

expectations μ and variances σ2, the objective function is differentiable with respect to (θ, φ, 

μ, σ) (Kingma and Welling, 2013). The parameters in VAE could be optimized iteratively 

using stochastic gradient-descent algorithms, e.g. the Adam optimizer (Kingma and Ba, 

2014).

Training VAE with Diverse Natural Images

We designed a VAE with 1,024 latent variables, and the encoder and the decoder were both 

convolutional neural nets with five hidden layers (Fig. 2A). Each convolutional layer 

included nonlinear units with a Rectified Linear Unit (ReLU) function (Nair and Hinton, 

2010), except the last layer in the decoder where a sigmoid function was used to generate 

normalized pixel values between 0 and 1. The model was trained on the ImageNet 

ILSVRC2012 dataset (Russakovsky et al., 2015) with every training image resized to 

128×128×3. To enlarge the amount of training data, the original training images were 

randomly flipped in the horizontal direction, resulting in >2 million training samples in total. 

The training data were divided into batches with a size of 200. For each training image, the 

pixel intensities were normalized to [0, 1]; the normalized intensity was viewed as the 

probability of color emission (Gregor et al., 2015). To train the VAE, the Adam optimizer 

was used with a learning rate of 10−4. The model was implemented in PyTorch (http://

pytorch.org/).

Experimental Data

Three healthy volunteers (all female, age: 23–26) participated in this study with informed 

written consent according to a research protocol approved by the Institutional Review Board 

at Purdue University. As described in detail elsewhere (Wen et al., 2017b), the experimental 

design and data were summarized as below. Each subject watched a diverse set of natural 

videos for a total length up to 13.7 hours. The videos were downloaded from Videoblocks 

and YouTube, and then were separated into two independent sets. One data set was for 

training the models to predict the fMRI responses based on the input video (i.e. the encoding 

models) as well as the models to reconstruct the input video based on the measured fMRI 

responses (i.e. the decoding models). The other data set was for testing the trained encoding 

or decoding models. The videos in the training and testing datasets were independent for 

unbiased model evaluation. Both the training and testing movies were further split into 8-
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min segments, each of which was used as the visual stimulation (20.3°×20.3°) along with a 

central fixation cross (0.8°×0.8°) presented via an MRI-compatible binocular goggle during 

a single fMRI session. The training movie included 98 segments (13.1 hours) for Subject 1, 

and 18 segments (1.6 hours) for Subject 2 & 3. The testing movie included 5 segments (40 

mins in total). Each subject watched the testing movie 10 times. All five segments of the 

testing movie were used to test the encoding model. One of the five segments of the testing 

movie was used to test the decoding models for visual reconstruction, since that segment 

contained video clips that were continuous over relatively long periods (mean ±std: 13.3±4.8 

s).

MRI/fMRI data were collected from a 3-T MRI system, including anatomical MRI (T1 and 

T2 weighted) of 1mm isotropic spatial resolution, and blood oxygenation level dependent 

(BOLD) fMRI with 2-s temporal resolution and 3.5mm isotropic spatial resolution. The 

fMRI data were registered onto anatomical MRI data, and were further co-registered on a 

cortical surface template (Glasser et al., 2013). The fMRI data were preprocessed with the 

minimal preprocessing pipeline released for the human connectome project (Glasser et al., 

2013).

VAE-based Encoding Models

After training, VAE extracted the latent representation of any video by a feed-forward pass 

of every video frame into the encoder and reconstructed every video frame by a feedback 

pass of the latent representation into the decoder. To predict cortical fMRI responses to the 

video stimuli, an encoding model was defined separately for each voxel as a linear 

regression model (Güçlü and van Gerven, 2014; Naselaris et al., 2011). The voxel-wise 

fMRI signal was estimated as a linear combination of all unit activities in both the encoder 

and the decoder given the input video. Every unit activity in VAE was convolved with a 

canonical hemodynamic response function (HRF). For dimension reduction, PCA was first 

applied to the HRF-convolved unit activities from each layer, keeping 99% of the variance of 

the layer-wise activity given the training movies. Then, the layer-wise activity was 

concatenated across layers; PCA was applied again to the concatenated activity to keep 99% 

of the variance of the activity from all layers given the training movies. This method was 

explained in greater detail in our earlier paper (Wen et al., 2017a). Following the dimension 

reduction, the principal components of unit-activity were used as the regressors to predict 

the fMRI signal at each voxel through a linear regression model specifically estimated for 

the voxel. In addition, we also defined two variations of the encoding model: one based only 

on the VAE’s encoder, the other based only on the VAE’s decoder. For both variations, 

dimension reduction was done with the same procedure as described above.

In any above variation of the encoding model, the voxel-wise regression model was trained 

separately for each subject based on the subject’s fMRI data observed during the training 

movie. Mathematically, let z stand for the regressors derived from visual input x based on 

both/either the encoder and/or the decoder in VAE. For each voxel i, the fMRI signal yi was 

modeled as a linear function of the regressors, while the regression coefficients were 

assumed to be variable across voxels, as expressed in Eq. (4).
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yi = wi
Tz + bi + ϵi (4)

where wi is a column vector of the regression coefficients, bi is the bias term, and ϵi is the 

error or noise. The linear regression coefficients were estimated by least-squares estimation 

with L2-norm regularization, as expressed by Eq. (5).

〈wi, b i〉 = argminwi, bi

1
N ∑ j = 1

N yi
j − wi

Tz j − bi
2 + λi wi 2

2 (5)

where N is the number of training samples, the superscript j refers to the individual training 

samples (or time points). The regularization parameter λi was determined, separately for 

each voxel, as the optimal value that minimized the loss in Eq. (5) in three-fold cross-

validation. Once the optimal parameter λi was determined, the model was estimated by 

using the entire training dataset.

Evaluation of Encoding Performance

After they were trained, the voxel-wise encoding models were evaluated with the fMRI data 

observed during the testing movies. Note that the testing movies were different from the 

training movies to ensure unbiased model evaluation. For each voxel, the encoding 

performance was measured as the temporal correlation between the measured and predicted 

fMRI signals in response to the testing movie. In addition, we used the encoding model 

trained from one subject to predict other subjects’ fMRI responses to the testing movies, to 

evaluate the ability of transferring encoding models across subjects. The performance was 

compared across the three encoding models based on the VAE as a whole, only its encoder 

part, or its decoder part.

Moreover, the voxel-wise correlation between the measured and predicted responses was 

evaluated for statistical significance based on a block permutation test (Adolf et al., 2014) 

with a block size of 24-sec and 100,000 permutations and corrected at false discovery rate 

(FDR) q < 0.01, as in our earlier papers (Shi et al., 2017; Wen et al., 2017b). The correlation 

was further compared against the so-called “noise ceiling”, which indicated the upper limit 

of predictability given the presence of “noise” unrelated to the visual stimuli (David and 

Gallant, 2005; Nili et al., 2014). The noise ceiling was estimated using the method described 

elsewhere (Kay et al., 2013). Briefly, the noise was assumed to follow a Gaussian 

distribution with a zero mean and an unknown variance that varied from voxel to voxel. The 

response and noise were assumed to be independent and additive. The variance of the noise 

was estimated as the squared standard error of the mean of the fMRI response, which was 

obtained by averaging the fMRI signal across the 10 repeated sessions of each testing movie. 

The variance of the response was obtained by subtracting the variance of the noise from the 

variance of the data. From the signal and noise distributions, we drew samples of the 

response and the noise, respectively, based on Monte Carlo simulation for 1,000 random 

trials. For each trial, the signal was simulated as the sum of the simulated response and 

noise; its correlation coefficient with the simulated response was calculated. This resulted in 
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an empirical distribution of the correlation coefficient for each voxel. The mean of the 

distribution was identified and interpreted as the noise ceiling, denoted as rNC.

Comparison with CNN

In terms of the encoding performance, we compared the encoding models based on VAE 

against those based on CNN, which have been explored in recent studies, e.g. (Eickenberg et 

al., 2017; Guclu and van Gerven, 2015; Wen et al., 2017b). Specifically, we used a 18-layer 

residual network (ResNet-18) (He et al., 2016) as an example of CNN. Relative to AlexNet 

(Krizhevsky et al., 2012) or ResNet-50 (He et al., 2016), ResNet-18 had an intermediate 

level of architectural complexity in terms of the number of layers and the total number of 

units. It was a suitable benchmark for comparison with VAE, which had a comparable level 

of complexity. Briefly, ResNet-18 consisted of 18 hidden layers organized into 6 blocks. The 

1st block was a convolutional layer followed by max-pooling; the 2nd through 5th blocks 

were residual blocks, each being a stack of 3 convolutional layers with a shortcut 

connection; the 6th block performed the multinomial logistic regression for image 

classification. Typical to CNNs, ResNet-18 encoded increasingly complex visual features 

from lower to higher layers.

We built and trained voxel-wise regression models to project the representations in 

ResNet-18 to voxel responses in the brain, using the same procedures and data as used for 

VAE-based encoding models (see the subsection VAE-based encoding models). Then, we 

compared VAE against CNN (ResNet-18) in terms of their encoding performance in the 

level of voxels or regions of interest (ROI). In the voxel level, the voxel-wise accuracy of the 

VAE or CNN-based encoding model was converted from the correlation coefficient to the z 

value based on the Fisher’s z-transform. Their difference in the z value was calculated by 

subtraction. For the ROI-level comparison, multiple ROIs were selected from existing 

cortical parcellation (Glasser et al., 2016), including V1, V2, V3, V4, lateral occipital (LO), 

middle temporal (MT), fusiform face area (FFA), para-hippocampal place area (PPA) and 

temporo-parietal junction (TPJ). The correlation coefficient was averaged over all voxels in 

each ROI and was compared between VAE and ResNet-18. Note that the areas herein 

referred to as FFA and PPA were originally named as the posterior parahippocampal cortex 

(PHC) (Arcaro et al., 2009) and fusiform face complex (FFC) in the original parcellation by 

(Glasser et al., 2016). Since FFC and PHC overlapped largely with FFA and PPA, 

respectively, we prefer FFA/PPA to FFC/PHC since the former terms are more widely used 

in the neuroscience literature.

ResNet and VAE were different in their learning objective, architecture, and number of free 

parameters. Their difference in the voxel-wise encoding performance was likely attributable 

to one or multiple of these factors. To pinpoint the primary factor, we constructed two 

additional CNN models, which were consistent to the VAE in terms of the architecture and 

the number of free parameters. For one CNN model (referred to as CNN-A, where “A” 

implies architecture-matched), its architecture was constrained to be identical to the 

architecture of the encoder in the VAE. For every convolutional layer, the size of feature 

maps and the number of kernels were the same for CNN-A and VAE. Global averaged 

pooling (Lin et al., 2013) was applied to the last convolutional layer, followed by logistic 
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regression to output a probabilistic distribution over pre-defined image categories. CNN-A 

was trained for image classification based on labeled images in ImageNet (Russakovsky et 

al., 2015). Therefore, CNN-A and VAE shared the same architecture but used different 

learning objectives. Before using CNN-A for encoding voxel-wise fMRI responses to movie 

stimuli, the same algorithm for dimension reduction was applied to CNN-A as was applied 

to VAE. Despite the use of the same algorithm, the number of components (or regressors) 

that remained after dimension reduction was not necessarily identical for CNN-A and VAE. 

To further resolve this distinction, we also added another constraint such that the number of 

principal components were retained for CNN-A as was retained for VAE. For the ease of 

distinction, we referred to the dimension-matched variation as CNN-AP (where “P” implies 

parameter-matched), since the same number of encoding parameters was used for the 

encoding model based on CNN-AP and VAE. The encoding models based on CNN-A and 

CNN-AP were trained and tested using the same procedures and the same data as were used 

for VAE.

We also compared the ROI-level encoding performance of VAE against those of the Gabor 

filters (Fogel and Sagi, 1989; Marcelja, 1980), specifically based on the implementation 

documented in (Kay et al., 2008; Naselaris et al., 2011; Nishimoto et al., 2011) and 

publicized online1. Briefly, the video frames were converted to gray-scale. Wavelets were 

defined with 5 spatial frequencies (2, 4, 8, 16 or 32 cycles per FOV), 8 orientations (0°, 

22.5°, …, 157.5°) and two phases (0° or 90°). Each pair of wavelets (with two phases) were 

squared and summed, giving rise to analytically predefined spatial features in the pixel 

space. In terms of these Gabor filters, the representation of every video frame was reduced to 

a lower dimension that kept 99% variance, based on a similar PCA as used for the dimension 

reduction in VAE and CNN. Note that Gabor filters could be defined with many variations. 

In this study, we only explored gray-scale Gabor filters as in (Kay et al., 2008; Nishimoto et 

al., 2011). We also confined our analysis to Gabor filters in the spatial domain, excluding the 

motion-energy filters applicable to the spatiotemporal domain (Nishimoto et al., 2011). As 

such, this study only addressed several models of spatial processing, regardless of whether 

the models use visual features that are hand-engineered (for Gabor filters) or learned from 

data (for VAE or CNN). Among such models, the learnable network models were the 

primary focus.

Decoding fMRI for Visual Reconstruction

We trained and tested the decoding model for reconstructing visual input from distributed 

fMRI responses. The model contained two steps: 1) transforming the fMRI response pattern 

to the latent variables in VAE through a linear regression model, and 2) transforming the 

latent variables to pixel patterns through the VAE’s decoder. Here we used a cortical mask 

that covered the visual cortex, and used the voxels within the mask as the input to the 

decoding model as in our previous study (Wen et al., 2017b).

1https://github.com/gallantlab/motion_energy_matlab/tree/master/demo/ComputeStaticGabors.m
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Let y be a column vector representing the cortical pattern observed with fMRI, and z be a 

column vector of latent variables in VAE. As Eq. (6), a multivariate linear regression model 

was defined to predict z given y.

z = Uy + c + ε (6)

where U is a matrix that consists of the regression coefficients to transform a cortical pattern 

to a vector of latent variables, c is the bias term, and ε is the error term unexplained by the 

model. This model was estimated based on the data during the training movie.

To estimate the parameters of the decoding model, we minimized the loss function as Eq. (7) 

for least-squares estimation with L1-regularization to prevent over-fitting.

〈U, c〉 = argminU, c
1
N ∑ j = 1

N z j − Uy j − c 2 + λ‖U‖1
1 (7)

where N is the number of data samples used for training the model. The regularization 

parameter, λ, was optimized to minimize the loss in three-fold cross-validation. To solve Eq. 

(7), we used the stochastic gradient-descent algorithm with a batch size of 100 and a 

learning rate of 10−7. The testing movie was reconstructed frame by frame by passing the 

estimated latent variables through the decoder in VAE, as expressed by Eq. (8)

x j = Θ(z j) = Θ(Uy j + c) (8)

where Θ is the VAE’s decoder for nonlinear mapping from the decoded latent variables to 

the reconstructed visual input.

Accounting for the Hemodynamic Delay

Since the fMRI response is delayed from neural response due to neurovascular coupling, the 

hemodynamic delay has to be taken into account for decoding the fMRI response into latent 

representations of visual input. For training the decoding model, we first convolved the 

latent variables with a canonical HRF. Next, we optimized the decoding parameters to 

estimate the HRF-convolved latent variables given the fMRI responses at every time point. 

For testing the decoding model, we used the trained decoding model to estimate the latent 

variables given the unknown visual input and the known fMRI response pattern at a given 

time t. The decoded latent variables were used to reconstruct the visual input, which was 

assumed to occur 4 seconds before the time of response (i.e. at t − 4s) (Nishimoto et al., 

2011). Alternatively, we trained a linear regression model for deconvolution as elaborated in 

(Huth et al., 2016). Briefly, the model used the voxel responses at time t+2*TR, t+3*TR and 

t+4*TR (TR=2s) to predict the latent variables at time t when training and testing the 

decoding model. Both strategies were explored and compared in this study.
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Evaluation of Decoding Performance

To evaluate the decoding performance in visual reconstruction, we calculated the Structural 

Similarity index (SSIM) (Wang et al., 2004) between every reconstructed video frame and 

the true video frame, yielding a measure of the similarity in the pattern of pixel intensity. 

The SSIM was further averaged across all video frames in the testing movie.

In addition, we evaluated the degree to which the reconstructed movie preserved the color 

information in the original movie. For this purpose, the color at each pixel was converted 

from the RGB values to a single hue value. The hue maps of the reconstructed movie frames 

were compared with those of the original movie frames. Their similarity was evaluated in 

terms of the circular correlation (Berens, 2009; Jammalamadaka and Sengupta, 2001) for all 

movie frames. Specifically, the hue values were represented as a vector for every frame and 

then were further concatenated across all frames. The circular correlation in the 

concatenated hue vector between the original and reconstructed frames was calculated for 

each subject. It was further tested for statistical significance based on the block-permutation 

test with a 24-sec block size and 100,000 times of permutation (Adolf et al., 2014).

As color may covary with other visual properties in natural images, it is thus likely that the 

decoded latent variables in VAE do not represent color per se, but other features that are 

more associated with certain types of color than others (e.g. sea tends to be blue, grass tends 

to be green). In an attempt to disentangle color vs. non-color features, we converted every 

testing movie frame from a color image to a gray-scale image. In the absence of any color 

feature, the gray-scale image was used as the input to the encoder of VAE. The encoder 

converted the input image into latent representations, and the decoder further reconstructed 

an image based on the latent representations. Then we evaluated the correlation in the hue 

value between the original color movie and the reconstructed movie.

We also compared the performance of the VAE-based decoding method with a previously 

published decoding method (Cowen et al., 2014). In that alternative method, every frame in 

the training movie was vectorized and then assembled altogether into a matrix. PCA was 

applied to this matrix to obtain its principal components (or eigen-images) that explained 

99% of the variance. The partial least square regression (PLSR) (Tenenhaus et al., 2005) was 

used to estimate the linear transformation from fMRI maps to eigen-images based on the 

fMRI data during the training movie. Through the estimated PLSR model, the fMRI data 

during the testing movie was converted to the corresponding representations of eigen-

images, which in turn were recombined to reconstruct the visual stimuli (Cowen et al., 

2014). As a variation of this PLSR-based model, we also explored the use of L1-norm 

regularized optimization to estimate the linear PLSR function, in a similar way as for the 

VAE-based decoding model (see Eq. (7)). Using the same training procedure allowed us to 

test the effect of different feature models (latent variables vs. eigen-images) for fully-

computable decoding of fMRI responses.
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Results

VAE Provided Compressed Representations of Natural Images

By design, VAE aimed to form a compressed and generalized vector representation of any 

natural image. In VAE, the encoder converted any natural image into 1,024 independent 

latent variables; the decoder reconstructed the image from the latent variables (Fig. 2.A). 

After training it with >2 million natural images in a wide range of categories, the VAE could 

regenerate natural images without a significant loss in image content, structure and color, 

albeit blurred details (Fig. 2B). The VAE-generated images showed comparable quality for 

different types of input images (Fig. 2.B). As such, the latent representations in VAE were 

generalizable across various types of visual objects, or their combinations.

VAE Predicted Movie-induced Cortical Responses

Given a natural movie as visual input, we further asked to what extent the model dynamics 

in VAE could be used to model and predict the movie-induced cortical responses. After 

dimension reduction, the unit responses of VAE was represented in terms of 5,816 principal 

components. A linear combination of these components, as defined by a voxel-wise 

encoding model, was used to predict how each voxel in the brain responded to a visual 

stimulus. Specifically, the encoding model was trained separately for each voxel by fitting 

the voxel response to a training movie as a linear combination of the VAE’s responses to the 

same movie. Then, the trained voxel-wise encoding model was tested with an independent 

testing movie (not used for training) to evaluate the model’s prediction accuracy (i.e. the 

correlation between the predicted and measured fMRI responses). For a large area in the 

visual cortex (Fig. 3), the VAE-based encoding models could predict the movie-evoked 

responses with statistically significant accuracy (FDR, q<0.01). In particular, early visual 

areas (V1/V2/V3) showed the highest prediction accuracy, whereas the prediction accuracy 

was relatively lower for higher visual areas along the ventral or dorsal stream (Fig. 3). The 

VAE-predictable areas were relatively larger when more data (~12-hour movie) were used 

for training the encoding models in Subject 1 than in Subject 2 & 3 for whom much fewer 

training data (2.5-hour movie) were available (Fig. 3). In addition, the encoding models 

trained with data from Subject 1 were used to predict the fMRI responses from Subject 2 or 

3. Relative to the encoding models trained and tested for the same subject (Subject 1), the 

accuracy of cross-subject encoding was relatively lower but still significant over a large area 

in the visual cortex (Fig. 3).

The encoding performance was further evaluated for individual ROIs selected from different 

levels of the visual hierarchy. The ROI-level analysis confirmed the results from the voxel-

level analysis. As shown in Fig. 4, the encoding accuracy was highest in early visual areas 

(especially V1) and was progressively lower at increasingly higher-level areas. Overall, the 

encoding accuracy obtained with VAE had a large margin from the noise ceiling for any 

ROI. The encoder and the decoder part of the VAE did not differ significantly in terms of 

their contributions to encoding the movie-induced fMRI responses. For every ROI, the 

encoding accuracy obtained with either the encoder or the decoder was very similar to the 

encoding accuracy obtained with both the encoder and the decoder (or the VAE as a whole).
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Comparing the Encoding Performance across Different Models

We further compared the encoding performance between VAE and two alternative models: 

gray-scale Gabor filters (Kay et al., 2008) and feedforward-only ResNet-18 (or ResNet in 

short). After dimension reduction, Gabor filters gave rise to 1,122 features, ResNet gave rise 

to 7,564 features, whereas VAE gave rise to 5,816 features. From features to voxels, a linear 

regression model, defined separately for each voxel, was trained and tested in the same way 

for different feature models (i.e. VAE, Gabor, ResNet).

As shown in Fig. 5, the encoding accuracy obtained with VAE was higher than the accuracy 

obtained with the Gabor (spatial) filters for every ROI. Their difference was most significant 

for early visual areas (V1/V2/V3/V4) and LO/MT/FFA/TPJ in higher visual areas (p<0.001, 

paired sample t-test), but relatively marginal for PPA (p<0.05, paired sample t-test). It should 

be noted that the (spatial) Gabor filters used here are by no means complete or optimal. The 

relatively superior encoding performance of VAE to a specific set of Gabor filters should not 

be directly extrapolated to all variations of Gabor filters, especially for their extension to the 

(spatiotemporal) motion-energy filters (Nishimoto et al., 2011).

However, ResNet outperformed VAE by a large margin for every ROI (p<0.001, paired 

sample t-test). Their difference was most pronounced at higher-level ventral areas (e.g. 

FFA/PPA/TPJ) but relatively less sizable at early visual areas. Fig. 6 shows the comparison 

between VAE and ResNet in terms of their voxel-wise encoding accuracy. In line with the 

results from the ROI-level analysis, ResNet outperformed VAE for most of the visual cortex. 

Their difference (by subtraction) was much more notable in the ventral-stream areas than 

early visual areas or those in the dorsal-stream areas. Therefore, VAE was in general less 

predictive of visual cortical activity than was ResNet, which was trained with supervised 

learning.

We further asked whether the difference in encoding performance between VAE and CNN 

was due to their difference in learning objective, architecture, or dimensionality. To address 

this question, we defined two encoding models based on a CNN that used the same 

architecture as that of the encoder in VAE. This CNN, herein referred to as CNN-A, 

achieved 60.23% top-1 accuracy for image classification with data from ImageNet (more 

specifically the validation set of ILSVRC2012). CNN-A gave rise to 9,081 features after 

dimension reduction applied in the same way as for VAE. The encoding models based on 

CNN-A (without residual connections) were less predictive of fMRI responses than was 

ResNet. However, CNN-A still outperformed VAE for all ROIs, and the difference 

progressively increased from lower to higher areas (Fig. 7).

We further constrained the number of encoding parameters for CNN-A to be identical to that 

for VAE. As shown in Fig. 7, the encoding models so constrained for the number of free 

parameters (referred to as CNN-AP) yielded similar encoding accuracies as those of CNN-

A. Fig. 8 shows the voxel-wise difference in encoding accuracy between VAE and CNN-A/

CNN-AP, which was more notable in higher-level ventral-stream areas than other visual 

areas. It is worth noting again that the encoding performance of the VAE as a whole or by its 

encoder part, was comparable, without any significant difference (Fig. 4). Since the only 

difference between CNN-A and the encoder of VAE was their different learning objectives 
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(classification versus compression), the results shown in Fig. 7, 8 and Fig. 4, taken together, 

suggest that the different encoding performance of CNN vs. VAE was mostly attributable to 

their different learning objectives (supervised learning for image classification vs. 

unsupervised learning for image reconstruction), with less contribution from their 

differences in architecture or dimensionality.

Direct Visual Reconstruction by Decoding fMRI Responses

We further explored the use of VAE for decoding the fMRI activity to reconstruct the visual 

input. For this purpose, a decoding model was trained and used to convert the fMRI activity 

to the VAE’s latent representation, which was in turn converted to a pixel pattern through the 

VAE’s decoder. In comparison with the original videos, Fig. 9 shows the visual input 

reconstructed from fMRI activity based on VAE and the decoding models, which were 

trained and tested with data from either the same or different subjects. Although too blurry 

to fully resolve details or discern visual objects, the reconstructed videos captured some 

important information about the original videos, including the coarse position and shape of 

objects, and the rough color and contrast. The quality of visual reconstruction was better 

when the decoding models were trained and tested for the same subject than for different 

subjects.

We assessed the quality of visual reconstruction by quantifying the structural similarity (as 

SSIM) (Wang et al., 2004) between the reconstructed and original movies. The VAE-based 

decoding method yielded a much higher SSIM (about 0.5) than the eigen-image-based 

benchmark models with either partial least squares regression (Cowen et al., 2014) or L1-

regularized linear regression (Fig. 10A, paired t-test, p<0.001). As neurovascular coupling 

(modeled as HRF) caused the fMRI response to occur with a delay from the input stimulus, 

we shifted the decoded visual input by 4 seconds, as in previous studies by others 

(Nishimoto et al., 2011) and us (Wen et al., 2017b). In addition, we explored an alternative 

strategy, as in (Huth et al., 2016), to estimate a deconvolutional kernel, through which the 

visual input at a given time was reconstructed based on the fMRI responses delayed by 

multiple time points. It was found that a simple time shift gave rise to a higher SSIM than 

did an estimated deconvolutional kernel (paired t-test, p<0.001). Moreover, the VAE-based 

reconstruction preserved the color information in the movie, showing statistically significant 

(permutation test, p < 0.001) correlations in color index (hue-value) around 0.24 (Fig. 10B). 

The reconstructed color resulted from the information decoded from fMRI data, instead of a 

spurious result generated by the VAE’s decoder. When we converted the original movie from 

color to gray, running the gray-scale movie through VAE could not reconstruct the original 

color movie, showing a low and non-significant correlation in hue-value (r = −0.0664).

Discussion

In this study, we trained and tested a variational autoencoder (or VAE in short) as an 

unsupervised model of visual perception. As established in machine learning (Kingma and 

Welling, 2013), VAE uses an encoder-decoder architecture to learn representations of input 

data without supervision. The encoder infers the “causes” of the input. The decoder uses the 

inferred “causes” to attempt to reconstruct the input. As such, perceptual inference could be 
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tested to update the encoder and the decoder by learning to minimize the error of 

reconstruction. This notion behind VAE is conceptually similar to that of the Bayesian brain 

(Knill and Pouget, 2004; Yuille and Kersten, 2006), despite distinctions to be discussed later. 

The encoder runs bottom-up inference for recognition as does the brain’s feedforward 

pathway, and the decoder runs top-down synthesis for prediction as does the brain’s 

feedback pathway. Motivated by this conceptual linkage, we focus this study on evaluating 

VAE for predicting and decoding fMRI responses to natural video stimuli. Our results 

demonstrate a modest level of success, providing some arguably useful clues to guide future 

efforts towards finding a better model of human visual processing and learning.

In the following, we share our interpretations of the results from this study and discuss the 

merits and limitations of VAE as a brain model. The purpose of the discussions is to cast our 

perspectives with both arguments and counter-arguments from the literature and the 

comments raised during the peer-review of this paper.

VAE vs. Free-Energy Principle of the Brain

Mathematically, the learning objective for VAE is equivalent to minimization of the 

variational “free energy”, which is advocated (by some) as a principle of the brain (Friston, 

2010). In this principle, the brain (or an autonomous agent alike) learns to predict and 

explain away whatever comes from the environment by inferring its hidden causes and 

suppressing the so-called “free energy” (Friston, 2009) or “prediction error” (Rao and 

Ballard, 1999). In the context of perception under the free-energy principle, VAE and the 

brain share some common characteristics: both running stochastic processing, using latent 

(or internal) states to encode the causes of sensations, mapping from sensations to latent 

states, mapping from latent states to sensations, and learning to avoid surprises or the 

difference between the external input and the internal interpretation manifested as 

reconstruction or prediction. For these reasons, VAE is arguably a plausible model of the 

brain, at least in the systems level.

However, the VAE implemented in this study and the free energy principle of the brain differ 

in important ways. In the brain, higher-level representations are the causes that explain or 

synthesize lower-level representations (Friston, 2009). The free energy should be defined for 

every level of the visual hierarchy (Friston, 2010), whereas VAE only minimizes the free 

energy with respect to the input level and a single-level latent space. Although the encoder 

and the decoder in VAE both contain multiple layers, they only map to/from a single level of 

latent variables. To be more consistent with the free energy principle, an alternative (and 

potentially better) model should perhaps stack multiple VAEs into hierarchically-organized 

latent spaces (Zhao et al., 2017).

We relate the encoder and the decoder in VAE to the forward and backward processes in the 

brain. However, the encoder and the decoder do not interact during computation, whereas 

the brain’s forward and backward processes interact both within and between cortical areas 

(Bastos et al., 2012). The dynamic interaction has been thought (by some) to subserve the 

so-called “predictive coding” (Friston and Kiebel, 2009; Rao and Ballard, 1999; Spratling, 

2010). The backward connections from a higher level carry the top-down prediction of 

lower-level representation, and the forward connections carry the error of prediction to the 
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higher level (Rao and Ballard, 1999). As such, the forward and backward pathways convey 

different types of message (prediction error vs. prediction itself), which likely contribute 

differently to the response observable with fMRI. In contrast, the encoder and the decoder in 

VAE do not seem to make any differentiable contribution to the encoding of fMRI response 

(Fig. 4), likely due to the lack of interaction between the encoder and the decoder and 

similar information passing through them. Moreover, VAE does not have any mechanism for 

dynamic and recurrent processing, whereas video information is conveyed in both space and 

time. Speculatively, what might potentially address these limitation are hierarchical 

predictive coding networks, which are bi-directional (like VAE), dynamical (with recurrent 

mechanisms), and predictive forward in time (capable of temporal processing), as 

demonstrated in studies for computational neuroscience (Friston and Kiebel, 2009; Rao and 

Ballard, 1999; Spratling, 2010) and machine learning (Han et al., 2018; Lotter et al., 2016; 

Spratling, 2017; Wen et al., 2018).

VAE for Neural Encoding

Trainable with unsupervised learning, VAE compresses images into a lower-dimensional 

latent space while minimizing informational loss and redundancy (Kingma and Welling, 

2013). The compression through VAE is based on a cascade of nonlinear transform, unlike 

PCA (Dai et al., 2017; Wetzel, 2017). Since nonlinearity is central to neural information 

processing, it is non-trivial yet not necessarily surprising that VAE yields better decoding 

performance than PCA (Cowen et al., 2014), as shown in Fig. 10.

In VAE, the latent variables encode different aspects of the input data (Bouchacourt et al., 

2017), and support applications of VAE for graphics transformation (Kulkarni et al., 2015), 

image generation (Yan et al., 2016), movement forecast (Walker et al., 2016), and image 

style interpolation (Deshpande et al., 2017; Yeh et al., 2016). As such, VAE is capable of 

learning representations beyond the scope of analytically defined Gabor filtering.

However, being more useful for computer vision does not necessarily suggest that VAE is a 

better model for neural encoding. One may speculate and argue that the only basis for the 

VAE-based encoding model is that the VAE learns Gabor-like filtering. It is known that 

simple cells in V1 encode features selective to orientations and (spatial and temporal) 

frequencies (Hubel and Wiesel, 1962). Such features, to a varying extent, can be 

mathematically expressed as Gabor wavelets or learned from data with independent 

component analysis (van Hateren and van der Schaaf, 1998), sparse coding (Olshausen and 

Field, 1996), or convolutional neural networks (Krizhevsky et al., 2012). It is thus possible 

that VAE also learns Gabor-like filters. However, it was hard to verify or reject this 

possibility within the scope of this study, since our VAE model used convolutional kernels of 

a 4-by-4 size, which was too small to manifest itself as any Gabor-like filter. Although VAE 

seemed to outperform a specific (likely suboptimal) set of Gabor filters in terms of neural 

encoding, their encoding performance was both relatively low and their difference was too 

marginal or modest to merit further analysis.

In contrast, the difference in encoding performance between VAE and CNNs was much 

more sizable and potentially more informative. The encoding performance of VAE was 

lower than ResNet (Fig. 5), or alternative CNN models with the same architecture and even 
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the same number of encoding parameters as VAE (Fig. 7). Thus, the difference in encoding 

performance between VAE and CNN was primarily attributable to their learning objectives, 

as opposed to the network architecture. The difference was more pronounced for the ventral 

stream than early visual areas or the dorsal stream (Fig. 6 and Fig. 8). From these findings, 

we speculate that higher-level ventral areas may require supervised learning in order to 

extract representations for object recognition. A previous study has drawn a similar 

conclusion based on representational similarity analysis (Khaligh-Razavi and Kriegeskorte, 

2014). However, caution should be exercised when attempting to generalize this limitation to 

other objectives for unsupervised learning beyond the scope of this study. Whether the brain 

can learn abstract representations entirely without supervision remains at least likely and 

awaits future studies to fully address.

VAE for Neural Decoding

Intuitively, a model that enabled better neural encoding should also be better for neural 

decoding. This is reasonable for encoding-based decoding strategies (Kay et al., 2008; 

Naselaris et al., 2009; Nishimoto et al., 2011), in which the goal is to find one or multiple 

exemplars, e.g. from a large image set, that best explain the observed response pattern 

through encoding models. A number of recent studies have reported superior encoding 

performance obtained with CNNs (Eickenberg et al., 2017; Guclu and van Gerven, 2015; 

Wen et al., 2017b; Yamins et al., 2014). It is thus intuitive to anticipate that CNNs would 

also be a good model for brain decoding, as explored in (Shen et al., 2019; Wen et al., 

2017b). However, CNN might not be an optimal model for decoding, for at least two 

reasons. First, in the encoding model, the voxel-wise linear regression model may or may 

not be directly invertible, especially when the number of encoding parameters is 

significantly greater than the number of training samples. Second, the internal 

transformation of CNN may not be directly mappable onto the image space, although 

mapping from images to representations is always well determined.

Unlike CNN, VAE is bi-directional, allowing direct mapping from images to latent 

representations (via the encoder) and mapping from latent representations to images (via the 

decoder). From an entirely technical perspective, VAE offers a convenient and more straight-

forward decoding strategy by first converting fMRI to the latent variables in VAE and then 

converting the latent variables to reconstructed images through the decoder in VAE. This 

two-step decoding is fully computable and does not require any iterative optimization or 

exemplar matching, which is often required for encoding-based decoding (Kay et al., 2008; 

Nishimoto et al., 2011; Shen et al., 2019). In addition, the VAE-based decoding does not 

require any computation through the encoder of the VAE. It also implies that this decoding 

strategy is applicable not only to images or videos being seen, but also those being 

imagined. However, decoding visual imagery with VAE remains speculative, and awaits 

future studies.

In previous studies, brain responses are often related to the same set of features for both 

encoding and decoding (Horikawa and Kamitani, 2017; Kay et al., 2008; Naselaris et al., 

2009; Nishimoto et al., 2011; Shen et al., 2019). However, different features were used for 

encoding vs. decoding in this study. For encoding, we used the encoder, the decoder, and 
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both together, but excluding the latent variables. Adding the latent variables into the features 

for neural encoding did not improve the encoding accuracy (Supplementary Fig. 1). 

Speculatively, the latent space as a whole encodes similar information as the top layer of the 

encoder, while disentangling the information into independent dimensions each represented 

by a latent variable. Arguably, one does not have to use the same set of features for both 

encoding and decoding. For encoding, it is perhaps desirable to use features that result from 

the bi-directional processes for both bottom-up recognition and top-down generation. For 

decoding or more specifically reconstructing seen or imagined images, it is perhaps 

desirable to only use features associated with top-down processes.

The finding that VAE was helpful for decoding color from fMRI data is intriguing. However, 

this finding could not be readily attributable to any “color” center in the model or in the 

brain. In the VAE, color was not confined to any single latent variable or a small set of latent 

variables. When trained with diverse natural images, VAE could not disentangle color vs. 

noncolor (structural) features or separate the pathways for color or non-color information 

processing. The brain voxels that were most decodable (onto the latent variables) were 

distributed within early visual areas (V1/V2/V3). As such, the color and non-color features 

are entangled. One might argue that VAE does not decode color per se (at all) but decode 

some non-color features associated with color. Although this possibility could not be 

excluded and is indeed likely, it does not necessarily invalidate our results. The decoded 

color is not entirely spurious. Given the absence of any color in the input images (i.e. equal 

RBG values), the VAE, when it was trained with color images, did not necessarily generate 

spurious color in the reconstructed images. As such, VAE does extract and encode color. 

When it is trained with gray-scale images, VAE yielded slightly lower encoding performance 

(except V1), compared to the VAE trained with color images (Supplementary Fig. 2). The 

decrease in encoding performance was relatively more noticeable for V4, FFA, PPA, LO, 

than other areas. However, it should be admitted that the results obtained with the VAE, as it 

is in the present study, do not allow us to reveal where and how color is encoded in the brain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. An “analysis by synthesis” model of human vision.
(A) The brain learns the visual world through synthesizing sensations. The brain 

analyzes the sensory input to infer the hidden representations of the input through its 

bottom-up processes and synthesizes the sensory input through its top-down processes. (B) 
Encoding and decoding visually-evoked cortical fMRI responses by using VAE as a 
model of the visual cortex. For encoding, cortical responses to visual stimuli were 

predicted as a linear projection of all hidden units in VAE to the same stimuli. For decoding, 

visual stimuli were reconstructed by first estimating the VAE’s latent variables as a linear 
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function of the fMRI responses, and then generating pixel patterns from the estimated latent 

variables through the VAE’s decoder.
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Figure 2 |. Variational auto-encoder.
(A) The architecture of VAE for natural images. The encoder and the decoder both 

contained 5 layers. Each layer of the encoder contained a convolution (kernel size=4, 

stride=2, padding=1) and a rectified linear unit (ReLU). Each layer of the decoder contained 

a transposed convolution (kernel size = 4, stride = 2, padding = 1) and a ReLU, except the 

last layer which replaced ReLU with a sigmoid transformation. Fully-connected layers were 

used to transform the encoder’s last layer to latent variables or to transform the re-

parameterized latent variables to the decoder’s first layer. The dimension of latent variables 

was 1024. (B) Reconstruction of natural images by VAE. For any image (left), its 

information was encoded by 1024 latent variables by passing it through the VAE encoder. 

From the latent variables, the VAE decoder generated the corresponding reconstruction 

(right) of the input image, despite blurred details.
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Figure 3 |. Prediction accuracy with VAE-based encoding models.
The accuracy was measured by the Pearson’s correlation coefficient (r) between the model-

predicted response and the actual fMRI response. The map shows the r value averaged 

across the five testing movies. The map was thresholded by statistical significance (FDR 

q<0.01). For intra-subject encoding, the results are shown on the flattened (only for Subject 

1) and inflated cortical surfaces (for every subject) as in the first and second rows. For inter-

subject encoding, the results are shown in the third row.
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Figure 4 |. The ROI-level encoding performance of VAE encoder or VAE decoder.
For each feature model, the accuracy of encoding model in predicting the fMRI response to 

the testing movie was summarized for each of the nine pre-defined ROIs. The compared 

models are: variational autoencoder (VAE), VAE encoder and VAE decoder. Arranged from 

the left to the right, individual ROIs are located in increasingly higher levels of the visual 

hierarchy. The bar chart is based on the mean±SEM (standard error of the mean) of the 

voxel-wise prediction accuracy averaged across all the voxels in each ROI, and across 

different testing movies and subjects. The bars in the lightest color indicate the mean and the 

standard derivation of the noise-ceilings in each ROI.
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Figure 5 |. The ROI-level encoding performance of different models.
For each feature model, the accuracy of encoding model in predicting the fMRI response to 

the testing movie was summarized for each of the nine pre-defined ROIs. The compared 

models are: variational autoencoder (VAE), Gabor filters and ResNet-18. Arranged from the 

left to the right, individual ROIs are located in increasingly higher levels of the visual 

hierarchy. Their bar chart is based on the mean±SEM (standard error of the mean) of the 

voxel-wise prediction accuracy averaged across all the voxels in each ROI, and across 

different testing movies and subjects. The bars in the lightest color indicate the mean and the 

standard derivation of the noise-ceilings at each ROI.
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Figure 6 |. Encoding performance of VAE vs. ResNet-18.
The prediction accuracy (the z-transformed correlation between the predicted and measured 

fMRI responses) is displayed on inflated cortical surfaces for the encoding models based on 

VAE (top-left) and ResNet-18 (top-middle). Their difference (ResNet – VAE) in the 

prediction accuracy is displayed on both inflated (top-right) and flattened (bottom) cortex.
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Figure 7 |. The ROI-level encoding performance of VAE and constrained CNNs.
For each feature model, the accuracy of encoding model in predicting the fMRI response to 

the testing movie was summarized for each of the nine pre-defined ROIs. The compared 

models are: variational autoencoder (VAE), CNN with constraint on its architecture (CNN-

A) and CNN with constraint on its architecture and parameters (CNN-AP). Arranged from 

the left to the right, individual ROIs are located in increasingly higher levels of the visual 

hierarchy. The bar chart is based on the mean±SEM (standard error of the mean) of the 

voxel-wise prediction accuracy averaged across all the voxels in each ROI, and across 

different testing movies and subjects. The bars in the lightest color indicate the mean and the 

standard derivation of the noise-ceilings in each ROI.
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Figure 8 |. Encoding performance with VAE vs. constrained CNNs.
The difference in prediction accuracy (the z-transformed correlation between the predicted 

and measured fMRI responses) is displayed on inflated/flattened cortical surfaces. For VAE 

and CNN with constraint on its architecture (CNN-A), their difference (CNN-A – VAE) in 

the prediction accuracy is displayed on both inflated (top-left) and flattened (bottom) cortex. 

For VAE and CNN with constraint on its architecture and parameters (CNN-AP), their 

difference (CNN-AP – VAE) in the prediction accuracy is displayed on inflated (top-right) 

cortex.
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Figure 9 |. Visual reconstruction based on VAE and fMRI.
The original and reconstructed video frames are shown in comparison for 6 example video 

clips. The top row shows the original video frames. The second and third rows show the 

visual reconstruction based on VAE and the decoding model trained and tested within the 

same subject (Subject 1). For the second row, a canonical HRF is used during training and a 

temporal delay is used during testing to compensate for HRF. The third row shows the 

reconstruction based on estimating a deconvolution kernel to compensate for HRF. For the 

Fourth row, the VAE-based cross-subject decoding model was trained with data from 

Subject 1 but tested on data from Subject 2 (the top 3 clips) or Subject 3 (the bottom 3 clips).
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Figure 10 |. Quantitative evaluation of visual reconstruction.
(A) Comparison of structural similarity index (SSIM). SSIM scores of VAE-based 

decoding models (compensating HRF with either a temporal delay or an estimated 

deconvolution kernel) and eigen-image-based models were compared for all 3 subjects. Each 

bar shows the mean±SE SSIM score over all frames in the testing movie. (B) Correlation in 
color (hue-value). The (circular) correlation between the original and reconstructed hue 

components was calculated and evaluated for statistical significance with permutation test 

(*, p<0.001).
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