Skip to main content
. 2019 Mar 22;82(1):411–424. doi: 10.1002/mrm.27725

Table 1.

kio Responsiveness to Metabolic Changes

kio increases with: a Increased NKA pump expression (5,9*)
b Increasing cytoplasmic ATP (9*)
c Increasing [Ko +] (at low [Ko +]), with an NKA Michaelis‐Menten signature (4,43)
d Hypoxia (10,44#)
e Cisplatin‐induced apoptosis (45)
f Xenograft tumor apoptotic regions (46#)
g Human brain metastasis radiosurgery (47#)
kio decreases with: h Ouabain NKA pump inhibition (2,5,9*,43)
i Increasing [Ko +] (at sufficient [Ko +] to cause membrane depolarization) (4)
j WZB117 glucose uptake inhibition (5)
k O2 → N2 switch (9*)
l Increasing mitochondrial reducing equivalents (6#)
m Intracellular lonidamine (48#) mitochondrial complex II inhibition (49)
n Extracellular tetrodotoxin voltage‐gated sodium channel inhibition (4)
o Extracellular AP5 plus DNQX post‐excitatory neuronal activity inhibition (4)
p Glutamine deprivation (10)
q Hypertension in myocardium (28#)
r Chemotherapy of human breast tumors (50#)
s Phosphatase activation breast tumor therapy (51#)
kio correlates with: t Tumor metastatic potential (5,6#)
u Neuronal firing (4)
v Oxidative phosphorylation rate (52&)
w O2 consumption rate (4)
x Head and neck cancer mortality (53#)
y 18Fluoro‐2‐deoxy‐D‐glucose breast tumor uptake (54#)

ATP, adenosine triphosphate; kio, water efflux k (1/τi); NKA, Na+,K+‐ATPase (sodium pump).

*

For yeast, pump is PMA1, inhibitor is ebselen.

#

Employed shutter‐speed (к1) dynamic‐contrast‐enhanced‐MRI.

(2R)‐Amino‐5‐phosphonovaleric acid plus 6,7‐dinitroquinoxaline‐2,3‐dione.

&

Indirect.