NeuroImage: Clinical 23 (2019) 101899

Contents lists available at ScienceDirect

NeuroImage: Clinical Neurolmage:
CLINICAL

journal homepage: www.elsevier.com/locate/ynicl ==

Disrupted structural connectivity of fronto-deep gray matter pathways in R

Check for

progressive supranuclear palsy

Alexandra Abos®, Barbara Segura™”, Hugo C. Baggio®, Anna Campabadal”, Carme Uribe?,

Alicia Garrido®, Ana Camara®, Esteban Mufioz™““, Francesc Valldeoriola
Maria Jose Marti™“?, Carme Junque™™", Yaroslau Compta

b,c,d
>
b,C,d, *

@ Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona.Barcelona, Catalonia, Spain

b Centro de Investigacion Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clinic de Barcelona. Barcelona, Catalonia, Spain
© Movement Disorders Unit, Neurology Service, Hospital Clinic de Barcelona, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
9 Institute of Biomedical Research August Pi i Sunyer (IDIBAPS). Barcelona, Catalonia, Spain

ARTICLE INFO

Keywords:

Progressive supranuclear palsy
Structural connectivity
Tractography

Graph theory

ABSTRACT

Background: Structural connectivity is a promising methodology to detect patterns of neural network dysfunc-
tion in neurodegenerative diseases. This approach has not been tested in progressive supranuclear palsy (PSP).
Objectives: The aim of this study is reconstructing the structural connectome to characterize and detect the
pathways of degeneration in PSP patients compared with healthy controls and their correlation with clinical
features. The second objective is to assess the potential of structural connectivity measures to distinguish be-
tween PSP patients and healthy controls at the single-subject level.

Methods: Twenty healthy controls and 19 PSP patients underwent diffusion-weighted MRI with a 3T scanner.
Structural connectivity, represented by number of streamlines, was derived from probabilistic tractography.
Global and local network metrics were calculated based on graph theory.

Results: Reduced numbers of streamlines were predominantly found in connections between frontal areas and
deep gray matter (DGM) structures in PSP compared with controls. Significant changes in structural connectivity
correlated with clinical features in PSP patients. An abnormal small-world architecture was detected in the
subnetwork comprising the frontal lobe and DGM structures in PSP patients. The classification procedure
achieved an overall accuracy of 82.23% with 94.74% sensitivity and 70% specificity.

Conclusion: Our findings suggest that modelling the brain as a structural connectome is a useful method to detect
changes in the organization and topology of white matter tracts in PSP patients. Secondly, measures of structural
connectivity have the potential to correctly discriminate between PSP patients and healthy controls.

1. Introduction

midbrain, the middle and superior cerebellar peduncles (Price et al.,
2004; Quattrone et al., 2008) and of deep gray matter structures, in-

Progressive supranuclear palsy (PSP) is a tauopathy characterized
by a complex and heterogenic clinical presentation (Armstrong, 2018).
In classical form (Richardson's syndrome), gait difficulty and falls are
the most common initial manifestation and, as the disease progresses,
other neurologic features appear, including dysphagia and dysarthria,
eye movement abnormalities, parkinsonism and frontal cognitive dys-
function (Boxer et al., 2017).

Structural radiological features in PSP include atrophy of the

cluding the caudate, thalamus, putamen and hippocampus, and brain-
stem (Looi et al., 2011; Saini et al., 2013; Dabrowska et al., 2015).
Additionally, frontal cortical atrophy has also been consistently found
(Cordato et al., 2000; Cordato et al., 2002; Brenneis et al., 2004). In line
with the aforementioned, it has been hypothesized that clinical mani-
festations in PSP might result from the degeneration of deep gray
matter structures, consequently disrupting cortico-subcortical brain
circuits (Cummings, 1993; Litvan et al., 1996b; Cordato et al., 2005).
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Diffusion-weighted MRI (DWI) is a widely used technique to char-
acterize the integrity of white matter (WM) tracts. In PSP, WM ab-
normalities have been predominantly found in the superior longitudinal
fasciculus, corpus callosum and superior and middle cerebellar ped-
uncles (Padovani et al., 2006; Whitwell et al., 2011a, 2011b; Surova
et al., 2013, 2015; Agosta et al., 2014; Worker et al., 2014), along with
deep gray matter structure involvement (Padovani et al., 2006; Wang
et al., 2010; Whitwell et al., 2011a; Tsukamoto et al., 2012; Surova
et al., 2015). Some studies also reported the contribution of WM al-
terations to clinical disease severity as well as performance in cognitive
tests (Agosta et al., 2014; Surova et al., 2015; Wang et al., 2010;
Whitwell et al., 2011b; Worker et al., 2014).

Tractography is an advanced DWI modality that allows re-
constructing white matter fiber pathways of the brain and quantifying
the local fiber density. The combination of tractography with graph
theory has led to promising applications, as it can be used to describe
the reconstructed structural brain connectome - i.e., a comprehensive
description of the structural connections between brain regions
(Jeurissen et al., 2017) — as a complex network. This allows describing
brain network regarding characteristics such as integration and segre-
gation using global and local graph theory metrics (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010). These summary metrics, in
turn, allow explaining functionalities of the brain that are not attribu-
table to individual brain regions but rather emerge from the network as
a whole (van den Heuvel and Sporns, 2013).

As far as we know, there is not published work in terms of char-
acterizing PSP connectivity patterns by means of tractography and
graph theory. In the present study, we reconstructed the structural
connectome to detect the pathways of degeneration in PSP compared
with healthy controls and their correlation with clinical features. Our
hypothesis is that structural connectivity between cortical and deep
gray matter structures is predominantly affected in PSP and that it
correlates with characteristic clinical features of the disease.
Furthermore, we assessed the potential discriminant ability of struc-
tural connectivity. We hypothesize that the rich information derived
from the structural connectome has potential for distinguishing PSP
patients from healthy controls with high accuracy. This will need to be
further validated in larger cohorts encompassing the different PSP
phenotypes.

2. Methods
2.1. Participants

Twenty-three probable PSP patients were recruited from the
Parkinson's Disease and Movement Disorders Unit, Hospital Clinic de
Barcelona. The inclusion criterion for PSP patients was the fulfillment
of the NINDS-SPSP diagnostic criteria (Litvan et al., 1996a). The MDS
PSP criteria (Hoglinger et al., 2017) were retrospectively applied con-
firming that all patients also fulfilled them. The phenotype of each
patient was also identified: 17 PSP presenting Richardson's syndrome
(PSP-RS), 4 PSP with progressive gait freezing (PSP-PGF), 1 PSP re-
sembling idiopathic Parkinson's disease (PSP-p) and 1 PSP presenting
corticobasal syndrome (PSP-CBS). Twenty healthy controls (HC) mat-
ched by age, gender and years of education to PSP patients were re-
cruited from patients' spouses or friends who volunteered to participate
in the study and from the Institut de 1'Envelliment, Universitat Au-
tonoma de Barcelona.

Exclusion criteria consisted of: [1] pathological MRI findings other
than mild white matter (WM) hyperintensities or suggestive of alter-
native diagnoses in patients, [2] MRI movement artifacts, [3] sig-
nificant neurological, systemic or psychiatric comorbidity and [4] Mini-
Mental State Examination scores < 25 or dementia in healthy partici-
pants.

Two PSP patients were excluded for excessive movement during the
MR scan. One PSP patient was excluded for MR artifacts and another
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Table 1
Sociodemographic and clinical characteristics by group.
HC(n=20) PSP(n=19) Stat/p
Age 73.65 (5.7) 74.79 (7.4) T = 0.543/p = .910
Years of education 9.9 (3.7) 7.4 (4.3) T = 1.648/p = .120
Sex (male/female) 10/10 12/7 x* = 0.686/p = .408
MMSE 29.05 (1.1) 23.19 (4.67) T =5.437/p < .001.
Years of evolution - 4.16 (2.03) -
(yrs.)
H&Y (1:2:3:4:5) - 0:1:8:5:5 -
PSPRS - 37.42 -
(10.08)
FAB ... - 10.29 (2.67) -

HC: healthy controls; PSP: Progressive supranuclear palsy patient group;
MMSE: Mini-mental state examination; H&Y: Hoehn and Yahr scale; PSPRS:
Progressive Supranuclear Palsy Rating Scale; FAB: Frontal Assessment Battery
* refers to significant results; Stats refers to Student's t-test (T) or Pearson's
chi-square (XZ).
** PSP patients with FAB scale n = 14.

patient for a brain lesion in the right hemisphere. The final sample
therefore consisted of 20 HC and 19 PSP patients (15 PSP-RS, 2 PSP-
PGF, 1 PSP-p and 1 PSP-CBS). Sociodemographic and clinical char-
acteristics of the groups are shown in Table 1. Concretely, from the 4
non PSP-RS patients, 2 started as an atypical phenotype (PSP-p and
PSP-PGF) but progressed to a more richardsonian phenotype at follow-
up. Given that most patients were PSP-RS, differences between phe-
notypes could not be considered in the main analyses. However, com-
plementarily, we performed additional connectivity and classification
analyses considering only PSP patients with Richardson's phenotype.

Motor disease severity in PSP patients was evaluated using the
Hoehn and Yahr (H&Y) and the PSP Rating Scale (PSPRS) (Hoehn and
Yahr, 1967, Golbe and Ohman-Strickland, 2007) and executive dys-
function was assessed with the Frontal Assessment Battery (FAB)
(Dubois et al., 2000). The study was approved by the Ethics Committee
of the University of Barcelona and the Hospital Clinic (IRBO0003099
and HCB/2015/0798, respectively). All participants provided written
informed consent to participate after full explanation of the procedures
involved.

2.2. MRI acquisition

MRI data were acquired with a 3T scanner (MAGNETOM Trio,
Siemens, Germany). The scanning protocol included high-resolution 3-
dimensional T1-weighted images acquired in the sagittal plane
(TR = 2300 ms, TE = 2.98 ms, TI = 900 ms, 240 slices,
FOV = 256 mm; 1 mm isotropic voxel), two sets of single band spin-
echo diffusion weighted images in the axial plane with opposite
(anterior-posterior and posterior-anterior) phase encoding directions
(TR = 7700 ms, TE = 89 ms, FOV = 244 mm; 2mm isotropic voxel;
number of directions = 30, b-value = 1000s/mm?, b, value = 0s/
mm?) and a T2-weighted axial FLAIR sequence (TR = 9000ms,
TE = 96 ms).

2.3. MRI preprocessing

Structural MRI preprocessing was performed using the automated
FreeSurfer pipeline (version 5.1; available at: https://surfer.nmr.mgh.
harvard.edu/). Independent steps were performed: removal of non-
brain tissue, automated Talairach transformation, intensity normal-
ization (Sled et al., 1998), tessellation of the gray matter/white matter
boundary, automated topology correction (Segonne et al., 2007), and
accurate surface deformation to optimally place the gray matter/white
matter and gray matter/cerebrospinal fluid boundaries (Fischl and
Dale, 2000). The output of each step was visually inspected to guar-
antee correct and accurate preprocessing. The cerebral cortex was
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parcellated into gyral and sulcal structures allowing the calculation of
surface area measures and deep gray matter volumes were obtained
from the automated FreeSurfer segmentation step (Filipek et al., 1994;
Seidman et al., 1997; Fischl and Dale, 2000).

DWI images were preprocessed with FSL (version 5.08, available at:
https://fsl.fmrib.ox.ac.uk/fsl), concretely using the FDT (FMRIB's
Diffusion Toolbox), a toolbox that includes tools for data processing,
local diffusion modelling and tractography (Jbabdi et al., 2012). Visual
inspection was initially performed to identify motion-related and in-
tensity artifacts in the DWI images. The preprocessing steps included
brain extraction using BET, susceptibility-induced distortion correction
using topup, and eddy-current distortion and subject motion correction
with eddy. After preprocessing, images were thoroughly inspected to
guarantee their quality.

2.4. Regions of interest

Sixty-eight cortical regions and 18 deep gray matter (DGM) struc-
tures derived from the Desikan-Killiany Atlas (Desikan et al., 2006) and
the automated FreeSurfer segmentation atlas (Filipek et al., 1994;
Seidman et al., 1997; Fischl and Dale, 2000) were selected as regions of
interest (ROIs). Supplementary Tables 1A and 1B show the list of cor-
tical and deep gray matter ROIs, respectively. Additionally, the volu-
metric information of each subcortical ROI was extracted, which is
often used as an atrophy marker.

In order to use these ROIs as seeds for the tractography analysis,
they were linearly registered from native structural space to native
diffusion space with FSL's Flirt (Jenkinson and Smith, 2001; Jenkinson
et al., 2002). To ensure that ROI masks did not overlap with each other
after registration due to resample blur, each voxel was uniquely as-
signed to the mask for which it had the highest value, i.e., to which it
had the highest probability of membership.

2.5. Tract-based spatial statistics

Voxel-wise statistical analysis of FA was carried out using TBSS
(Tract-Based Spatial Statistics)(Smith et al., 2006). All subjects' FA data
were aligned into a common space and then a mean FA image was
calculated and thinned to generate a mean FA skeleton, representing
the centers of all white matter tracts common to the group. Each sub-
ject's FA maps was then projected onto this skeleton and the resulting
FA skeleton images were fed into a general lineal model. The same steps
were employed to obtain the MD maps.

2.6. Brain network computation

The probability distribution of fiber directions in each voxel was
calculated with Bedpostx (Behrens et al., 2007). Bedpostx runs Markov
Chain Monte Carlo sampling to build up distributions on diffusion
parameters at each voxel. Probtrackx (Behrens et al., 2007) was used to
estimate probabilistic connectivity between seeds, as it repeatedly
samples from the voxel-wise principal diffusion direction probability
distribution calculated in Bedpostx, creating a new streamline at each
iteration (Zhan et al., 2015). Five-thousand samples were generated for
each seed mask, building a distribution on the likely tract location and
path. A reconstructed streamline, or “fiber”, was considered to connect
two ROIs if it intersected both. The number of reconstructed stream-
lines (NOS) between each pair of ROIs was taken as the strength of
structural connectivity between these regions. This process was re-
peated for all cortical and deep gray matter ROI pairs, to compute an
86 X 86 connectivity matrix. To reduce the risk of false-positive con-
nections, streamlines intersecting fewer than two regions were ignored,
and only connections between pairs of regions that were detected in at
least 50% of the individuals were considered (Zalesky et al., 2016).
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2.7. Characterization of structural connectivity

In order to test for intergroup differences in interregional NOS be-
tween PSP and HC, we used TFNBS (Baggio et al., 2018), which per-
forms statistical inference on brain graphs. This approach combines
network-based statistics (Zalesky et al., 2010), frequently used for sta-
tistical analysis of brain graphs, and threshold-free cluster enhance-
ment, a common method in voxel-wise statistical inference (Smith and
Nichols, 2009). One of the main characteristics of TFNBS is that it al-
lows generating edge-wise significance values that can be used to select
relevant connectivity features. Control of the false discovery rate to 5%
(FDR) was used to correct for multiple comparisons.

2.8. Graph theory computation

The analysis of structural connectivity was complemented with to-
pological information derived from graph theory, allowing a descrip-
tion of global (whole-brain) and local (nodal) properties of the network
(Bullmore and Sporns, 2009; Rubinov and Sporns, 2010). Our network
consisted of 86 nodes (cortical and deep gray matter ROIs) connected to
each other by a set of edges - i.e., the number of streamlines between
them. The Brain Connectivity Toolbox (BCT) was used to extract the
topological parameters, including global and local clustering coeffi-
cient, global and local node degree, small worldness, path length, local
efficiency and betweenness centrality (See Rubinov and Sporns, 2010
for detailed definitions and calculations of the graph metrics included
in this work).

2.9. Basic statistical analyses and clinical correlates

Intergroup comparisons of demographic, clinical, volumetric and
connectivity variables were performed with the general linear model
using in-house MATLAB scripts. Statistical significance was established
through the Monte Carlo simulations with 10,000 permutations. Two-
tailed p-values were calculated as the proportion of values in the null
distribution more extreme than those observed in the actual model.
FDR was then used to control for multiple comparisons. Given that the
number of streamlines have a wide distribution depending on the tracts,
Z-scores were calculated. Spearman correlations between clinical and
imaging variables were evaluated using SPSS-24 (2016; Armonk, NY:
IBM Corp.).

2.10. Classification procedure

Beyond testing for intergroup differences in structural connectivity,
we were interested in assessing the usefulness of these connectivity
measures in discriminating between PSP patients and HC using a su-
pervised learning algorithm.

In order to select the most important features in an unbiased
fashion, a mixed feature selection method was used for dimensionality
reduction. A first set of features was selected with an intergroup com-
parison with TFNBS; i.e., connections whose p values were smaller than
the significance threshold (0.05) were kept. Then, a based recursive
feature elimination (RFE) method was adopted to select the optimal
features to be introduced into the classifier. For the classification pro-
cedure, we used a logistic regression (LR) with L2 regularization, per-
formed with the LR function from scikit-learn (http://scikit-learn.org),
implemented in Python. LR parameters were optimized by cross-vali-
dated grid-search over a parameter grid. In order to avoid circularity in
the classification, both feature selection and classification were im-
plemented within a leave-one-out cross-validation (LOOCV). LOOCV
takes one subject for testing whereas the remaining N-1 subjects are
used for training the feature selection and classification algorithm. This
method prevents overfitting, enhances the generalization power of the
classifier, and returns an almost unbiased estimate of the probability of
test error of the classification as the test subject is not included when
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selecting significant features or defining parameters in any training step
(Luntz, 1969).

To evaluate the performance of the classification procedure, we
calculated its accuracy (number of subjects correctly classified as PSP
patients or HC divided by total number of subjects), sensitivity (number
of PSP patients correctly classified divided by the total number of PSP
patients), and specificity (number of HC correctly classified divided by
the total number of HC).

3. Results
3.1. Subjects

Table 1 shows the sociodemographic and clinical characteristics of
the groups. No significant intergroup differences were observed for age,
gender and years of education (p = 0.910, p = 0.408 and p = 0.120,
respectively). A significant effect was found between groups in MMSE
scores (p < 0.001).

3.2. Structural connectivity analysis

Fig. 1 shows the 41 connections with significantly different number

A
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of streamlines (NOS) between groups (all p < 0.05, FDR corrected). To
test whether these edges displayed a predominant intra/inter-regional
distribution or whether they were homogeneously distributed across
the brain, we labeled them according to the regions connected (frontal,
temporal, cingulate, parietal, occipital and deep gray matter (DGM)
structures; see Supplementary Tables 2 and 3). From the 41 connec-
tions, 10 (24.4%) were found to be cortico-cortical tracts, 28 (68.3%)
were cortico-DGM tracts and three (7.3%) DGM-DGM tracts (see Fig. 2
for further details). Concretely, fronto-DGM connections were pre-
dominantly reduced in PSP compared with healthy controls. No con-
nections showed significantly higher NOS in PSP patients compared
with HC.

3.3. Network graph metrics

As shown in Table 2 and Fig. 3, no group effect was found in global
graph parameters when considering the whole-brain network.

At the node-level (Table 2), reduced nodal degree was observed in
PSP patients compared with healthy controls in the bilateral hippo-
campus, the right frontal pole, and the right pars opercularis and left
pars triangularis of the inferior frontal gyrus. For the sake of simplicity,
given that many ROIs are considered, we only presented the regions

Fig. 1. Schematic representation of the 41 structural connections with reduced structural connectivity strength in progressive supranuclear palsy patients compared

with healthy controls using threshold-free network based statistics.

A. Connectivity differences between groups in cortico-cortical tracts (p < 0.05, FDR corrected). B. Connectivity differences between groups in cortico-deep gray
matter tracts (p < 0.05, FDR corrected). C. Connectivity differences between groups in deep gray matter-deep gray matter tracts (p < 0.05, FDR corrected).

Connectivity figures were drawn using Surf Ice (www.nitrc.org).
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41 Whole-brain tracts

Cortico-cortical tracts
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Fig. 2. Comparison of mean connectivity between
progressive supranuclear palsy patients and healthy

1.5 1.5 controls.
116 p<0.001 9. p<0.001 Plots illustrate the dlstrlbu.tlon of the measures of
average number of streamlines (NOS) between cor-
0.5 0.5 tical and deep gray matter connections derived from
the 41 significantly reduced tracts found in PSP pa-
0.0 0.0 tients using threshold-free network based statistics
-0.5 -0.5 (TENBS). NOS values were Z-transformed to allow
better comparability. Significance of intergroup
-1.0 -1.0 analyses (p < 0.05, FDR corrected) are shown. HC:
-1.5 -1.5 healthy controls; PSP: Progressive Supranuclear

HC PSP HC PSP Palsy group; DGM: deep gray matter structures.

Cortico-DGM tracts

DGM-DGM tracts

1.5

2.0
15 p<0.001 p=0.001
0.5 1.0
0.0 0.0
-0.5
-1.0
-1.0
15 -2.0
HC PSP HC PSP
Table 2A
Whole-brain global graph measures by group.
HC (n = 20) PSP (n = 19) Stat/ p

Modularity
Clustering coefficient
Nodal degree

Small Worldness
Path Length

0.5197 (0.013)
1.4638 (0.103)
68.295 (2.367)
1.301 (0.083)

1.1247 (0.016)

0.5205 (0.158)
1.5223 (0.122)
66.668 (2.960)
1.3446 (0.10)

1.1318 (0.015)

T = 0.17697/p = .8536
T = 1.62437/p = .2020
T =1.09038/p = .2025
T = 1.48381/p = .2025
T = 1.39841/p = .2025

HC: healthy controls; PSP: Progressive supranuclear palsy patient group; Stats refers to Student's t-test (T).

and metrics found significant in local graph metrics.

Given the predominant reduced NOS in frontal and DGM connec-
tions previously found, we decided to complementarily study the
fronto-DGM network. In this subnetwork, PSP patients showed a re-
duced global degree (GD) and an increase in global clustering (GC) and
small worldness (SW) (Table 3, Fig. 4). Locally, reduced nodal degree
was found in the bilateral hippocampus, the amygdala, the pallidum,
the putamen, the nucleus accumbens, the thalamus, the ventral dien-
cephalon and the cerebellum in the right hemisphere, and in cortical
areas including the pars opercularis and pars triangularis of the inferior
frontal gyrus, the frontal pole, the right precentral gyrus and the left
rostral middle frontal gyrus (Table 3). Additionally, the other subnet-
works — temporal-DGM, parietal-DGM and occipital-DGM - were also
evaluated, showing no significant intergroup effect (see Supplementary
tables 4).

Plots illustrate the distribution of the nodal degree, clustering
coefficient, path length, small worldness and modularity in the fronto-
deep gray matter subnetwork between groups. Significance of inter-
group analyses (p < 0.05, FDR corrected) are shown. HC: healthy
controls; PSP: progressive supranuclear palsy group.

3.4. TBSS analysis

TBSS showed abnormal values of FA and MD in PSP patients com-
pared with HC. Concretely, reduced FA was predominantly detected in
the corpus callosum, cerebellar peduncles, bilateral anterior and su-
perior corona radiata, bilateral superior longitudinal fasciculus and

bilateral posterior thalamic radiation (Supplementary fig. 1A).
Complementary, increased MD was found in the corpus callosum,
fornix, bilateral anterior and superior corona radiata and bilateral
posterior thalamic radiation (Supplementary fig. 1B). No regions
showed decreased FA or increased MD in HC compared with PSP pa-
tients.

3.5. Correlation analyses

As described above, decreased structural connectivity was found in
PSP patients compared with healthy controls. To assess the clinical
relevance of this finding, significant results were then correlated with
frontal assessment battery (FAB) scores and the PSP Rating scale
(PSPRS) in the PSP group.

The mean NOS of the 41 significant connections identified through
TFNBS negatively correlated with the PSPRS scale (r = —0.685,
p = 0.001). We then separated the mean NOS in cortico-cortical tracts,
cortico-DGM tracts and DGM-DGM tracts to assess the presence of
specific effects in interregional connections. The correlation between
structural connectivity and PSPRS scale was found in cortico-DGM
tracts and DGM-DGM tracts (respectively, r = —0.626, p = 0.002 and
r = —0.557, p = 0.007). Mean NOS in DGM-DGM tracts significantly
correlated with years of evolution (r = —0.433, p = 0.032). The cor-
relation between DGM-DGM NOS and PSPRS scale remained significant
when including years of evolution as a covariate (r = —0.498,
p = 0.018). As the strongest effects seemed to be predominantly driven
by cortico-DGM tracts and PSP is known to cause frontal lobe atrophy,
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Nodal degree

s p=0.2025
70
65
60
55

HC PSP

Path Length

1.28
3 58 p=0.2025

1.24

1.22

1.20

1.18

1.16

HC PSP

Modularity
D.58 p=0.853

6
0.56
0.54
0.52
0.50

HC PSP
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Clustering coefficient

1.8 p=0.2020
1.6
1.4
1.2
1.0
HC PSP

Small worldness

1.6

is p=0.2025
1.4
1.3
1.2
1.1
1.0
HC PSP

Fig. 3. Comparison of whole-brain global graph metrics between progressive supranuclear palsy patients and healthy controls.
Plots illustrate the distribution of the nodal degree, clustering coefficient, path length, small worldness and modularity in the whole-brain network between groups.
Significance of intergroup analyses (p < 0.05, FDR corrected) are shown. HC: healthy controls; PSP: progressive supranuclear palsy group.

Table 2B
Significant whole-brain local graph measures by group.
HC (n = 20) PSP (n = 19) Stat/ p
Local nodal degree
Left Pars Triangularis 68.15 (3.631) 62.89 (6.35) T = 3.193/p = .0378..

Right Pars Opercularis ~ 55.7 (3.31) 48.74 (6.682) T = 4.156/p = .0086..

Right Frontal pole 53.25 (2.845)  45.26 (7.385) T = 4.500/p = .0115,
Left Hippocampus 81.05 (2.064)  76.63 (4.153) T = 4.241/p = .0086..
Right Hippocampus 79.65 (1.496)  76.16 (5.315) T = 2.825/p = .0378.

HC: healthy controls; PSP: Progressive supranuclear palsy patient group
* significant FDR corrected results; Stats refers to Student's t-test (T).

we then focused on fronto-DGM tracts. In this case, we found a corre-
lation between these tracts and both the PSPRS scale and FAB scores
(r = —0.546, p = 0.008 and r = 0.543, p = 0.022, respectively). A
summary of these results can be found in Fig. 5. Additionally, clinical
parameters were also correlated with whole-brain and fronto-DGM
graph metrics, but no significant results were observed.

3.6. DGM volume analysis

Volume reductions were found in eight DGM structures, including
the bilateral putamen, pallidum, thalamus, nucleus accumbens, ventral
diencephalon, cerebellum and brainstem (Supplementary table 5).
Furthermore, significant correlation results were detected between
PSPRS and brainstem (r = —0.67 and p = .001) and right ventral
diencephalon (r = —0.56, p = .008) volumes, and between FAB and
bilateral hippocampus (r = 0.56, p = .023; r = 0.62, p = .012) and left
nucleus accumbens (r = 0.87, p < .001) volumes.

3.7. Classification procedure results

The LR classification algorithm correctly predicted overall group
membership with an accuracy of 82.23%, with 94.74% sensitivity and
70% specificity. As the leave-one-out cross-validation (LOOCV) scheme
was used, the features selected in each iteration could differ slightly.
The 41 structural connections that showed significant group effects
when using the whole sample were obtained in > 85% of the iterations.
Therefore, these connections seem to be stable in the feature selection
procedure. Additionally, considering PSP subtypes, the only patient
wrongly classified exhibited mixed PSP-PGF/PSP-RS characteristics.
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Table 3A
Global graph measures in the fronto-DGM network by group.

NeuroImage: Clinical 23 (2019) 101899

HC (n = 20)

PSP (n = 19) Stat/ p

Modularity
Clustering coefficient
Nodal degree

Small Worldness
Path Length

0.4826 (0.021)
1.608 (0.045)
33.862 (0.793)
1.087 (0.037)
1.068 (0.017)

0.481 (0.025)
1.210 (0.072)
32.750 (1.186)
1.129 (0.059)
1.0718 (0.023)

T = 0.23688/p = .8116
T = 2.57015/p = .014..
T = 3.45983/p = .005..
T = 2.68864/p = .014..
T = 0.585108/p = .69725

HC: healthy controls; PSP: Progressive supranuclear palsy patient group; DGM: Deep gray matter structures

* refers to FDR corrected results; Stats refers to Student's t-test (T).
3.8. PSP-RS subtype results
Results, shown as Supplementary data, revealed predominance of
cortico-DGM reductions in PSP-RS patients, correlating with PSPRS
scores, and reductions of global degree in the fronto-DGM subnetwork.

Furthermore, the classification procedure achieved an overall accuracy
of 85%, with 100% sensitivity and 75% specificity.

4. Discussion

In this work, reduced structural connectivity was observed in PSP
patients compared with HC. Concretely, reductions were predominantly

Nodal degree

56 =0.005%
35
34
33
32

31
30

HC PSP

Path Length

1.16
114 p=0.697
1.12
1,10
1.08
1.06
1.04
HC PSP

Modularity
T p=0.8116
0.53
0.50
0.47
0.44
HC PSP

detected in tracts linking frontal lobe regions and DGM structures,
correlating with clinical scales of PSP. Furthermore, we found evidence
that measures of structural connectivity might be useful to differentiate
between PSP patients and HC with satisfactory accuracy.

Diffusion tensor imaging has been widely used to explore diffusion
changes in PSP. When evaluating the integrity of white matter tracts,
previous studies have measured different diffusion tensor-derived
parameters, such as fractional anisotropy (FA) and mean diffusivity
(MD), in specific regions of interest, or have performed whole-brain
analyses with tract based statistics (TBSS). Diffusion abnormalities were
predominantly reported in white matter tracts such as the corpus cal-
losum, the fornix, the corona radiata, anterior and posterior thalamic

Clustering coefficient

15 p=0.014*
1.4
1.3
1.1
HC PSP

Small worldness

1.30

. p=0.014*
1.20
1.15
1.10
1.05
1.00
HC PSP

Fig. 4. Comparison of global graph metrics between progressive supranuclear palsy patients and healthy controls in the fronto-deep gray matter subnetwork.
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Table 3B
Significant local graph measures in the fronto-DGM network by group.
HC (n = 20) PSP (n = 19) Stat/ p

Local nodal degree

Left Frontal Pole 26.75 (0.91) 25.26 (2.684) T = 2.341/p = .0337.,
Right Frontal Pole 27.2 (0.834) 25.79 (1.584) T = 3.506/p = .0080..
Left Pars Opercularis 29.75 (1.943) 27.21 (2.226) T = 3.801/p = .0080..
Right Pars Opercularis 28.6 (1.536) 25.84 (3.354) T = 3.330/p = .0060..
Left Pars Triangularis 34.15 (1.694) 31.37 (3.32) T = 3.321/p = .0160..
Right Pars Triangularis 35 (1.892) 32.37 (3.499) T = 2.942/p = .0234..
Left Rostral Middle Frontal 36.75 (1.743) 34.16 (3.219) T = 3.149/p = .0160..
Right Precentral 29.9 (1.119) 28.16 (1.642) T = 3.889/p = .0060..
Left Hippocampus 36.05 (1.05) 33.37 (2.833) T = 3.959/p = .0060..
Right Hippocampus 35.65 (0.671) 33.47 (2.435) T = 3.849/p = .0060..
Right Amygdala 32.75 (1.446) 30.84 (2.387) T = 3.037/p = .0142,,
Right Pallidum 38.85 (0.366) 38.26 (1.147) T = 2.175/p = .0395..
Right Putamen 38.95 (0.224) 38.63 (0.496) T = 2.609/p = .0357.;
Right Nucleus Accumbens 27.95 (1.05) 26.63 (1.892) T = 2.709/p = .0234.,
Right VentralDC 39 (0) 38.63 (0.684) T = 2.411/p = .0090.,
Right Cerebellum 35.95 (0.887) 33.79 (2.72) T = 3.371/p = .0090..

HC: healthy controls; PSP: Progressive supranuclear palsy patient group
* significant FDR corrected results; Stats refers to Student's t-test (T).

radiation, the superior and inferior longitudinal fasciculus, the cin-
gulum and the corticospinal tracts (Padovani et al., 2006; Whitwell
et al., 2011a, 2011b; Surova et al., 2013, 2015; Agosta et al., 2014;
Worker et al., 2014), and in deep gray matter structures, including the
midbrain, the thalamus, the hippocampus and the caudate nucleus
(Padovani et al., 2006; Wang et al., 2010; Whitwell et al., 2011a;
Tsukamoto et al., 2012; Surova et al., 2015). Few studies have used
tractography to study white matter tracts in PSP (Agosta et al., 2014;
Surova et al., 2015; Surova et al., 2013). In these analyses, tracts of
interest were derived from the probability maps and then diffusion
measures were extracted from them. Abnormal FA and MD values were
found in PSP patients compared with healthy controls, indicating that
white matter damage in these tracts was specific of PSP pathology.

In our study, we used tractography to reconstruct the structural
connectome. To our knowledge, this is the first study characterizing
white matter abnormalities in PSP through structural connectivity de-
rived from tractography. When studying the brain by only describing its
constituent parts, we are missing a key feature: how the different ele-
ments of the system (e.g. brain regions) interact. Abnormal interactions
between brain regions have been shown to be associated with many
neurodegenerative disorders (Sporns, 2013). Building the structural
connectome allows assessing the disruption effect of neurodegenerative
diseases on specific pathways and regions of the network in a way that
is closer to our understanding of brain organization (Griffa et al., 2013).
In the current work, we observed significant structural connectivity
alterations in PSP. Decreased NOS in PSP patients compared with HC
were predominantly found in cortico-DGM connections linking frontal
areas to the basal ganglia, the ventral diencephalon, the thalamus, the
hippocampus and the cerebellum. Abnormal inter and intrahemispheric
connections were observed, with a slight predominance in interhemi-
spheric streamlines. No regions showed reductions in structural con-
nectivity in HC compared with PSP patients. These findings were also
found when considering only PSP-RS patients.

It is worth noting that the predominant reduction of NOS between
frontal and DGM structures was found using a whole-brain approach,
with no a priori selection of tracts. This highlights the importance of
fronto-DGM pathways disruption in the neuropathological basis and
symptomatology of the disease. Furthermore, it relates not only to
frontal areas and DGM structures but also to their interaction
(Cummings, 1993; Litvan et al., 1996b; Cordato et al., 2005). The
clinical manifestations of PSP are closely linked to defects in this cir-
cuitry, including apathy, impulsivity and frontal behavioral dis-
turbances (Cordato et al., 2005; Bonelli and Cummings, 2007). Previous

studies have observed the relation between frontal disturbances (mostly
evaluated with the Frontal Assessment Battery (FAB) or the Frontal
Behavioral Inventory (FBI)) and the degeneration of specific white
matter tracts and atrophy in subregions of the frontal cortex and DGM
structures (Cordato et al., 2005; Whitwell et al., 2011b; Agosta et al.,
2014). Severity of the disease as assessed with the PSPRS scale has also
been correlated with white matter abnormalities in PSP-related tracts
and structures, such as superior and inferior longitudinal fasciculus, the
corpus callosum, the thalamus and the cerebellar peduncles (Whitwell
et al., 2011a; Agosta et al., 2014; Surova et al., 2015). Our results are in
agreement with these findings, as we found correlations between FAB
and PSPRS scores and fronto-DGM structural connectivity in PSP pa-
tients, which include specific structures in this pathology. As far as we
know, the current work is the first study linking changes in structural
connectivity assessed through tractography to clinical manifestations in
PSP.

Given the volumetric results, it can be hypothesized that the re-
duced connectivity involving some of these structures and their corre-
lation with clinical features might be explained by their atrophy. Based
on these findings, it is difficult to speculate whether the loss of white
matter structural connectivity involving DGM regions is secondary to
primary gray matter damage and subsequent axonal degeneration, or
whether the disease process involves white matter abnormalities di-
rectly. However, reduced connectivity between frontal regions and the
caudate was also found, along with reduced node degree in the amyg-
dala, both structures not showing volumetric atrophy. Thus, although
DGM structures are clearly affected in PSP, structural connectivity can
detect changes in regions not presenting detectable atrophy.
Furthermore, abnormal FA and MD measures were predominantly ob-
served in the cerebellar peduncles, corpus callosum, bilateral anterior
and superior corona radiata, bilateral superior longitudinal fasciculus
and bilateral posterior thalamic radiation, in agreement with previous
studies (Padovani et al., 2006; Whitwell et al., 2011a, 2011b; Surova
et al., 2013, 2015; Agosta et al., 2014; Worker et al., 2014). We hy-
pothesized that the connectivity reductions found in this work might be
reflecting the loss of integrity in white matter tracts, along with sub-
cortical GM atrophy in PSP patients.

Characterizing the structural connectome through graph theory
provides information about the organization of the network (Griffa
et al., 2013). When considering the whole brain, a tendency of higher
global clustering coefficient, path length and “small-worldness”, along
with reduced global mean degree could be observed in PSP patients'
networks, although no global metric reached statistical significance. At
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Fig. 5. Relationship between structural connectivity and clinical features in progressive supranuclear palsy patients.

A. Significant correlation between the mean NOS Z-score from the 41 reduced connections in PSP patients and the PSPRS scale. B. Significant correlation between the
mean NOS Z-score from the cortico-DGM (left) and the DGM-DGM (right) reduced connections in PSP patients and the PSPRS scale. C. B. Significant correlation
between the mean NOS Z-score from the fronto-DGM reduced connections in PSP patients and the PSPRS (left) and FAB (right) scales. NOS: number of streamlines;

PSP: progressive supranuclear palsy group; DGM: deep gray matter structures.

the nodal level, reductions of nodal degree were found in the hippo-
campus, the frontal pole and the pars opercularis and triangularis of the
inferior frontal gyrus. As previously mentioned, the involvement of
frontal areas has been recurrently described in previous studies and it is
related with the clinical manifestations of the disease. The hippocampus
also seems to play a relevant role in PSP, as it was found to be involved
in both reduced connections and abnormal whole-brain graph metrics
in PSP patients. Deposits of phosphorylated tau protein is a hallmark of
neurodegenerative tauopathies, such as PSP. Although the hippo-
campus is not primarily affected in this neuropathology, distinctive
patterns of tau deposits were observed in previous studies (Milenkovic
et al., 2014), as well as reduced volume in this structure (Saini et al.,
2013; Wang et al., 2015). We hypothesize that these findings might

explain the predominant abnormalities found in the hippocampus in
PSP patients.

Given that no major group differences were identified in global
measures, possibly due to the regional specificity of the disease-related
alterations, we decided to specifically examine the fronto-DGM sub-
network, as it seemed to be predominantly affected in PSP. In the
fronto-DGM network, PSP patients showed increased local inter-
connectedness manifested by higher measures of clustering and small-
wordness, combined with a reduction of nodal degree, specifically in
the bilateral hippocampus, the right amygdala, pallidum, putamen,
nucleus accumbens, thalamus, ventral diencephalon and cerebellum,
and in cortical areas including the pars opercularis and pars triangularis
of the inferior frontal gyrus, the frontal pole, the right precentral gyrus
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and the left rostral middle frontal gyrus. It is noteworthy that no sig-
nificant results in global or local graph metrics were found in the other
subnetworks. Therefore, these findings suggest that there might be a
predominant reorganization of the network comprising frontal and
DGM nodes in PSP patients compared with healthy controls.

The small world topology is thought to be a balance between local
specialization and global integration when networks evolved from high
complexity of dynamic behavior (Sporns et al., 2000). The alteration of
the small-world architecture driven by increased clustering coefficient
and path length has been reported in different neurological disorders,
e.g. Alzheimer's disease (He et al., 2008; Lo et al., 2010; Yao et al.,
2010), Parkinson's disease with mild cognitive impairment (Baggio
et al., 2014; Galantucci et al., 2017) and schizophrenia (Zhang et al.,
2012). In agreement with previous connectivity studies, it could be
speculated that the increment in local clustering results from short-
range connections, whereas the increased path length could imply a
reduction of long-range connectivity and consequently a less effective
communication within the pathological network in PSP patients.
However, it is important to highlight that graph metrics results in
neurodegenerative diseases are inconsistent, and that abnormal in-
creases and decreases of small-word topology have been reported. E.g.,
studies in Alzheimer's disease observed decrease of small-word to-
pology in these patients (Sanz-Arigita et al., 2010; Supekar et al., 2008),
contrarily to the increase in small-word properties found in the pre-
viously mentioned studies (He et al., 2008; Lo et al., 2010; Yao et al.,
2010). Some studies have looked into this aspect (Hallquist and Hillary,
2019; Tsai, 2018), showing that the reproducibility of network metrics
can be affected by many factors, e.g., different sample sizes, how con-
nectivity matrices are estimated (deterministic or probabilistic tracto-
graphy in structural connectivity, full or partial correlation in func-
tional connectivity), using binary or weighted matrices, the number of
nodes in the network and the different thresholds applied on the con-
nectivity matrices. These divergences in the methodology, along with
different patient characteristics, can contribute to heterogeneous re-
sults, complicating the interpretability of graph metrics.

In the last few years, features extracted from different MRI mod-
alities have been introduced into machine learning algorithms to assess
their discriminant ability at the single-patient level in parkinsonian
syndromes, commonly showing an accuracy around 80%, depending on
the disease being evaluated (Focke et al., 2011; Filippone et al., 2012;
Haller et al., 2012, 2013; Marquand et al., 2013; Nair et al., 2013;
Cherubini et al., 2014; Salvatore et al., 2014; Huppertz et al., 2016;
Péran et al., 2018; Baggio et al., 2019). Concretely, two previous studies
specifically assessed the classification performance between PSP pa-
tients and HC (Focke et al., 2011; Salvatore et al., 2014). Focke and
colleagues evaluated features from different modalities (T1, T2 and
DTI), achieving a high accuracy of 94% when using diffusion measures
from selected subcortical ROIs. Salvatore and colleagues described a
whole-brain approach similar to our study. Principal component ana-
lysis (PCA) was used to reduce feature dimensionality of T1 images. The
relevant features were then introduced into a classifier achieving an
accuracy of 88.1%. To our knowledge, our work is the first study as-
sessing the discrimination performance of structural connectivity in
atypical parkinsonian patients. In PD patients, a study by Pefia-Nogales
and colleagues (2019) evaluated the ability of longitudinal structural
connectivity to correctly distinguish PD patients from HC, obtaining an
accuracy of 83.6%. As it can be shown, our results are in agreement
with previous work using structural connectivity data as relevant fea-
tures to distinguish parkinsonian patients at the single-subject level. It
is noteworthy that only one PSP patient with mixed PSP-PGF/PSP-RS
features was wrongly classified with the machine learning approach.
We hypothesize that connectivity findings presented in this study might
not only be linked exclusively to PSP-RS subtype. This idea should be
further addressed with a larger sample inspecting possible connectivity
differences within subtypes.

Some limitations to the present study should be pointed out. First,
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the PSP patient sample is relatively small; thus, we cannot assume that
the set of structural connections identified in our study would gen-
eralize to other datasets. Future multicenter studies should be carried
out to replicate our findings. Secondly, we lack confirmation of pa-
thological diagnosis for the patients, which is the only approach that
can fully confirm the PSP diagnosis and its subtypes. For this reason, we
decided not to consider different PSP subtypes in the main analyses, as
we were not able to confirm the subtype diagnosis with post-mortem
evaluation. However, the machine learning results seems to indicate
that there are no major structural connectivity differences between
subtypes within the connections being evaluated in this study. The
complementary analysis using only PSP patients with Richardson's
syndrome showed similar findings. Nevertheless, in order to assess
whether these results are mainly driven by the PSP-RS subtype, ana-
lyses need to be replicated with a larger sample of patients also en-
compassing the atypical PSP phenotypes. Thirdly, parcellations and
tractography methodologies have a large impact on the characteristics
of the reconstructed white matter tracts. Nonetheless, reduced integrity
and atrophy of frontal regions and deep gray matter connections have
been extensively reported in PSP in previous studies, supporting the
validity of the results obtained in our work.

5. Conclusion

In this work, we demonstrated that modelling the brain as a struc-
tural connectome is a useful method to detect changes in the organi-
zation and topology of white matter tracts in PSP patients. Concretely,
we found evidence that structural connectivity between frontal regions
and deep gray matter structures is reduced in PSP patients compared
with healthy controls and that disease's severity and executive dys-
function, measured by PSPRS and FAB scales respectively, are linked to
these reductions in fronto-deep gray matter connections in PSP.
Additionally, alteration of the small-world architecture implies that the
topology of the network is altered, resulting in a less effective com-
munication within the pathological network in PSP patients.
Importantly, we showed for the first time that structural connectivity
parameters have the potential to help distinguish between PSP patients
and healthy controls at the single-subject level with high accuracy.
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