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Abstract

Introduction: Sound is integral to communication and connects us to the world through speech 

and music. Cochlear hair cells are essential for converting sounds into neural impulses. However, 

these cells are highly susceptible to damage from an array of factors, resulting in degeneration and 

ultimately irreversible hearing loss in humans. Since the discovery of hair cell regeneration in 

birds, there have been tremendous efforts to identify therapies that could promote hair cell 

regeneration in mammals.

Areas covered: Here, we will review recent studies describing spontaneous hair cell 

regeneration and direct cellular reprograming as well as other factors that mediate mammalian hair 

cell regeneration.

Expert opinion: Numerous combinatorial approaches have successfully reprogrammed non-

sensory supporting cells to form hair cells, albeit with limited efficacy and maturation. Studies on 

epigenetic regulation and transcriptional network of hair cell progenitors may accelerate discovery 

of more promising reprogramming regimens.
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1. Introduction

The cochlea is an exquisite sensory organ dedicated to transducing sounds into neural 

impulses. The organ of Corti is critical for this function, precisely arranged with four rows of 

mechanosensory hair cells intercalated with non-sensory supporting cells. In mammals, lost 

hair cells are not regenerated, leading to irreversible hearing loss. Clinical therapies that are 

currently available include hearing aids and cochlear implants, the latter being a device, 

which aims to replace the role of the hair cells by providing electrical signals directly to the 

spiral ganglion neurons. To date, biological therapies have been unsuccessful in fully 
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regenerating hair cells and restoring auditory function; however, recent advances have 

revealed the potential for native supporting cells to serve as an endogenous source for hair 

cell regeneration. In this review, we will discuss spontaneous hair cell regeneration in the 

cochlea and utricle, the competence of supporting cells to act as hair cell progenitors, and 

finally, direct cellular reprogramming approaches to coerce supporting cells to undergo cell 

fate change.

2. Hearing Loss

Over 6% of the world’s population (around half a billion people) suffer from disabling 

hearing impairment [1]. This prevalence is expected to continue to grow as the population 

ages, doubling the number of adults in the United States affected by hearing loss in the 

coming decades [2]. The social, emotional, and economic impact that hearing impairment 

places on individuals and society at large is significant. The exclusion from spoken 

communication, for example, as a result of hearing loss has adverse effects on day-to-day 

life, particularly for children who can experience a delay in language development [3]. 

Moreover, there is a growing body of evidence associating hearing loss with cognitive 

dysfunction in the elderly, including a connection between hearing loss and dementia [4, 5].

The most common pathological finding of hearing impaired patients postmortem is damage 

to the cochlear sensory epithelium, primarily the loss of sensory hair cells, as well as a 

reduction in the number of spiral ganglion neurons [6, 7]. This loss of hair cells can arise 

from a number of causes ranging from side effects of therapeutic agents (such as 

aminoglycoside antibiotics and chemotherapy drugs), noise trauma, genetic disorders, and 

aging. Currently, the only treatments available are hearing aids and cochlear implants. These 

devices can provide significant benefits to patients, particularly when implanted early, with 

children implanted before the age of 4 performing as well as post-lingual deaf adults on 

open-set tasks, allowing them to enter the mainstream education system with their normal 

hearing peers [8]. Despite their success, however there remains wide variations in patient 

outcomes and many of them lack adequate access to treatment. Importantly, the devices fail 

to reverse the underlying pathology of hair cell loss. To complement or move beyond a 

device-based treatment, studies have begun to examine potential biological approaches to 

regenerating the cochlear sensory epithelium after insult. It is important to note, however, 

that hair cell loss is not the only pathology causing hearing loss, and as such hair cell 

regeneration is only one of many possible therapeutic approaches. For example, studies have 

examined regeneration of other cell types such as the spiral ganglion neurons and supporting 

cells, and a growing body of literature has examined the promising approach of correcting 

genetic mutations within hair cells and supporting cells [9, 10, 11, 12].

3. Cochlear Sensory Epithelium

The mammalian cochlear sensory epithelium consists of an orderly arrangement of hair cells 

and surrounding supporting cells. Hair cells consist of one row of inner hair cells, the 

primary sound transducers, and three rows of outer hair cells, which act as amplifiers of low-

level sounds [13]. The inner and outer hair cells are separated by the inner and outer pillar 

cells, supporting cell subtypes that together form the tunnel of Corti (Figure 1). Other 
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subtypes of supporting cells include the Deiters’ cells and inner phalangeal cells that 

underlie and surround the outer hair cells and the inner hair cells, respectively. As 

transducers of the cochlea, sensory hair cells are sensitive to a wide variety of insults. After 

severe damage and extensive hair cell loss, dramatic remodeling of the sensory epithelium 

can occur [14, 15]. For example, after aminoglycoside-induced hair cell loss, supporting 

cells expand to form a scar-like, flattened epithelium composed of non-specialized cells 

[15]. The dramatic change in the milieu and architecture of the cochlear sensory epithelium 

after damage may in part limit its ability to regenerate hair cells, a topic that will be 

discussed in the following section.

4. Spontaneous Hair Cell Regeneration

A number of studies, beginning with two seminal papers from nearly 30 years ago showed 

that hair cells of the avian basilar papilla (analogous to the mammalian cochlea) and utricle 

can regenerate hair cells from underlying supporting cells [17, 18, 19, 20]. Supporting cells 

have since been labeled as hair cell progenitors, and the process of regeneration can be 

broadly characterized to occur via mitotic and non-mitotic mechanisms. Mitotic regeneration 

involves supporting cells undergoing cell division prior to differentiating into hair cells. 

Conversely, non-mitotic regeneration, also termed direct transdifferentiation, occurs when 

supporting cells differentiate into hair cells without an antecedent mitotic event [21].

In many non-mammalian sensory organs such as the avian vestibular organs and the 

zebrafish lateral line system, hair cells continuously turn over and regenerate, both of which 

are increased after damage until homeostasis is reached [22, 23, 24, 25, 26, 27]. On the other 

hand, the avian basilar papilla can regenerate lost hair cells even though it has no continuous 

turnover of cells [17, 18, 19]. The mature mammalian cochlea, however, lacks the ability to 

regenerate hair cells via either mitotic or non-mitotic mechanisms [6, 28]. In contrast, the 

mature mammalian vestibular system retains a limited degree of non-mitotic regenerative 

capacity [29, 30, 31, 32, 33].

The neonatal mammalian cochlea was first shown to harbor a population of cells capable of 

generating new hair cells in vitro [34, 35, 36, 37]. Using flow cytometry and the p27Kip1 

transgenic reporter mouse line, White and colleagues found that isolated cochlear supporting 

cells were able to proliferate and differentiate into hair cells – both features of hair cell 

progenitors [38]. Oshima et al. also demonstrated that cells from the neonatal cochlear 

sensory epithelium display stem/progenitor cell behavior by forming spheres in vitro – 

clonal colonies formed from individual cells – and subsequently differentiate into new hair 

cells [37]. Importantly, this group found that cells from the sensory epithelia of both the 

neonatal and mature utricle exhibit stem/progenitor cell ability [37, 39].

Recent studies have built on these findings and revealed that cochlear supporting cells 

marked by Lgr5 – a marker for somatic stem cells in the skin and intestines – proliferate and 

differentiate into hair cells at a much greater propensity as compared to other Lgr5-negative 

supporting cells in vitro [40, 41]. To delineate the role of Lgr5-positive supporting cells in 
vivo, Cox et al. performed lineage tracing experiments in a Pou4f3DTR transgenic mouse 

line where hair cells, which express the human diphtheria toxin receptor, can be selectively 
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ablated [42]. Following hair cell death in the neonatal cochlea, a modest degree of 

spontaneous hair cell regeneration and proliferation was observed, with Lgr5-positive 

supporting cells contributing to both processes in vivo [42]. Limited spontaneous hair cell 

regeneration was also observed after ototoxic aminoglycoside insult of the neonatal mouse 

cochlea in vitro [43]. By contrast, hair cell ablation in the neonatal utricle results in a much 

more robust regenerative response via both mitotic and non-mitotic pathways, with hair cell 

recovery up to approximately 60% one month after damage [44, 45]. Lastly, the mature 

mammalian utricle has been shown to display some degree of regenerative capacity after 

hair cell loss [29, 31, 32]. This capacity was further characterized in a recent study, whereby 

hair cells were specifically ablated in the adult utricle using a transgenic mouse model [30]. 

Fourteen days after ablation only 6% of hair cells remained, with hair cell numbers returning 

to ∼17% relative to controls by 60 days. These new hair cells displayed evidence of 

mechanotransduction, synaptic connections and were generated non-mitotically via direct 

transdifferentiation of supporting cells [30, 46].

Unfortunately, in the neonatal cochlea most regenerated hair cells degenerate in a delayed 

fashion for reasons not completely clear. Moreover, supporting cells rapidly lose their ability 

to regenerate hair cells after the first postnatal week within the mature cochlea. Collectively, 

these studies demonstrated that at least a subset of supporting cells in the neonatal cochlea, 

and the neonatal and mature utricle, can act as hair cell progenitors. We will next review 

studies examining mechanisms regulating mammalian hair cell progenitors.

5. Direct Cellular Reprogramming to Enhance Cellular Regeneration

As regeneration does not occur in the mature mammalian cochlea, there have been 

considerable efforts aimed at coercing supporting cells to regenerate lost hair cells (Figure 

2), with cellular reprogramming being a major focus. The targeted manipulation of cell fate 

through the introduction of transcription factors is broadly termed cellular reprogramming. 

Over three decades ago, the introduction of a single transcription factor, MyoD, was shown 

to convert fibroblasts directly to myoblasts in vitro [47], shifting the notion that somatic cell 

fate is fixed. The plasticity of somatic cell fate was further highlighted by work carried out 

by Takahashi and colleagues, who successfully induced pluripotency with a cocktail of four 

transcription factors, the so-called “Yamanaka factors” [48]. Since these studies, many 

reprogramming approaches to induce pluripotency have been used prior to implementing 

guided differentiation protocols [49]. Moreover, new strategies to directly convert a cell’s 

identity (without a preceding dedifferentiation event) have been examined in a growing 

number of organ systems [50, 51, 52]. This new strategy, of “direct cellular reprogramming” 

will be the focus of the remainder of this review. For a comprehensive discussion of cellular 

reprogramming more broadly, we refer the avid reader to the following reviews [53, 54, 55].

In the inner ear, one transcription factor that plays a central in hair cell identity is called 

Atoh1 (previously Math1). Atoh1 is a basic helix-loop-helix transcription factor necessary 

for hair cell development [56]. Early after ototoxic insult in the avian cochlea and prior to 

proliferation or regeneration of mature hair cells, Atoh1 expression is upregulated in 

supporting cells in the damaged avian cochlea [57] and damaged mature mouse utricle [30]. 

This suggests that similar to development, Atoh1 may play a key role in the specification of 
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hair cells during regeneration. One of the earliest reports of in vivo reprogramming 

introduced Atoh1 into the mature guinea pig cochlea damaged by aminoglycosides as a 

means to induce regeneration of hair cells from supporting cells [58]. Subsequently, 

numerous other studies further explored the potential of Atoh1 as a singular factor to convert 

supporting cells towards a hair cell fate [59, 60, 61, 62, 63, 64]. The results of Atoh1 

preclinical animal studies, however, have been mixed, with generally low efficacy and only 

one report of limited functional recovery.

More recent studies have more thoroughly characterized components of regenerated hair 

cells such as the expression of numerous hair cell markers, the presence of stereociliary 

bundles, mechanotransduction, and synapse formation [59, 63, 65]. In the neonatal cochlea, 

supporting cell subtypes display different Atoh1-responsiveness, with those within the organ 

Corti (Deiters’ and pillar cells) being less competent than cells in the greater epithelial ridge 

[66]. In both the neonatal and juvenile cochlea, Atoh1 overexpression via a transgenic 

approach induces about 10% of pillar and Deiters’ cells towards a hair cell phenotype [63]. 

Ectopic hair cells formed from Atoh1 expression display many markers of nascent hair cells 

and synaptic proteins but failed to express terminal differentiation markers such as prestin 

and oncomodulin. They develop immature stereocilia, do not have the classic mature hair 

cell morphology, but are labeled with the styryl dye FM1-43, which permeates patent 

mechanotransduction channels. This incomplete maturation may have resulted from a 

constitutive expression of Atoh1 as it is normally downregulated during hair cell maturation. 

Moreover, the long-term survival of these newly regenerated cells has yet to be carefully 

examined, indeed a recent study has found that even subtle changes in endogenous Atoh1 

can lead to hair cell degeneration, underscoring the importance of characterizing these 

regenerated cells induced via aberrant Atoh1 expression [67].

Independent studies have shown that the effectiveness of Atoh1 overexpression is rather 

limited in the adult cochlea, where little to no functional recovery was observed [58, 59, 62, 

63, 68]. Similarly, Atoh1 overexpression induces ectopic hair cells in the neonatal utricle 

with varied results reported in the mature organ [69, 70]. Despite these mixed results in 

preclinical studies, they led to the opening of a clinical trial assessing the safety and 

potential benefits of Atoh1 transfection in hearing loss patients (NCT02132130). The results 

may shed lights firstly on the safety of inner ear viral delivery, and possibly also on the 

efficacy of a single-factor reprogramming approach, which has been found effective in some 

organ systems [71, 72, 73]. In a recent study in the visual system of mature mice, for 

example, forced expression of the transcription factor Ascl1 in combination with a histone 

deacetylase inhibitor, was able to stimulate functional retinal neurons from Müller glia [74]. 

Without the addition of the histone deacetylase inhibitor, however, no regeneration was 

observed. This suggests that epigenetic regulators can play an important role in governing 

cellular reprogramming, a topic which will be discussed in the following section.

A multi-factor approach has been used to successfully stimulate regeneration of different 

systems throughout the body. For instance, viral transfection of Pdx1 and MafA transcription 

factors resulted in the reprogramming of mouse pancreatic α-cells into β-cells in vivo, 

postponing the onset of diabetes in mice [75]. Direct reprogramming using three defined 

factors (Gata4, Mef21 and Tbx5), which converts mouse fibroblast into functional 
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cardiomyocyte-like cells, improved cardiac function and reduced fibrosis after myocardial 

infarction [76].

In recent years, several groups have found the multi-factor direct reprogramming approach 

effective in generating hair cells in vitro. First of all, the combination of Atoh1, Gfi1 and 

Pou4f3, all transcription factors critical for hair cell development, is more effective than 

Atoh1 alone in converting embryonic stem cells into hair cells [77]. In the embryonic and 

neonatal cochlea, a different combination (Gata3, Ets2, Etv4, NMyc, Tcf3) in concert with 

Atoh1 induces more ectopic hair cells than Atoh1 alone [78, 79]. Moreover, the ectopic co-

expression of Eya1 and Six1 is able to induce supernumerary hair cells in the embryonic 

mouse cochlea in the absence of Atoh1 [80].

Similar approaches have been attempted using transgenic mouse models, with promising 

results showing that the co-activation of Gata3 or Pou4f3 with Atoh1 successfully 

stimulating the conversion of supporting cells into hair cell-like cells in the adult cochlea. 

The combination of Pou4f3 and Atoh1 activation resulted in approximately 21% of 

recombined cells expressing the hair cell marker MyosinVIIa, an order of magnitude greater 

than with Pou4f3 alone. Interestingly, deletion of p27Kip1, a cell cycle inhibitor expressed in 

cochlear supporting cells, was also able to promote the conversion of supporting cells to hair 

cells in response to Atoh1 activation. In this model 12% of recombined cells expressed hair 

cell markers MyosinVIa/VIIa. Upon further examination, deletion of p27Kip1 upregulates 

Gata3, which is postulated to be the mechanism enabling transdifferentiation of supporting 

cells to hair cells in response to Atoh1 in the mature mouse cochlea [81]. However, no 

supporting cell proliferation was observed, implicating a cell-cycle independent role of 

p27Kip1 mediated by Gata3. The interplays of these multiple transcription factors are only 

beginning to be explored and may help rekindle the lost plasticity of supporting cells in the 

mature cochlea and in doing so enable regeneration of the damaged organ.

6. Alternative approaches

A notable effector of hair cell regeneration is the developmental stage of the cochlea, where 

the plasticity of the supporting cells is reduced with maturation [59, 61, 63, 81, 82, 83, 84]. 

One candidate mechanism is changes in the epigenetic status of cochlear supporting cells as 

the organ matures, which is an area of active investigation. Epigenetic changes are known to 

play a key role in regulating cellular reprogramming and regeneration in a wide range of 

systems including during the generation of induced pluripotent stem cells [85], and 

regeneration of limbs [86], axons [87], and retinal neurons [74]. In the inner ear for example, 

the degree of methylation of Sox2 enhancers (NOP1 and NOP2) correlates with the 

dedifferentiation potential of post-mitotic supporting cells into otic stem cells [88]. 

Repressive complexes such as NuRD and PRC2 have also been reported in the neonatal 

cochlea, and the presence of these repressive complexes correlates with transcriptional 

silencing of known target genes of their cofactors such as Atoh1 [89]. Moreover, epigenetic 

modifications have been shown to regulate the effects of Atoh1 during development [90], 

and they are postulated to govern the efficacy of Atoh1 overexpression or other regenerative 

approaches in the postnatal and mature cochlea. In support of this concept, when combined 

with histone deacetylase inhibitors, Wnt activation dramatically increases Lgr5-positive 
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supporting cells in cultured neonatal cochlea and the number of clonal colonies formed by 

cochlear supporting cells, although the effects on supporting cells from the mature cochlea 

are significantly reduced [91].

Other combinatorial manipulations have also been found to modulate hair cell regeneration. 

For instance, in the neonatal cochlea, Sox2 haploinsufficiency and damage enhances the 

effects of Wnt activation via stabilization of β-catenin on proliferation and hair cell 

formation from supporting cells, possibly via the downregulating of Notch signaling [84]. 

When Li and colleagues inhibited Notch signaling, they observed that active Wnt signaling 

induces more robust proliferation and hair cell formation in the neonatal cochlea [92]. 

Interestingly, in addition to its effects on hair cell formation, Atoh1 overexpression has been 

observed to induce proliferation in the neonatal cochlea [61]. When combined with active 

Wnt signaling and/or Notch inhibition, both cell division and ectopic hair cell formation 

increase in the neonatal cochlea [82, 83]. It is a common notion that supporting cell 

proliferation is important for cochlear regeneration as it can help restore the hair cell-

supporting cell ratio thought to be important for function. While these studies indicate that 

both proliferation and hair cell formation can be modulated with different approaches in the 

neonatal, immature cochlea, their effectiveness in the mature cochlea is rather limited [81, 

84]. In addition to epigenetic changes mentioned above, a decrease in Notch signaling has 

been proposed as one mechanism leading to the inability of the mature mammalian cochlea 

to regenerate [93]. Moreover, the severely damaged cochlea with a complete loss of hair 

cells appears as a scar-like, flat epithelium occupied by cuboidal cells, which may be rather 

different from native supporting cells [15, 68]. It would be of interest for future studies to 

compare the gene expression of the neonatal and mature cochlear supporting cells, 

particularly their changes in response to damage.

7. Delivery of therapeutic agents

Many studies have probed strategies that most effectively introduce viral vectors or 

pharmaceutical compounds into the cochlea. When determining the suitability of each 

approach, a number of elements should be considered, including the intended biological 

effect, the target cell population, the longevity of the expression needed, and any possible 

off-target effects. Two of the most commonly used viruses have been adeno-associated virus 

(AAV) and adenovirus, each of which has its own advantages and shortcomings. AAV in 

particular has been an appealing candidate vehicle for gene transfer because it has a long-

lived transgene expression, is not linked with human diseases, and has a relatively wide 

expression pattern within the cochlea [94]. However, it has a relatively small genetic 

capacity, limiting the types of genes that can be delivered. In contrast, adenovirus has a 

larger packing capacity, allowing for a larger array of possible genetic insertions, but the 

transgene expression is transient.

Multiple studies examining Atoh1 and hair cell regeneration have used adenovirus as a 

means to target supporting cells, such as the pillar cells, Deiters’ cells, as well as Hensen 

cells [58, 59, 95]. Specifically, adenovirus serotype 5 has been shown to be efficacious in 

transducing supporting cells [96]. Adenovirus-mediated Atoh1 studies, however, only found 

small increases in hair cell number and limited to no recorded functional improvement. In 
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the mature utricle, one study using adenovirus reported hair cell conversion and improved 

vestibular function by behavioral measures [97]. These studies show that adenovirus can 

transduce a wide range of supporting cells, highlighting its potential use in future therapies. 

For a list of information on viral and non-viral approaches, please see Table 1.

8. Conclusion

The mature mammalian cochlea does not regenerate lost hair cells, resulting in a permanent 

hearing deficit. Recent studies have found that supporting cells in the neonatal cochlea 

spontaneously regenerate hair cells, and that multiple approaches including direct cellular 

reprogramming can modulate regeneration. However, inducing robust hair cell regeneration 

in the mature cochlea remains challenging. Recent advances in multi-factor direct cellular 

reprogramming approaches and viral and non-viral delivery methods into the inner ear 

should open the door for novel biological therapies for hearing loss.

9. Expert Opinion

The organ of Corti is a highly delicate structure containing a multitude of cell types that are 

precisely interwoven and innervated, enabling it to convey the smallest whisper to the 

cacophony of an orchestra with high fidelity. Damage causing loss of sensory hair cells 

results in permanent hearing loss, for which there is currently no biological treatment. 

Unlike non-mammalian sensory organs, which are able to repopulate hair cells, the mature 

mammalian cochlea has no spontaneous regeneration. Re-engineering the mature 

mammalian cochlea to regenerate hair cells as a means to restore hearing is therefore of 

immense interest and could provide remarkable benefit.

Studies of the neonatal cochlea and utricle have provided significant insights into how to 

tackle this problem. First, supporting cells isolated from the neonatal cochlea are able to 

proliferate and develop new hair cells, indicating their progenitor potential. A subset of 

supporting cells – particularly those marked by the Wnt responsive gene Lgr5 – had a 

greater propensity to proliferate and differentiate into hair cells, suggesting that Lgr5 may be 

an enrichment marker. Second, in vivo studies have shown that supporting cells in the 

neonatal cochlea acted as hair cell progenitors after damage and regenerated new hair cells. 

However, regeneration is limited both in degree and to the apical region of the cochlea. 

Moreover, fate mapping demonstrated that at least a subset of these regenerated hair cells 

were derived from Lgr5-positive supporting cells. These findings indicate that within their 

native environment, supporting cells are capable of proliferating and converting into hair 

cells after injury. Unfortunately, this capacity is rapidly lost after the first postnatal week for 

reasons that are not completely clear.

Numerous studies have attempted to coerce hair cell regeneration via the upregulation of 

Atoh1 since it can successfully force supporting cells to differentiate into hair cells in the 

neonatal cochlea. Another approach has been to activate Wnt signaling as a means to induce 

proliferation of quiescent supporting cells. These single factor approaches, however, have 

mostly been unsuccessful in inducing regeneration in the mature cochlea. These findings 

highlight two important points: firstly, while the neonatal cochlea provides a conducive 
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environment for manipulations and can provide proof-of-principle results, it is necessary to 

validate the findings in the mature cochlea; and secondly, a single factor approach is unlikely 

able to promote the necessary cell proliferation and cell conversion in the mature cochlea. It 

remains to be tested whether a multifactor approach can induce supporting cell proliferation 

and hair cell regeneration. Also why cochlear supporting cells become rapidly unresponsive 

to manipulation after birth has not yet been fully elucidated. As such, the field would benefit 

from a greater understanding of the differential gene expression and epigenetic changes of 

supporting cells in the neonatal and mature cochlea.

During development, hair cells display dynamic changes of many genes that are beginning 

to be revealed, including those specifying hair cell subtypes and regulating subcellular 

structures critical for hair cell function. It is highly plausible that the milieu of the mature 

cochlea will require a novel set of genes to allow proper hair cell differentiation and 

integration, all unexplored and challenging questions needing answers. As new technologies 

evolve to better examine the damaged mammalian cochlea and novel techniques develop to 

deliver therapeutic agents, the possibility of hair cell regeneration as a biological therapy for 

hearing loss may be realized.
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Article Highlights

• Limited spontaneous hair cell regeneration occurs in the neonatal mouse 

cochlea and in the neonatal and adult mouse utricle.

• As in non-mammalian species, supporting cells in mammalian sensory organs 

can act as hair cell progenitors.

• Cochlear supporting cells rapidly lose the ability to regenerate hair cells as the 

organ matures.

• Direct cellular reprogramming is efficacious in inducing ectopic hair cells in 

the neonatal cochlea; however, results have been mixed in the mature organ.

• The overall efficacy of a combination approach to induce hair cell 

regeneration in the mature cochlea remains low.
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Figure 1. 
The organ of Corti, the sensory domain of the cochlea, houses one row of inner hair cells 

and three rows of outer hair cells. Inner hair cells are supported by inner phalangeal cells 

and outer hair cells are supported by Deiters’ cells, collectively referred to as supporting 

cells. The inner and outer hair cells are separated by the inner and outer pillar cells which 

form the tunnel of Corti. IHC: inner hair cell, OHC: outer hair cell, IPhC: Inner phalangeal 

cell, IP: Inner pillar cell, OP: Outer pillar cell, DC: Deiters’ cell. Modified and reprinted 

from [16] under a CC BY license, with permission from Springer Nature, Understanding the 

cochlea (2017).
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Figure 2. 
Schematics of cellular reprogramming in the damaged organ of Corti. A) Introduction of a 

small molecule or siRNA (A) or viral vectors (B) to induce hair cell regeneration.
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Table 1.

Viral vectors for inner ear gene therapy

Viral vector Transgene Animal Route Tropism Side Effects Reference

Adenovirus

Ad5 GFP Mouse (adult) RW Cochlear and 
vestibular hair cells

Inflammatory response [98]

Ad5 (E1A-, E1B-) lacZ Guinea pig (adult) RW Spiral ganglion 
neurons, cochlear 
supporting cells 
and connective 
tissue

Mild inflammatory response [99]

Ad (E1-) β-gal Rat (neonatal) In vitro Organ of Corti, 
spiral ganglion 
neurons

No signs of cellular damage 
reported

[100]

Ad (E1-, E3-, CMV) GFP Rat (adult) Peri- and 
endolymphatic 
perfusion

Mesothelial cells of 
scala media (i.e. 
Reissner’s 
membrane); 
Hensen’s, Deiters’, 
pillar and 
phalangeal cells; 
satellite cells 
surrounding SGN

Increased compound action 
potential (CAP) threshold

[101]

Coch Cochlear inner and 
outer hair cells (in 
2/6 animals)

Increased CAP threshold

Ad (E1-, E3-, pol-) GFP Guinea pig (adult) RW Cochlear inner hair 
cell and pillar cells

Loss of DPOAE [102]

Ad (E1-, E3-, pol-) GFP-BDNF GFP-NT3 Guinea pig (adult) Coch Inner and outer 
pillar cells, Deiters’ 
cells, Hansen’s 
cell, inner sulcus 
cells and 
interdental cells

Mild to moderate fibrosis 
and new bone growth

[103]

Ad GFP-Kir2.1 Mouse (neonate) In vitro Vestibular hair cells No evidence of toxicity [104]

AAV

AAV2/1 GFP Mouse (Embryonic) Trans-uterine Cochlear 
progenitor cells, 
which gave rise to 
inner and outer hair 
cells and 
supporting cells

No adverse effects found [105]

AAV1 GFP Mouse (neonate) Coch Inner hair cells, 
cochlear supporting 
cells and lateral 
wall

Hearing loss reported when 
injected into scala media

[106]

AAV2 dXIAP Rat (adult) RW Spiral ganglion and 
stria vascularis

None reported [107]

AAV1 VGLUT3 Mouse (juvenile) RW or Coch Inner hair cells None reported [108]

AAV8 Whirlin Mouse (neonatal) RW Inner hair cells and 
some outer hair 
cells

None reported [109]

Mouse (adult) RW Inner hair cells 
(low efficacy)

AAV8 Whirlin Mouse (neonatal) PSSC Vestibular hair cells 
and cochlear inner 
hair cells

None reported [110]
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Viral vector Transgene Animal Route Tropism Side Effects Reference

AAV8 Neurotrophin-3 Guinea pig (adult) Coch Inner hair cells None reported [111]

Anc80L65 GFP Mouse (neonatal) RW Inner and outer hair 
cells, spiral 
ganglion neurons, 
cochlear supporting 
cells

No adverse effects on hair 
cell or hearing function

[112]

Human In vitro Vestibular hair cells 
and supporting 
cells

AAV8 Sans-IRES-GFP Mouse (neonate) RW Vestibular and 
cochlear hair cells

None reported [113]

AAV2/Anc80L65 GFP Mouse (adult) PSSC Cochlear hair cells, 
interdental cells, 
Reissner’s 
membrane, spiral 
limbus. Vestibular 
hair cells and 
supporting cells 
and vestibular 
ganglion cells

No adverse effects on hair 
cell or hearing function

[114]

Herpes Simplex virus lacZ Guinea pig (adult) RW Supporting cells, 
epithelial and 
connective tissues 
of cochlea.

Inflammatory response [115]

NT-3myc Mouse (neonatal) In vitro Spiral ganglion None reported [116]

RW-round window

PSSC-posterior semicircular canal

Coch-Cochleostomy

AAV - adeno-associated virus
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