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Background: Many aspects of our lives are now digitized and connected to the internet. As a result, individuals are now
creating and collecting more personal data than ever before. This offers an unprecedented chance for human-participant
research ranging from the social sciences to precision medicine. With this potential wealth of data comes practical
problems (e.g., how to merge data streams from various sources), as well as ethical problems (e.g., how best to balance risks
and benefits when enabling personal data sharing by individuals). Results: To begin to address these problems in real time,
we present Open Humans, a community-based platform that enables personal data collections across data streams, giving
individuals more personal data access and control of sharing authorizations, and enabling academic research as well as
patient-led projects. We showcase data streams that Open Humans combines (e.g., personal genetic data, wearable activity
monitors, GPS location records, and continuous glucose monitor data), along with use cases of how the data facilitate
various projects. Conclusions: Open Humans highlights how a community-centric ecosystem can be used to aggregate
personal data from various sources, as well as how these data can be used by academic and citizen scientists through

Received: 12 November 2018; Revised: 2 May 2019; Accepted: 3 June 2019

© The Author(s) 2019. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.


http://www.oxfordjournals.org
http://orcid.org/0000-0002-9925-9623
http://orcid.org/0000-0002-1076-1423
http://orcid.org/0000-0001-8751-8918
http://orcid.org/0000-0002-7791-8149
http://orcid.org/0000-0001-6693-2319
http://orcid.org/0000-0003-0931-3698
http://orcid.org/0000-0001-6410-2995
http://orcid.org/0000-0002-0515-2957
http://orcid.org/0000-0002-7588-1418
http://orcid.org/0000-0003-1864-8609
http://orcid.org/0000-0003-0544-5925
mailto:bgreshake@gmail.com
http://orcid.org/0000-0002-9925-9623
http://orcid.org/0000-0002-9925-9623
mailto:mpball@gmail.com
http://orcid.org/0000-0003-0544-5925
http://orcid.org/0000-0003-0544-5925
http://creativecommons.org/licenses/by/4.0/

practical, iterative approaches to sharing that strive to balance considerations with participant autonomy, inclusion, and

privacy.
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Research involving human participants, from biomedical and
health research to social sciences studies, is experiencing rapid
changes. The rise of electronic records, online platforms, and
data from devices contributes to a sense that these collected
data can change how research in these fields is performed [1-
4].

Among the affected disciplines is precision medicine—which
takes behavioral, environmental, and genetic factors into ac-
count and has become a vision for health care in the United
States [5]. By taking individual parameters into account, preci-
sion medicine aims to improve health outcomes, e.g., by opti-
mizing drugs based on a patient’s genetic makeup [6, 7].

Access to large-scale data sets, along with availability of ap-
propriate methods to analyze these data [8, 9], is often described
as a major prerequisite for the success of precision medicine
[10]. Decreasing costs for large-scale, individualized analyses
such as whole-genome sequencing [11] have already helped fa-
cilitate both research in precision medicine and its adoption. In
addition, an increasing number of patients and healthy individ-
uals are collecting health-related data outside traditional health
care, e.g., through smartphones and wearable devices [12, 13] or
through direct-to-consumer (DTC) genetic testing [14].

Indeed, >12-17 million individuals have taken a DTC genetic
test [15, 16], while >25 million such tests have been purchased
[17]. Meanwhile, it is estimated that by 2020 >2 exabytes of stor-
age will be needed for health care data [18] alone. Furthermore,
data from social network sites such as Facebook and Twitter are
increasingly likely targets for medical data mining [19]. Addi-
tionally, more data are becoming available from personal medi-
cal devices, both in real time and for retrospective analyses [20].

These changes to research and medical practice bring with
them a number of challenges, including the problems of data
silos, ethical data sharing, and participant involvement. A
participant-centered approach to personal data aggregation,
sharing, and research has the potential to address these issues.
To achieve this, we created "Open Humans” as a digital ecosys-
tem designed to facilitate individual data aggregation across
data sources, granular management of data sharing, and co-
created research.

To fully realize the promises of these large personal data collec-
tions, not only in precision medicine but in all fields of research,
access to both big data and smaller data sources is needed, as is
the ability to tap into a variety of data streams and link these
data [10, 21]. Data silos can hinder the merging and reuse of
data by third parties for a number of reasons: they can be incom-
patible due to different data licenses [22] or inaccessible due to
privacy, ethical, and regulatory concerns [23-25]. For example,
the US National Human Genome Research Institute’s Database
of Genotypes and Phenotypes remains an underused resource
because of logistical and regulatory/ethical oversight challenges
for would-be users [26]. In addition to legal barriers, there are
typically technical challenges in rendering data accessible, us-

able, and/or anonymized, and a data controller typically has in-
centives to seek compensation in return for these activities.

Beyond biomedical data sets, there are data from wearable
devices, social media, and other data held by private companies,
from which data exports are often not available. In other cases
data access might be legally mandated, but the practical out-
comes are mixed or in progress [27, 28], e.g., for clinical health
data in the United States as mandated by the 1996 Health Insur-
ance Portability and Accountability Act and 2009 Health Infor-
mation Technology for Economic and Clinical Health Act (HIPAA
and HITECH Act) and for personal data in the European Union
as mandated by rights to data access and data portability in the
2016 General Data Protection Regulation (GDPR) [29, 30]. In ad-
dition, within the context of research involving human partici-
pants, data access may be recommended [31] but not legally re-
quired, and as a result is not typically provided [32]. Data porta-
bility and easy access to research data by participating individ-
uals could empower them to steer research in directions that
affect their lives and health outcomes.

While the sharing and reuse of biomedical data can potentially
transform medical care and medical research, it brings along a
number of ethical considerations [33, 34]. In the field of human
genetics, the ethics of sharing data has been extensively con-
sidered with respect to how research participants and patients
can give informed consent for studies that carry risks of genetic
discrimination, loss of privacy, and reidentification in publicly
shared data [35, 36]. Owing to access and portability issues, how-
ever, research with biomedical data is rarely driven by the indi-
viduals from whom the data originated—and as a result, such
research fails to give patients much power over how their data
can be used [37]. For example, it is now abundantly clear that
DTC genetic testing companies routinely share their customers’
deidentified (but reidentifiable) data with third parties [38]. Open
Humans seeks to be among the agents for change in this regard.
Bottom-up research initiatives have included disease- and/or
mutation-specific efforts [39, 40] and the development of plat-
forms meant to allow participants to control data sharing at
a granular level [41]. Open Humans is meant to complement
such initiatives and enable the creation of multiple "sandboxes”
where both personal and biomedical data can be leveraged to
help grow empirical knowledge and further downstream devel-
opment of diagnostics and therapies.

Elsewhere, social media is also gaining importance in re-
search as well as public health [42]. Differing perceptions on the
sensitivity of social media data can lead to privacy concerns.
For example, an analysis performed on 70,000 users of an on-
line dating website, where private personal data were scraped
by researchers and then publicly shared, caused a public outcry
[43]. Such cases have sparked calls for caution in performing "big
data” research with these new forms of personal data [44, 45].

Research that interacts with social media users raises addi-
tional concerns. For example, Facebook was widely criticized for
an experiment to study emotional contagion among 700,000 of
its users without their consent or debriefing, prompting discus-
sion of the ethics of unregulated human subjects research and



"A/B testing” by private entities [46-48]. And the 2018 disclosure
of the Cambridge Analytica controversy, in which a private firm
harvested information from 50 million Facebook users without
their permission, led Facebook to tighten control over its APIs,
turning it into even more of a silo that does not allow for re-
search to be performed by outside researchers [49].

For the foreseeable future, researchers who reuse data from
commercial sources will have to decide how to balance the in-
terests of commercial data controllers, participants, and society.
While there is no consensus on how research consent for exist-
ing personal data should be performed, we know that partici-
pants desire more granular abilities to manage data sharing: to
decide who can and cannot see it, under what circumstances,
and what can and cannot be done with it [50]. Such individual
control will be especially critical in the sensitive context of pre-
cision medicine [24].

"Citizen science” mostly describes the involvement of volun-
teers in the data collection, analysis, and interpretation phases
of research projects [51], thus both supporting the research pro-
cess itself and helping with public engagement. Furthermore,
the Universal Declaration of Human Rights describes a broad
human right to access science as a whole, implying a right to
participate in all aspects of the scientific enterprise [52].

Traditionally, many participatory science projects have fo-
cused on the natural sciences, such as natural resource manage-
ment, environmental monitoring/protection, and astrophysics
[53-55]. In many of these examples volunteers are asked to
crowd-source and support scientists in the collection of data,
e.g., by field observations or through sensors [56] or by perform-
ing human computation tasks such as classifying images [57] or
generating folded protein structures [58].

Analogous to the movement in other realms of citizen
science, there is a growing movement toward more partici-
pant/patient involvement in research on humans, including in
fields such as radiology, public health, psychology, and epidemi-
ology [59, 60]. Patients often have a better understanding of their
disease and needs than medical/research professionals [61, 62],
and that patient involvement can help catalyze policy interven-
tions [63]. Examples include the studies on amyotrophic lateral
sclerosis initiated by PatientsLikeMe users [64], crowd-sourcing
efforts such as American Gut [65], and a variety of other ”citi-
zen genomics” efforts [66]. It is likely that involving patients in
clinical research not only can help minimize cost but can lead
to drugs being brought to market sooner [67].

Elsewhere, the "quantified self” movement, in which indi-
viduals perform self-tracking of biological, behavioral, or en-
vironmental information and design experiments with an n =
1 to learn about themselves [68], can be placed on this con-
tinuum of participant-led research [69]. By performing self-
experiments and recording their own data, individuals can gain
critical knowledge about themselves and the process of per-
forming research. Analogous to the benefits of patient insights
in clinical research, individuals engaged in self-tracking and per-
sonal data analysis have the potential to contribute their in-
sights to a variety of other research areas.

As shown above, substantially involving patients and partici-
pants in the research process has multiple benefits. Participants
as primary data holders can help in breaking down walls among

data silos and in aggregating and sharing personal data streams.
Furthermore, by being involved in the research process and ac-
tively providing data, they can gain autonomy and can actively
consent to their data being used, thus mitigating (but not elim-
inating) the likelihood of subsequent ethical concerns. Last but
not least, enabling individuals to analyze and explore their own
data, individually and collectively, can result in valuable feed-
back that helps researchers incorporate the needs, desires, and
insights of participants.

In recent years a number of projects have started to explore
both data donations and crowd-sourcing research with an ex-
tended involvement of participants. In genomics, both academic
projects such as DNA.Land [70] and community-driven projects
such as openSNP [71] are enabling crowdsourcing via personal
genetic data set donations. Furthermore, the idea of "health
data cooperatives” that are communally run to manage access
to health data has emerged [24].

However, most of these projects limit participants’ involve-
ment in the research process: a participant is limited, for exam-
ple, to providing specific types of data for a specific data repos-
itory. Additionally, participants are rarely given an easy way to
help in designing a study, let alone running their own.

To close these gaps we developed Open Humans, a
community-based platform that enables its members to share a
growing number of personal data types, participate in research
projects and create their own, and facilitate the exploration of
personal data by and for the individual member. Open Humans
was initially conceived as an iteration of work with the Harvard
Personal Genome Project [72]. Along with a description of the
platform itself and its power and limitations, we present a set
of examples of how the platform is already being used for aca-
demic and participant-led research projects.

We designed Open Humans as a web platform with the goal of
easily enabling connections to existing and newly created data
sources and data (re-)using applications. Platform members im-
port data about themselves from various sources into their Open
Humans account. They can then explore their aggregated data
and share it with projects from citizen scientists and academic
researchers.

In the center of the design are 3 main components: Members,
Projects, and Data objects. Members can join various Projects
and authorize them to read Data that are stored in their account
as well as write new Data for this Member (see Figure 1 for a
dataflow diagram).

Projects

Projects are the primary way for Members to interact with Open
Humans. Projects can be created by any Member. During project
creation a prospective project lead must provide a description
of their project and specify the access permissions they request
from Members who decide to join. These may include:

Username By default projects do not get access to a Member’s
username; each Member is identified with a random, unique
identifier specific to that project. This way Members can join
a project pseudonymously.

Data Access A Project may ask permission to read Data that have
been deposited into a Member’s account by other projects. A
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Figure 1 The Open Humans authorization flow. A Member (center) can join Projects and approve them to read or write Data. The Member approves Project A to deposit
files (blue) into their account. They also approve Project B to read the files that Project A has deposited. Additionally, the Member approves Project C to both read the
files of Project A and write new files. The Member declines to give access to their personal data to Project D.

Project lead needs to specify to which existing projects’ data
they want to have access, and only these data will be shared
with the new project.

Through the permission system, Members get a clear idea of
the amount of Data they are sharing by joining a given Project
and whether their username will be shared and with whom.

Furthermore, all Projects have the following permissions for
any Members who have joined them: (1) they can send messages
to Members, which are received as emails; and (2) they can up-
load new Data into the Member account. Thus, in addition to
acting as potential data recipients, Projects are also the avenue
by which Data are added to Member accounts.

Projects can be set up in 2 different ways: As an On-site
Project or as an OAuth2 Project. The OAuth2 Project format offers
a standard OAuth2 user authorization process commonly used
to connect across web services. Projects that implement this can
connect an Open Humans user to a separate mobile or web ap-
plication and can be fully automated. For Projects that do not
have separate applications, the On-site Project format allows the
Project to present "consent” or "terms of use” information within
Open Humans, thereby minimizing the need for technical work
on the part of a Project. Both formats have access to APIs for
performing data uploads, data access, and member messaging.

Projects also need to clearly signal whether they are a re-
search study that is subject to ethical oversight by an institu-
tional review board (IRB) or equivalent, or whether they are not
performing such research (i.e., not subject to this oversight). This
allows for participant-led projects outside an academic research
setting, provided Members see a notification alerting them to the
absence of IRB oversight.

Thus, any Member can create a Project in the site, at any time,
and all APIs work immediately. However, a Project will not be
publicly listed for Members to see, and has a cap limiting the
number of Members that may join. Public listing and unlimited
usage is granted when a Project is marked as "approved” follow-
inga community review process. Projects that have IRB oversight
are required to provide documentation of IRB approval as part of
this review process.

In summary, given the broad potential features available, a
Project can cover anything from data import tools, to data pro-

cessing tools, to research projects, to self-quantification projects
that visualize and analyze a Member’s data.

Members

Members interact with Projects that are run on Open Humans.
By joining Projects that act as data uploaders, they can add spe-
cific Data into their Open Humans accounts. This is a way to
connect external services: e.g., put their genetic data or activ-
ity tracking data into their Open Humans account. Once they
have connected to relevant Projects that import their own data,
Members can opt in to joining additional Projects that they wish
to grant access to their account’s data.

As Members are able to selectively join Projects, they can
elect which projects their Data should be shared with. Members
may withdraw from a Project at any time. This results in imme-
diate revocation of Data-sharing authorization for that Project,
as well as a removal of Data upload and message permissions.
Projects may also support data erasure requests upon with-
drawal, and any remaining Data uploaded by a project may be
retained or deleted by the Member. Open Humans also allows
Members to delete their entire account at any time, resulting
in an immediate removal from the database, cessation of data-
processing activities, and permanent deletion following the au-
tomated turnover of backup storage.

Data input and management

Data are uploaded into a Member’s account, which allows any
joined Projects with requisite permissions to access these data.
To be fully available to all of the possible projects that can be run
on Open Humans, all data are stored in files that can be down-
loaded by users and Projects that have gotten permission. For
any file that a Project deposits into a Member’s account, the up-
loading Project needs to specify at least a description and tags
as metadata for the files.

Members can always review and access the Data stored in
their own accounts. By default, the Data uploaded into their ac-
counts is not shared with any projects but the one that deposited
the Data, unless and until other Projects are joined and specif-
ically authorized to access these Data. In addition to being able
to share data with other Projects, Members can also opt in to
making the data of individual data sources publicly available on



a project-by-project basis. Data that have been publicly shared
are then discoverable through the Open Humans Public Data API
and are visible on a Member’s user profile.

Using this design, the platform now features a number of
projects that import data directly into Open Humans. Among
data sources that can be imported and connected are 23andMe,
AncestryDNA, Fitbit, Runkeeper, Withings, uBiome, and a
generic VCF importer for genetic data such as whole-exome or
genome sequences. Furthermore, as a special category, the Data
Selfie project allows Members to add additional data files that
are not supported by a specialized project yet.

The community around the Open Humans platform has ex-
panded the support to additional Data sources by writing their
own data importers and data connections. These include a
bridge to openSNP, and importers for data from FamilyTreeDNA,
Apple HealthKit, Gencove, Twitter, and the Nightscout (open
source diabetes) community. Across these data importers, the
platform supports data sources covering genetic and activity-
tracking data as well as recorded GPS tracks, data from glucose
monitors, and social media.

The platform has grown significantly since its launch in 2015:
as of 30 May 2019, 6,976 members have signed up with Open Hu-
mans. Of these, 2,945 members have loaded 19,949 data sets into
their accounts. In cases where external data sources support the
import of historical data (e.g., Fitbit, Twitter), data sets can in-
clude data that reach back before the launch of Open Humans.
Furthermore, overall there are now 30 projects that are actively
running on Open Humans, with an additional 12 projects that
have already finished data collection and thus have been con-
cluded (see Table 1 for the most heavily engaged projects).

To demonstrate the range of projects made possible through
the platform and how the community improves the ecosys-
tem that is growing around Open Humans, here we high-
light some of the ongoing projects, covering participant-led re-
search, academic research, and projects originating in the self-
quantification community.

OpenAPS and Nightscout Data and Data Commons

There are a variety of open source diabetes tools and applica-
tions that have been created to aid individuals with type 1 dia-
betes in managing and visualizing their diabetes data from dis-
parate devices. One such tool is Nightscout, which allows users
to access continuous glucose monitoring (CGM) data. Another
such example is OpenAPS, the Open Source Artificial Pancreas
System, which is designed to automatically adjust an insulin
pump’s insulin delivery to keep users’ blood glucose in a safe
range overnight and between meals [73]. These tools enable real-
time and retrospective data analysis of rich and complex dia-
betes data sets from the real world.

Traditionally, gathering this level of diabetes data would be
time-consuming, expensive, and otherwise burdensome to the
traditional researcher, and often pose a prohibitive barrier to re-
searchers interested in getting started in the area of diabetes re-
search and development. Using Open Humans, individuals from
the diabetes community have created a data uploader tool called
Nightscout Data Transfer Tool to enable individuals to share
their CGM and related data with the Nightscout and/or Ope-
nAPS Data Commons [74]. Sharing is done pseudonymously via

random identifiers, enabling an individual to protect their pri-
vacy. Furthermore, sharing is facilitated because a single data
upload may be used in multiple studies and projects. These 2
patient-led data commons have requirements for use that allow
both traditional and citizen science (e.g., patient) researchers
to use these data for research. These data commons were cre-
ated with the goal of facilitating more access to diabetes data
such as CGM data sets that are traditionally expensive to ac-
cess. By doing so, they enable more researchers to explore inno-
vations for people with diabetes. Additionally, OpenAPS is the
first open source artificial pancreas system with hundreds of
users, who are hoping such data sharing will facilitate better
tools and better innovations for academic and commercial in-
novators in this space. To date, dozens of researchers and many
community members have accessed and used data from each
of these commons. Some publications and presentations have
also showcased the work and the data donated by members of
the community, further allowing other researchers to build on
this body of work and these data sets [75, 76].

In addition to facilitating easier access to more and richer
diabetes data, the Nightscout and OpenAPS communities have
also been developing a series of open source tools to enable in-
dividuals to more easily work with the data sets [77].

Linking across communities: openSNP

openSNP is a database for personal genomics data that takes
a different approach than Open Humans. While Open Humans
focuses on granular control in terms of whom Members share
their data with, openSNP focuses on maximizing reuse of data,
by exclusively allowing individuals to donate raw DTC genetic
test data into the public domain [71]. With >4,500 genetic data
sets already, openSNP is one of the largest openly crowd-sourced
genome databases. In addition to the genetic data, members of
openSNP annotate their data with additional trait data. There is
no integration of further data sources into openSNP.

Despite the differences between openSNP and Open Hu-
mans, there is overlap of members who use both platforms, with
openSNP members having additional non-genetic public data
sets in Open Humans. By linking the public data sets across both
platforms, both ecosystems can be enriched and members can
avoid having to upload their data twice.

The connection of accounts is performed by each platform
providing links to the same member on the other platform: the
openSNP project for Open Humans asks members for permis-
sion to read their Open Humans username during the authenti-
cation phase. By recording a member’s Open Humans username,
it becomes possible to link the public data sets on Open Humans
to a given openSNP member. Furthermore, openSNP deposits
a link to the public openSNP data sets in their Open Humans
member account. So far >250 people have taken advantage of
linking their openSNP and Open Humans accounts to each other.

Genetic data augmentation

Most DTC genetic testing companies genotype customers using
single-nucleotide polymorphism (SNP) genotyping technology,
which genotypes a fraction of the total available sites in a hu-
man genome. Because any 2 human genomes are >99% identi-
cal, these genotyped sites are carefully selected to capture hu-
man variation across global subpopulations. These sites (or ge-
netic variants) can inform customers about their genetic ances-
try, predict traits such as eye color, and determine susceptibility
to some recessive diseases. While DTC testing may only geno-
type a tiny fraction of total sites available in the genome, it’s of-
fered at a fraction of the price when compared to more com-



Table 1. Open Humans projects with >250 members

Project name
23andMe Upload

Genevieve
Genome Report

Harvard Personal
Genome Project

Twitter Archive
Analyzer
Personal Data
Notebooks
Keeping Pace

AncestryDNA
Upload
Fitbit Connection

GenomiX Genome

Description

Enables members to import their 23andMe

data

Matches a member’s genome against public
variant data and invites them to contribute
to shared notes.

Enables members to import their data from
the Personal Genome Project

Enables members to import their Twitter
archives and analyzes them

Enables personal data analyses with
Jupyter Notebooks

Seeks to study data about how we move
around, to understand how seasons and
local environment influence our movement
patterns

Enables members to import their
AncestryDNA data

Connects a member’s Fitbit account to add
data from their Fitbit activity trackers and
other Fitbit devices

A study of how people interact with their

Exploration genome data using GenomiX, a
visualization tool

Circles A research study that aims to discover the
genetic basis for a mysterious and
remarkable human trait: the areola

Gencove Your genome app—get your ancestry,
microbiome, and more! Contribute your
data to OpenHumans

openSNP Enables members to connect their Open
Humans and openSNP accounts

Nightscout Data A tool to easily enable the upload of data

Transfer from individual Nightscout databases

Data were collected on 25 April 2019.

prehensive genotyping methods such as exome or genome se-
quencing. Until recently, individuals who wanted to know their
genotypes at sites not covered by DTC testing needed to pur-
chase a significantly more expensive genotyping test.

Genome-wide genotype imputation is an increasingly popu-
lar technique that offers a no- or low-cost alternative to com-
prehensive genotyping methods. In short, imputation is per-
formed by scanning the entire genome in large intervals and
using high-quality genotype calls from a large reference popu-
lation to statistically determine a sample’s (or samples’) geno-
type likelihoods at missing sites based on shared genotypes
with the reference population. Traditionally, genotype imputa-
tion has not been readily accessible to DTC customers because it
entails a complex multi-step process requiring technical exper-
tise and computing resources. Recently, the Michigan Imputa-
tion Server launched a free-to-use imputation pipeline [78]. The
server was designed to be user-friendly and greatly lowered the
barrier to entry for everyday DTC customers to have access to
imputed genotypes.

As part of the Open Humans platform, Imputer is a
participant-created project that performs genome-wide geno-
type imputation on one of a Member’s connected genetic data
sources, such as 23andMe or AncestryDNA. First, Imputer must
be authorized by a Member; once connected, the Imputer inter-
face [79] allows the Member to select which genetic data source

Members Data deposited Data access requested
1,202 23andMe data
845 23andMe Upload, Harvard PGP,
Genome/Exome Upload,
Username, and public data
812 Full genome
sequencing data
and survey data
531 Twitter archives
524 Jupyter Notebooks All Data
403 Fitbit, Jawbone, Moves, Apple
HealthKit, Runkeeper
438 AncestyDNA data
404 Data from a Fitbit
account
365 Username and public data
321 23andMe, AncestryDNA, Data
Selfies, Harvard PGP,
Genome/Exome Upload
311 Sequencing bam
files
308 openSNP user Username and public data
details
293 Nightscout data

they would like to impute and launches the imputation pipeline
in 1 click. Imputer submits the imputation job to a queue on a
server where the imputation is performed. Once the job has fin-
ished, the imputed genotypes are uploaded as a .vcf file and an
email is sent to the Member notifying them that their data are
available. Imputer makes it easy for Members to augment their
existing genetic data sources using techniques that were previ-
ously difficult to access. The Imputer imputation pipeline was
built using genipe [80] and uses the 1000 Genomes Project [81]
genotype data as the reference population.

Reuse of public data for understanding health behavior
A research team at the Universities of Copenhagen and Geneva,
the Quality of Life (QoL) Technologies Lab, has been able to per-
form preliminary research using public data in Open Humans.
Because physical inactivity is one of the strongest risk factors for
preventable chronic conditions [82], the QoL Lab’s goal is to lever-
age self-quantification data to assess and subsequently enhance
the well-being of individuals and possibly, in the long term, re-
duce the prevalence of some chronic diseases. At this stage, the
QoL Lab has used the Open Humans public data sets of Fitbit and
Apple HealthKit projects.

In Open Humans, individuals who donate public data up-
loaded from Fitbit and Apple HealthKit projects share with oth-
ers the daily summaries taken with their Fitbit and Apple de-
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Figure 2 Self-quantification data from Fitbit project. Number of public records
from January 2009 until October 2018 (cumulative total).

vices such as steps, resting heart rate (HR), and minutes asleep.
The public data sets contain time-series data from >30 mem-
bers, each of whom decides whether to provide access to the
aforementioned measurements. The number of records for each
variable available in the Open Humans database varies because
not all the devices record the same variables and participants
may choose not to share a particular measurement (see Fig. 2).

The QoL Technologies Lab team reports that access to pub-
lic data has facilitated its research planning. While the number
of public data sets is smaller in terms of the number of mem-
bers who give this kind of access, they are very useful for run-
ning observational studies over long periods and can be used
to prepare data cleaning and processing methods, which can
then be applied to follow-up studies. Because running studies on
Open Humans and accessing private data as part of a research
institution requires approval from an IRB—a potentially lengthy
process—the availability of the public data allows development
and testing of methods during an earlier stage of the research
process. A study is now being developed on the basis of this pre-
liminary work. Additionally, the QoL Lab was granted ethics ap-
proval from University of Copenhagen in November 2018 (No.
504-0034/18-5000).

Data reuse in genetic data visualization research
With the increasing number of individuals engaging with their
genetic data, including via DTC products, there is a need for re-
search into how individuals interact with these data to explore
and understand it. The Human-Computer Interaction for Per-
sonal Genomics (PGHCI) project at Wellesley College and New
York University has focused on exploring these questions. Re-
search was initially conducted by creating visualizations of ge-
netic data interpretations based on public genetic data sets and
associated reports. The research initially recruited participants
via Amazon Mechanical Turk to evaluate a set of visualizations;
this approach, however, was not based on participants’ own in-
formation, which is preferred to improve experimental validity.
Open Humans provided an opportunity to work with indi-
viduals and their data in a manner that leveraged pre-existing
genetic data for reuse in new research while minimizing privacy
risks. A project, GenomiX Genome Exploration, was created in
Open Humans that invited Members who had publicly shared
their genetic data in Open Humans to engage with a custom
visualization derived from their existing public data and asso-
ciated interpretations. The study found various design implica-
tions in genome data engagement, including the value of afford-
ing users the flexibility to examine the same report using mul-
tiple views [83].

Personal data exploration

Open Humans aggregates data from multiple sources connected
to individual Members. This makes it a natural starting point for
a Member to explore their personal data. To facilitate this, Open
Humans includes the Personal Data Notebooks project.

Through a JupyterHub setup [84] that authenticates Mem-
bers through their Open Humans accounts, Members can write
Jupyter Notebooks [85] that get full access to their personal data
in their web browser. This allows Members to explore and ana-
lyze their own data without the need to download or install spe-
cialized analysis software on their own computers. Furthermore,
it allows Members to easily analyze data across the various data
sources, e.g., combining data about their social media use as
well as activity-tracking data from wearable devices. This allows
Members to explore potential correlations such as whether a de-
crease in physical activity correlates with more time spent on
social media.

Because the notebooks themselves do not store any of the
personal data but rather the generic methods to access the data,
they can be easily shared between Open Humans Members with-
out leaking a Member’s personal data. This property facilitates
not only the sharing of analysis methods but also reproducible
n = 1 experiments in the spirit of self-quantification.

To make these notebooks not only interoperable and reusable
but also findable and accessible [86], the sister project to the
Personal Data Notebooks—the Personal Data Exploratory—was
started. Members can upload notebooks right from their Per-
sonal Data Notebook interface to Open Humans and can publish
them on the Personal Data Exploratory site with just a few clicks.
The Exploratory publicly displays the published notebooks to the
wider community and categorizes them according to the data
sources used, tags, and their content.

The categorization allows other Members to easily discover
notebooks of interest. Notebooks written by other Members can
be launched and run on a Member’s own personal data through
the Personal Data Notebooks, requiring only a single click of a
button. Through the close interplay between the Personal Data
Notebooks and the shared notebook library of the Personal Data
Exploratory, Open Humans offers an integrated personal data
analysis environment that allows personal data to be dissem-
inated in a private and secure way, while simultaneously grow-
ing a library of data exploration tools that can be reused by other
Members, as shown in Figure 3.

Google Search History Analyzer and community review

The Google Search History Analyzer is a project that high-
lights the Open Humans community review process for Projects,
demonstrating how this process can help improve not only a
project that is reviewed but also the infrastructure of Open Hu-
mans. The Google Search History Analyzer invites individuals
to upload their Google Search History data and analyze them
in a quantitative way, through Personal Data Notebooks. Exam-
ples of analyses that users can perform through the Personal
Data Notebooks include retrieving graphs of their most common
search terms and their daily or weekly evolution, as well as vi-
sualizing connections among their top search terms and their
co-occurrence. One goal of this project is to raise awareness on
the breadth and deeply personalized content that web searches
might carry. Another long-term goal is to provide social scien-
tists who are currently using web search history data for predict-
ing social trends, e.g., unemployment [87] or interest in medical
conditions [88], with the means to have access to a pool of in-
dividuals who can provide informed consent to the use of their
search history data along with additional metadata (e.g., demo-
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Figure 3 Personal Data Notebooks in Open Humans. Any Member (e.g., "Person A,” left) can create a Notebook to explore their personal Data using the Personal Data
Notebooks project. They can then choose to share a Notebook via the Personal Data Exploratory. This allows another Member (e.g., "Person B,” right) to load a copy of

the Notebook and run it, privately, to produce their own analysis.

graphic information or survey questions) that could render their
Google search history terms more informative.

Open Humans requires Projects have an “approval” to be-
come visible and broadly available to Members. Prior to Google
Search History Analyzer, this approval process was informal and
internal; however, the sensitive data handled by this Project
raised concerns regarding a need for a more formal and trans-
parent review process because web search history terms might
carry highly personalized information, such as personal inter-
ests, medical history, places a person visits, or even predictors
for severe psychiatric conditions [89]. As a result, a community
review process was developed for Project approvals going for-
ward: new projects are shared with the larger community for
public comments, inviting feedback from all Members. Project
owners can reply to the feedback and improve their project ac-
cordingly, as well as seek help from other Open Humans Mem-
bers. The community review continues until concerns, if any,
have been resolved; no formal timeline for finding consensus
exists—instead the process is adaptive to the levels of concern
raised by the community members. If and when project approval
occurs, this status is implemented by the administrators of the
Open Humans platform. Project approval status can be reconsid-
ered at any time by opening a new review process, which may
be done by any community Member.

As a result of this process, the Google Search History An-
alyzer project was improved with added documentation, in-
creased clarity, and additional security implementations on the
project side. Furthermore, it led to the implementation of a new
feature on the Open Humans platform itself, enabling a project-
specific override to prevent public data sharing by Members for
these data—as requested by community review—thereby reduc-
ing the risk that these sensitive data sets might be publicly re-
leased by the Members accidentally.

Participatory/community science (also known as citizen science)
is a growing field that engages people in the scientific process.
But while participatory science keeps growing quickly in the en-
vironmental sciences and astronomy, its development in the hu-
manities, social sciences, and in medical research lags behind
[90], despite expectations that it will make inroads into those
fields [60, 91]. Both barriers in accessing personal data that are
stored in commercial entities as well as legitimate ethical con-
cerns that surround the use of personal data contribute to this
slower adoption in realms that rely on access to personal infor-

mation [34, 36]. Open Humans was designed to address many of
these issues; we discuss some of them in subsequent sections.

One often suggested way to mitigate the ethical concerns
around the sharing of personal data in a research framework is
by giving participants granular consent options [37]. In a med-
ical context, most patients prefer to have granular control over
which medical data to share and for which purposes [92, 93],
especially in the context of electronic medical records [94]. Fur-
thermore, the GDPR requires that organizations handling per-
sonal data give the individual granular consent options for how
their data are used [95].

Open Humans strongly limits the platform’s use of member
data to an opt-in model, implementing a form of granular con-
sent for data sharing and data use through the use of projects
that Members can opt into. On a technical level, Project orga-
nizers need to select the data sources they would like to access,
and Members can give specific consent for that project’s activi-
ties. From the perspective of Open Humans this produces a for-
mat for granular consent regarding the data it manages because
each potential use of data in the platform is mediated by a spe-
cific project.

Additionally, Projects on Open Humans need to adhere to
the community guidelines. In addition to mandating clarity and
specificity in consent, these guidelines require Projects to in-
form prospective participants about the level of data access they
would request, how the data would be used, and what privacy
and security precautions they have in place. Authorization may
be withdrawn at any time, at which point Projects may no longer
access de-authorized data. Furthermore, Projects may receive
notification of erasure requests made by participants who with-
draw, should they opt to support these.

Much of health data is still stored in data silos managed by
national institutions, sometimes further subcategorized by dis-
eases [96]. On an individual level, the situation is not much bet-
ter: while medical data are usually stored in electronic records,
much of a person’s data is now held by the companies that
run social media platforms, develop smartphone apps, or pur-
vey wearable devices [97]. This fragmentation—especially when
coupled with a lack of data export methods—prevents individu-
als from authorizing new uses of their data.



Personal information management systems (PIMS) could
help individuals in re-collecting and integrating their personal
data from different sources [98]. The right to data portability, as
encapsulated in Article 20 of the GDPR, has the potential to boost
the adoption of such systems because it guarantees individu-
als in the European Union a right to export the personal data
they have provided to data holders in electronic and other use-
ful formats. While Article 20 does not cover derived data, such
as genetic information generated from biological samples [99],
other personal data that are provided directly and thus subject
to Article 20 can be highly valuable for individuals and research
purposes. Additionally, Article 15 of the GDPR provides individu-
als with further rights to access and copies to such derived data,
although without specific provisions for the format of such data.
Both traditional medical research [100] as well as citizen science
[101] have the potential to benefit from these data. By design,
Open Humans works similar to a PIMS because it allows indi-
viduals to bundle and collect their personal data from external
sources. Like other PIMS, Open Humans is likely to benefit from
any increase in data export, e.g., due to the GDPR.

While the availability of data export functions is a necessary
condition for making PIMS work, it alone is not sufficient. PIMS
need to support the data import on their end, either by support-
ing the file types or by offering support for the APIs of the exter-
nal services. Because file formats and APIs are not static but can
change over time, especially among popular services [102], a sig-
nificant amount of effort is needed to keep data import functions
into PIMS up to date. This cost keeps accumulating as the num-
ber of supported data imports keeps increasing. The modular,
project-based nature of Open Humans allows the distribution
of the workload of keeping integrations up to date, as data im-
porters can be provided by any third party. Existing data imports
on Open Humans already demonstrate this capability: both the
Nightscout and the Apple HealthKit data importers are exam-
ples of this. In the case of Nightscout, members of the diabetes
community themselves built and maintain the data import into
Open Humans to power their own data commons that overlays
the Open Humans data storage. And the HealthKit import appli-
cation was written by an individual Open Humans Member who
wanted to add support for adding their own data.

Open Humans provides several benefits for citizen science ef-
forts and individual researchers who do not work in academia.
The OpenAPS and Nightscout Data Commons highlighted in the
results are prime examples of how Open Humans can enable
such participant-led research.

To enable research done by non-traditional researchers, the
project creation workflow of Open Humans includes informa-
tion for project leaders about informed consent and other key
considerations. It encourages project administrators to be clear
about both data management and security in a thorough com-
munity guide [103]. This guide includes best practice guidelines
for data security as well as details on how to communicate to
participants which data access is being requested and why. It
emphasizes plain language and clarity.

To further the community’s sense of ownership in the Open
Humans platform, participants are involved in the governance of
the ecosystem. On a high level the community gets to elect one-
third of the members of the Open Humans Foundation board of
directors, enabling them to exert direct influence on the larger
direction of the platform.

Furthermore, Members of Open Humans are invited to par-
ticipate in the approval of new projects that want to be shared on
the platform via a community review process, as illustrated by
the Google Search History project use case described above. This
community review process parallels efforts made elsewhere to
pursue participant-centered alternatives to IRBs [104], which at
present include extremely limited input from community mem-
bers. Indeed, traditional policies for project approval from an
ethical standpoint have been repeatedly questioned [105], and
even more so for the case of participant-centric research [106],
due to inconsistent levels of engagement from non-academic
members [107] and lack of participant protection and autonomy
[106]. Notably the review process as implemented on Open Hu-
mans is less structured than traditional approaches because it is
performed by community members who choose to participate;
self-selection for engagement may help maximize efficiency in
a heterogeneous ecosystem. We hope this alternative design
helps inform other projects seeking increased participant input
in project review and oversight.

Open Humans is an active online platform for personal data ag-
gregation and data sharing that enables citizen science and tra-
ditional academic science alike. By leaving data-sharing deci-
sions to individual members, the platform offers a way of doing
personal data-based research in an iterative, ethically sensitive
way and enables individuals to engage in science as both inves-
tigators and participants.

The primary Open Humans web application, as well as data
source Projects maintained directly by Open Humans, are writ-
ten in Python 3 using the Django web framework. API end points,
JSON and HTML data serialization, and OAuth2 authorization
are managed by the Django REST Framework and Django OAuth
Toolkit libraries. Web applications are deployed on Heroku and
use Amazon S3 for file storage. The Personal Data Notebooks
JupyterHub project is deployed via Google Cloud Platform.

Two Python packages have been developed and distributed
in the Python Package Index to facilitate interactions with our
APIL: (1) open-humans-api provides Python functions for API end
points, as well as command line tools for performing many
standard API operations; (2) django-open-humans provides a
reusable Django module for using Open Humans OAuth2 and
API features.

Open Humans complies with GDPR and provides a live
records of processing activities report [108].

°® Project name: Open Humans

°® Project home page: http://www.openhumans.org

® Operating system(s): Platform independent

® Programming language: Python3

® Other requirements: full list on GitHub https://github.com/o
penhumans/open-humans/

* License: MIT

* Project name: Open Humans API

* Project home page: https://open-humans-api.readthedocs.io
/en/latest/

® Operating system(s): Platform independent


https://www.openhumans.org/community-guidelines/#project
http://www.openhumans.org
https://github.com/openhumans/open-humans/
https://open-humans-api.readthedocs.io/en/latest/

® Programming language: Python3

® Other requirements: full list on GitHub https://github.com/o
penhumans/open-humans-api

® License: MIT

* Project name: Django Open Humans

* Project home page: https://django-open-humans.readthedo
cs.io/en/latest

® Operating system(s): Platform independent

® Programming language: Python3

® Other requirements: full list on GitHub https://github.com/O
penHumans/django-open-humans

® License: MIT

API: application programming interface; CGM: continuous glu-
cose monitor; DTC: direct to consumer; GDPR: General Data Pro-
tection Regulation; GPS: Global Positioning System; HR: heart
rate; HTML: Hypertext Markup Language; IRB: institutional re-
view board; JSON: JavaScript Object Notation; OpenAPS: Open
Source Artificial Pancreas System; PGHCI: Human-Computer
Interaction for Personal Genomics; PIMS: personal informa-
tion management systems; QoL: quality of life; SNP: single-
nucleotide polymorphism; VCF: variant call format.
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