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Summary

� In photosynthesis models following the Farquhar formulation, the maximum carboxylation

rate Vcmax is the key parameter. Remote-sensing indicators, such as reflectance q and Chl flu-

orescence (ChlF), have been proven as valuable estimators of photosynthetic capacity and

can be used as a constraint to Vcmax estimation.
� We present a methodology to retrieve Vcmax from leaf q and ChlF by coupling a radiative

transfer model, FLUSPECT, to a model for photosynthesis. We test its performance against a

unique dataset, with combined leaf spectral, gas exchange and pulse-amplitude-modulated

measurements.
� Our results show that the method can estimate the magnitude of Vcmax estimated from the

far-red peak of ChlF and green q or transmittance s, with values of root-mean-square error

below 10 lmol CO2m
�2 s�1.

� At the leaf level, the method could be used for detection of plant stress and tested against

more extensive datasets. With a similar scheme devised for the higher spatial scales, such

models could provide a comprehensive method to estimate the actual photosynthetic capacity

of vegetation.

Introduction

Monitoring photosynthesis through remote-sensed signals leads
to a better understanding of vegetation canopies and their inter-
action with the environment. At least two optical indicators have
been shown to respond to photosynthetic processes dynamically:
Chl fluorescence (ChlF) and photochemical reflectance index
(PRI). Both ChlF and PRI are intrinsically linked to photosyn-
thesis, and have both been established as good estimators of leaf
light use efficiency (LUE) and photosynthesis (for reviews, see
Garbulsky et al., 2011; A�c et al., 2015). Developing methods for
the estimation of photosynthesis from the two optical indicators
is particularly relevant for the fast-developing field of precision
agriculture (Tremblay et al., 2011; Wieneke et al., 2016), and for
the European Space Agency’s dedicated Fluorescence Explorer
(FLEX) satellite mission (Drusch et al., 2017).

In order to develop such methods, it is key to understand how
the enzyme kinetics of photosynthesis are reflected in the dynamic
changes of plant optical properties. The solar energy, absorbed by
the leaf, undergoes one of three possible pathways: it can be used
in photochemistry, emitted as ChlF, or dissipated as heat. This
conversion of energy can be detected as a dynamic optical signa-
ture in the visible and near-infrared part of the leaf spectrum.

The light is captured by the light-harvesting antennae, and the
energy is transferred to the photosynthetic reaction centres. From
the captured light, c. 2% of light is directly emitted as ChlF. The
spectrum of ChlF has a typical double peak, and ranges from c. 650
to 850 nm. The rest of the captured energy follows a complex pro-
cess of photochemistry, eventually resulting in the fixation of CO2.

However, in natural conditions, plants are often exposed to
various stresses that lower their capacity to utilize the available
light. Excess energy must then be effectively dissipated via one of
the many photoprotective mechanisms of higher plants in order
to prevent damage to the photosynthetic apparatus. For example,
high light exposure causes rapid saturation of the photosynthetic
reaction centres, and the fastest response of the photosynthetic
membrane to excess light is to dissipate the surplus of energy as
heat. This process is known as the nonphotochemical ChlF
quenching (NPQ). It is closely related to the xanthophyll cycle,
which involves an interconversion of three xanthophylls: violax-
anthin via antheraxanthin into zeaxanthin, followed by a complex
series of thylakoid conformational and pH changes, concluding
with heat dissipation (Demmig-Adams & Adams, 1996; Ruban,
2016). These photoprotective mechanisms can be observed as
dynamic changes in the green part of the visible spectrum, com-
monly expressed as the PRI (Gamon et al., 1992).
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In order to interpret the remotely sensed data, models are
needed. Simple indices using only one or two spectral bands,
such as PRI, may be insufficient due to the contributions of
various leaf pigments and canopy structure to the few selected
spectral bands (Gitelson et al., 2017). Radiative transfer (RT)
models can describe the light propagation within leaves and
canopies based on biochemical and physical properties,
enabling us to better decouple the contributions of individual
parameters. Complementary to RT models, models for photo-
synthesis can explain the underlying biochemical processes.
Coupling the two types of models would provide a unique
insight into the connection between optical and biochemical
properties of vegetation.

State-of-the-art models, such as the Soil–Canopy Observation
of Photosynthesis and Energy balance (SCOPE) model (Van
der Tol et al., 2009), are able to quantify both the variability of
photosynthesis and spectral changes at different temporal and
spatial scales by employing the biochemical and RT properties
of vegetation.

At the leaf level, SCOPE employs two models: a biochemical
model, able to explain the relationship between ChlF, photosyn-
thesis and NPQ under different environmental conditions (Van
der Tol et al., 2014); and an RT model, FLUSPECT (Vilfan et al.,
2016). Both of the models are well tested, computationally
affordable, and can function separately, providing independent
outputs.

The biochemical model follows Farquhar’s 1980s photosyn-
thesis formulation (Farquhar et al., 1980), in which the maxi-
mum carboxylation rate Vcmax of leaves is a key parameter. Vcmax

determines the maximum photosynthesis rate of a plant under
optimal conditions, and it has a great influence on the modelled
photosynthesis.

FLUSPECT simulates leaf reflectance q, transmittance s, and
ChlF spectra as a function of leaf pigment content and structure.
Recently, FLUSPECT has been extended to simulate the dynamics
of green q as a function of the xanthophyll de-epoxidation, an
RT analogy to the PRI (Vilfan et al., 2018).

In this study, we couple the two leaf models via ChlF and pho-
tochemical q parameters, and effectively link spectral to biochem-
ical properties. Attempts to create such links have been made
before; however, in most cases, PRI and ChlF as proxies of pho-
tosynthesis were studied separately (for a review, see Grace et al.,
2007), with a few exceptions (Cheng et al., 2013; Atherton et al.,
2016). The link of q dynamics to photochemistry is generally
addressed with the use of the PRI, and relations of spectral infor-
mation to photosynthetic parameters have mostly been defined
via regression models (Cheng et al., 2013; Serbin et al., 2015;
Zhang et al., 2016; Dechant et al., 2017; Liu et al., 2017). With
the introduction of dynamic xanthophyll q into FLUSPECT, we
could avoid the use of PRI and approach changes in both q and
ChlF in an RT-based manner. We developed a scheme that links
leaf Vcmax to q, s and ChlF. Such a model has not been published
before.

The coupled model enabled us to devise a method for the
retrieval of the Vcmax from hyperspectral measurements of leaf
ChlF and q or s. In this study, we describe the coupled model

and the retrieval method. We test its performance against a
unique dataset, with combined leaf spectral, gas exchange and
pulse-amplitude-modulated (PAM) measurements. We evaluate
the sensitivity of the method to ChlF and q, and we discuss
whether combined they provide an even better constraint to the
retrieval of leaf photosynthetic parameters.

Materials and Methods

Laboratory experiment

The experiment was conducted in the laboratories of
Forschungszentrum J€ulich in February and March 2014. Sugar
beet (Beta vulgaris L.) and barley (Hordeum vulgare L.) plants
were grown in pots under controlled conditions in a glasshouse in
Forschungszentrum J€ulich between December 2013 and March
2014. Owing to the limited winter light conditions, the natural
light was complemented with artificial light from growth lamps
for 15 h d�1. The plants used in this experiment were grown
under a light intensity of c. 1000 lmol m�2 s�1 (measured with a
quantum sensor, LI-190SL; Li-Cor Inc., Lincoln, NE, USA).
When the plants were fully grown, some of the pots grown under
full light were exposed to water deficits. For a full description of
growth conditions, see Vilfan et al. (2016). Measurements were
collected on the same leaves in two separate experimental settings.

The first set-up, ‘Chamber dataset’, is presented in Fig. 1. It
consisted of a portable gas-exchange system (LI-6400; Li-Cor
Inc.) connected to a (1) clear top MiniPAM Adapter (6400-10;
Li-Cor Inc.) housing the pulse-amplitude-modulated fluorescence
system (Mini-PAM-II; Heinz Walz GmbH, Effeltrich, Germany);
and (2) a spectroradiometer (FieldSpec 4; Analytical Spectral
Devices, Boulder, CO, USA; 350–2500 nm, 3 nm visible and
near-infrared spectral resolution). The gas-exchange chamber bot-
tom was equipped with an airtight slot, fitting an optical fibre of
the spectroradiometer. The top could not be adjusted to house
the optical fibre due to technical limitations. The chamber was
illuminated externally with a cold halogen lamp (KL 2500 LCD;
Schott Benelux BV, Culemborg, Netherlands). The lamp was
positioned to illuminate the chamber under an angle of c. 15°,
ensuring that the whole leaf surface within the chamber was illu-
minated and not shaded by the PAM optical fibre. A short-pass
filter can be slotted into the opening of the lamp, which cuts off
the incoming light spectrum above c. 700 nm. This allowed for
measurements of forward ChlF signal (‘forward’ referring to the
emission being in same direction as the excitation radiation,
which means in our set-up the ChlF emanating from the abaxial
side of the leaf turned away from the light source above the leaf)
from c. 700 to 850 nm. With this set-up, almost simultaneous
measurements of passive and active ChlF, s, and gas-exchange
measurements were taken under controlled conditions.

Measurements were taken on attached leaves of intact plants
using one or two healthy and fully developed leaves per pot. The
leaf was positioned in the chamber with its adaxial side facing the
light source. The gas-exchange system was set to a constant leaf
temperature of 25°C, constant air humidity, and a CO2 concen-
tration of 400 ppm. We measured both light and CO2 curves for
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each leaf. Per each leaf, the light curve was measured first, directly
followed by the measurement of the CO2 curve, under illumina-
tion of 1000 lmol m�2 s�1. The measured leaf surface and the
position of the set-up were kept constant. Light intensities and
CO2 concentrations were adjusted manually in the following
sequences of approximately:
1 0, 50, 100, 150, 250, 350, 500, 700, 1000,
1300 lmol m�2 s�1,
2 400, 50, 100, 150, 250, 350, 500, 700, 900, 1200, 700,
400 ppm CO2.

Each measurement consisted of the following sequence of
recordings: gas exchange, followed by the transmitted radiance
recorded with the spectroradiometer, the filtered transmitted
radiance recorded with the spectroradiometer after slotting the
filter into the opening of the lamp, and the active PAM measure-
ment at the top of the leaf after removing the filter. The proce-
dure was repeated for each change of either illumination or CO2

conditions. Before each recording, we waited for the gas-
exchange conditions to stabilize, 5 min on average, and up to
20 min for a change in the illumination conditions.

A standard reflectance panel (Spectralon; Labsphere, North
Sutton, NH, USA) was used separately to estimate the incident
and the filtered incident radiation of the lamp and the exact

transmittance of the filter for each light intensity. The panel was
positioned at the same distance from the light source as the leaf.

Each radiance measurement was the average of five individual
measurements over the region of 350–2500 nm, using a 136 ms
integration time. Transmittance and forward ChlF spectra were
calculated using the standard formulas as described in Vilfan
et al. (2016). It should be noted that the measurements of filtered
radiance below 700 nm (and consequentially the red peak of
ChlF) are unreliable due to the cut-off filter’s characteristics.
Moreover, the relative positioning of the reflectance panel, as well
as the shape and characteristics of the gas-exchange chamber,
might have contributed to additional scattering and inaccuracies
in the calculated ChlF spectra. Furthermore, many hyperspectral
measurements of barley had to be excluded from the study
because the leaves were too small to cover the surface of the entire
leaf chamber, contaminating the measurements with additional
illumination.

LUE was calculated from gas-exchange data as:

LUE ¼ A

iPAR
Eqn 1

where A (lmol CO2 m
�2 s�1) is the assimilation rate and iPAR

the incoming photosynthetically active radiation (PAR;
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Fig. 1 A schematic representation of the ‘chamber dataset’ measurement set-up for a representative case of light-response curves of a barley leaf. Samples
were illuminated with a cold blue light source (a). The following measurements were taken: (b) pulse amplitude modulation (PAM) fluorometry
(nonphotochemical quenching (NPQ), steady state fluorescence Fs, and photochemically active radiation (PAR) are shown); (c) gas exchange (assimilation
rate); and (d) spectral measurements (Chl fluorescence and transmittance). A red cut-off filter was slotted between the light source and the sample (not
shown). Gas-exchange image used and modified by permission of Li-Cor Biosciences.
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lmol m�2 s�1) (Pe~nuelas et al., 1995; Barton & North, 2001;
Gitelson et al., 2015).

From s, we calculated the PRI as (R531� R570)/(R531 + R570).
For a better comparison of the spectral measurements of different
leaves, we normalized both the PRI and ChlF at the far-red peak
(F740) to their respective unstressed reference values (PRI0 and
F 0
740). By subtracting PRI

0 from all values of PRI and F 0
740) from

F740, we obtained DPRI and DF740, respectively. For the light
responses, PRI0 and F 0

740) were obtained from the spectrum mea-
sured at the lowest illumination (50 lmol m�2 s�1), and for CO2

curves from the spectrum measured at 1200 ppm CO2.
For PAM measurements, standard procedures were followed

(instruction manual for MINI-PAM-II; Maxwell & Johnson,
2000). During each measurement, a short, intense pulse of light
was given, from which the quantum yield of photosystem II (PS-
II) ΦPSII and electron transport rate (ETR) were calculated. ETR
is automatically calculated by the accompanying software of the
instrument, assuming an absorption coefficient of 0.84. ΦPSII

reflects the proportion of light absorbed by PS-II that is used for
photochemistry and was calculated as:

UPSII ¼ F 0
m � Fs
F 0
m

Eqn 2

where Fs is the steady state ChlF and F 0
m is light-adapted maxi-

mum ChlF yield.
In the early morning, before the start of the measurement setup,

PAM measurements were taken on dark-adapted leaves. This
allowed for the calculation of minimal and maximal dark-adapted
ChlF, Fo and Fm, respectively, and subsequently the NPQ:

NPQ ¼ Fm � F 0
m

F 0
m

; Eqn 3

where Fm represents the maximal dark-adapted ChlF yield.
Because the information of PAM experiments is contained in the
ratios, we normalized the signals to Fo. Since ETR, ΦPSII and
NPQ are also outputs of the photosynthesis model, these mea-
surements provided important additional insights into the model.

The second set-up, the ‘FluoWat dataset’, is described in detail
in Vilfan et al. (2016). Measurements of bidirectional leaf q, s,
and ChlF were collected with the FluoWat leaf-clip, coupled to
the same spectroradiometer that was used in the first set-up. The
leaf clip has two openings for the fibre optics and one light
entrance, fitting both a light source at a 45° angle and a short-
pass filter (< 650 nm, TechSpec; Edmund Optics GmbH, Mainz,
Germany). For more details on the FluoWat leaf clip design, see
Van Wittenberghe et al. (2013). The samples were illuminated
with the same cold light lamp as in the first set-up. We used mea-
surements taken under three different light intensities, with iPAR
of c. 200, 500 and 700–800 lmol m�2 s�1.

Leaf models in SCOPE

FLUSPECT FLUSPECT is an RT model for the leaf, based on the
model PROSPECT (Jacquemoud & Baret, 1990), where the

absorption is a function of the concentrations and specific
absorption coefficients (SACs) of pigments and water. FLUSPECT
computes q and s spectra from 400 to 2500 nm, as well as ChlF
spectra from 640 to 850 nm. It is implemented in MATLAB and
published under GNU General Public License at
https://github.com/christiaanvandertol. Input parameters,
together with their definitions and standard values, are provided
in Table 1. For a published full description of the model (FLUS-
PECT-B), see Vilfan et al. (2016).

In this study, we use the latest version of FLUSPECT, called
FLUSPECT-CX (Vilfan et al., 2018), which is able to simulate
changes in green q from c. 500 to 570 nm, as a function of the
xanthophyll de-epoxidation parameter Cx, an RT analogy to the
PRI. Moreover, in FLUSPECT-CX we adopted the SAC for antho-
cyanins as well as recalibrated SACs for chlorophylls and
carotenoids from PROSPECT-D (F�eret et al., 2017).

Changes in ChlF spectra can be simulated by varying gI and
gII: the fluorescence quantum efficiency parameters for PS-I and
PS-II, respectively. In analogy to SACs, FLUSPECT uses two spec-
tra for the probability density function φ to describe the spectral
distribution of emitted ChlF: φI and φII, one for each of the PS-I
and PS-II. The two functions were adopted from Franck et al.
(2002) and can be linearly mixed. However, owing to systematic
discrepancies between measured and simulated ChlF spectra, φ
has recently been recalibrated into a single spectrum for φ, with a
single fluorescence quantum efficiency parameter g (C. Van der
Tol et al., unpublished), used in this study.

FLUSPECT can be inverted and its parameters estimated from
measured spectra. However, FLUSPECT cannot explain the under-
lying processes of photosynthesis related to the dynamic parame-
ters, such as Cx and g. They can, however, be estimated indirectly
with the biochemical model that describes the relationship
between ChlF, photosynthesis, and NPQ.

The biochemical model The biochemical model used in
SCOPE simulates the photosynthetic rate and fluorescence quan-
tities as measured with PAM, as a function of absorbed light, leaf
temperature, relative humidity and the concentrations of CO2

and oxygen (O2). It follows Farquhar’s formulation (Farquhar
et al., 1980), where the assimilation of CO2 depends on electron
transport and carboxylation, and the actual rate of assimilation is
determined by the most limiting of these processes. Maximum
carboxylation rate per leaf area under light-saturated conditions
Vcmax is the key parameter in this model. Input parameters of the
biochemical model are provided in Table 1. Only parameters rel-
evant for this study are shown.

We used the empirical relationship between photochemical
and fluorescence yield for unstressed conditions described in
Van der Tol et al. (2014), a nonlinear relationship between
the relative light saturation of photosynthesis and nonradiative
energy dissipation in plants of different species calibrated to
active ChlF measurements. To calculate the probability of the
different fates of the excitation energy, it uses rate coefficients
K: Kp and Kn for the photochemical ChlF quenching (PQ)
and NPQ, respectively, and Kd and Kf for heat dissipation
and fluorescence, respectively.
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Two outputs are particularly relevant for this study: the fluores-
cence emission efficiency e, expressed as the ratio of the steady state
Fs to the dark-adapted fluorescence yield Fo; and Kn, which is con-
sidered to be equivalent to NPQ, and is calculated as follows:

Kn ¼ K 0
n ð1þ bÞxc
bþ xc

Eqn 4

where K 0
n , c and b are fitting parameters, and x is a measure for

the light saturation of photosynthesis, calculated as:

x ¼ 1� /p

/o
p

: Eqn 5

/p and /o
p represent the photochemical yield and the photo-

chemical yield of dark-adapted state, respectively.
Dark-adapted fluorescence yield is then computed as:

Fo ¼ Kf

Kf þ Kp þ Kd
Eqn 6

and the steady state fluorescence as:

Fs ¼ F 0
mð1� /pÞ: Eqn 7

Here, it should be noted that Fs, and consequently e, are
related to Kn through the calculation of F 0

m:

F 0
m ¼ Kf

Kf þ Kd þ Kn
Eqn 8

Coupling the leaf models

FLUSPECT and the biochemical model have parameters related to
photosynthesis in common, and this makes it possible to retrieve

photosynthesis from the measured spectra of ChlF and s. The
two dynamic input parameters of FLUSPECT, g (the emission effi-
ciency of fluorescence) and Cx (the absorption SAC for the xan-
thophyll cycle dynamics) are related to the outputs e (Fs/Fo) and
Kn (the rate coefficient for NPQ) of the biochemical model, and
the simplest possible relation is a linear one.

To couple Cx to Kn, we adopt the relation of Vilfan et al.
(2018):

Cx ¼ 0:3187�NPQ Eqn 9

Similarly, g and e are coupled as:

g ¼ e� 1 Eqn 10

where ς is a scaling factor, calculated as a ratio of a typical value
of g to a typical value of e, with a value of 0.007, which repre-
sents the quantum efficiency of fluorescence in a dark-adapted
leaf. This scaling is necessary because ɛ = Fs/Fo is a relative value,
whereas g is an absolute emission efficiency.

Retrieving maximum carboxylation capacity

Vcmax was retrieved in three ways, notably using gas exchange
(method 1), PAM data (method 2), and hyperspectral measurements
(method 3). Each method was applied to both the CO2 and the light
response curves, resulting in six sets of values for Vcmax. Method 1 (gas
exchange) is the traditional way of retrieving Vcmax; therefore, we used
the values retrieved with this method to validate the other two meth-
ods. Fig. 2 provides an overview of these methods, Table 1 default
parameters of the biochemical model, and Table 2 presents the
retrieved parameters, their boundaries and constraints.

For method 1, we retrieved Vcmax by inverting the biochemical
model only, by minimizing the squared difference between mea-
sured and simulated assimilation rates A, following Kosugi &
Matsuo (2006), Walker et al. (2014), and Zheng et al. (2017).

Table 1 List of parameters for the SCOPE leaf models.

Parameter Interpretation Range Standard value Unit Origin

Leaf optical: FLUSPECT
Cab Chlorophyll a + b content 0–100 40 lg cm�2 PROSPECT-D
Ccar Total carotenoid content 0–30 10 lg cm�2 PROSPECT-D
Cant Anthocyanin content 0–10 0 lg cm�2 PROSPECT-D
Cw Water content 0–0.4 0.009 cm PROSPECT

Cdm Dry matter content 0–0.5 0.012 g cm�2 PROSPECT

N Leaf mesophyll structure parameter 1–4 1.4 — PROSPECT

Cs Senescence material (brown pigments) 0–0.6 0 arbitrary units PROSPECT

g Fluorescence quantum efficiency 0–0.2 0.01 — FLUSPECT
Cx Photochemical reflectance parameter 0–1.5 0 — FLUSPECT

Leaf physiology: biochemical
Vcmax Maximum carboxylation capacity 0–250 70 lmol CO2m

�2 s�1

m Ball–Berry stomatal conductance param. 2–20 8 —
Rdparam Parameter for dark respiration 0.001–0.03 0.015 —
Kn
o Fitting parameter for Kn (Eqn 4) 2–6 2.48 —

b Fitting parameter for Kn (Eqn 4) 0–10 0.114 —
c Fitting parameter for Kn (Eqn 4) 0–10 2.83 —
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Measured values of PAR, leaf temperature, CO2 and water
vapour were used to force the model.

In method 2, we minimized the quadratic difference
between modelled and (PAM) measured Fs and NPQ
(Fig. 2a). In order to achieve an accurate fit of measured vs
modelled Fs and NPQ, we fitted not only Vcmax but also the
three empirical parameters of Van der Tol et al. (2014) for
NPQ, notably K 0

n , c and b (Eqn 4). With this method we
could test the potential of using steady-state ChlF and NPQ
data to retrieve photosynthesis from the biochemical model,
in the absence of the informative measurements with the satu-
rating flashes Fm and F 0

m).
In method 3, we used only the spectroscopy measurements

to retrieve Vcmax, which was our ultimate aim (Fig. 2b). This
method enabled us to test whether Vcmax in the combined
radiative transfer and biochemical model can be sufficiently
constrained by passive ChlF and s data. A narrow band of
ChlF at the far-red peak (730–750 nm) and of green s (525–
545 nm) were selected as the constraint for the model inver-
sion. We retrieved Vcmax and the additional parameters K 0

n

and ς (Table 2) by minimizing the squared difference between
the simulated and measured spectra (Eqn 11) for the whole-
light- or CO2-response curve at once. In this retrieval, the
other parameters of FLUSPECT, notably the pigments and leaf
structure parameter N, were kept to leaf-specific values. These
values were retrieved once per leaf before the retrieval of Vcmax,
K 0
n and ς, and were assumed not to change during the light-

and CO2-response curves (Table 1). In this way, we attributed
the dynamic changes to the s spectrum to the xanthophyll
cycle, and thus to Cx and Kn (Eqns 9, 10).

In all three methods, a trust-region algorithm was applied in
MATLAB using the built-in function lsqnonlin to minimize a cost
function:

C ¼ ðM � SÞ2 Eqn 11

where M is the measured data and S the corresponding simula-
tion (for the three methods: gas exchange, PAM data, and
hyperspectral data). For method 3, M and S were matrices of
multiple spectra: one spectrum for each of the 10 points on
the CO2-response curve or the eight points on the light-
response curve. These spectra included s and forward ChlF.
Because method 3 only uses spectra as input (and no gas-
exchange or PAM data), it was also applied to the additional
FluoWat leaf clip dataset. The advantage of the FluoWat leaf
clip data is that it provided not only the forward measurements
(transmittance s and ChlF at the shaded side), but also the
backward measurements (reflectance q and ChlF at the illumi-
nated side). However, due to some nonisotropic scattering and
specular reflectance present in the q of some samples, we had
to normalize the spectra of each light curve by subtracting the
q at 565 nm. At this wavelength, the xanthophyll cycle ceases
to have an effect on the spectra simulated by the FLUSPECT
model.

We fitted q and backward ChlF, s and forward ChlF, and
both q and s and forward and backward ChlF together to test the

dependence of the performance on the side of the leaf that is
measured.

Evaluating the model inversion

For method 1, we compared the Vcmax retrieved from the light-
response curve with those retrieved with the CO2-response
curves. These retrievals were then used to validate the other meth-
ods. We evaluated the goodness-of-fit of Vcmax, A, and other vari-
ables by calculating the root-mean-squared error (RMSE) and
Pearson’s correlation coefficient R2. The number of data points is
slightly different among the three methods due to unrealistic val-
ues caused by occasional human error in the measurements, such
as light pollution, vibrations during measurements, or incorrect
measurement light and pulse settings of the PAM system.

The retrieval accuracy was evaluated for the chamber dataset
with the relative RMSE. We further investigated the sensitivity of
s and ChlF spectra to the relevant parameters, the sensitivity of
the retrievals to the starting values of the trust-region algorithm,
and the ill-posedness of the retrieval. We calculated the Jacobian
matrices J for s and ChlF of the model for one representative
sample. To obtain comparable values of the sensitivities and to
normalize J, we multiplied J by the span of each parameter (see
Table 2).

Error propagation in the retrieved parameters due to the mea-
surement noise was estimated as:

E ðDpDpTÞ ¼ ðJ TJ Þ�1r2r Eqn 12

where the standard deviations of the retrieved parameters rp are
found as the square roots of the diagonal elements of this matrix.
rr is the SD of the measurements due to the measurement noise.
For a full derivation of Eqn 12, refer to Vilfan et al. (2018).

Results

Optical and physiological measurements

In Fig. 3 we display different physiological and optical responses
of leaves to variations in CO2 concentrations and illumination.
Assimilation increases with both increasing CO2 and illumina-
tion intensity, until a plateau is reached. The initial slope of the
assimilation curve represents the maximum LUE of the leaf,
whereas the plateau signifies the light-saturated rate of photosyn-
thesis (Bj€orkman, 1981).

For the case of CO2 curves, the indicators of photosynthetic
capacity (A, LUE and ΦPSII) continuously increase until the
external concentration of c. 700 ppm CO2, when the maximum
assimilation and efficiency are reached. NPQ and PRI respond
similarly, with the highest response at the lowest CO2 concentra-
tions. The ChlF response, however, is negligible. For the case of
light-response curves, assimilation and ChlF increase with
increasing light, whereas LUE, DPRI and ΦPSII decrease.

When comparing measured spectral responses of DPRI and
DF740 to physiological variables (Fig. 4), it is immediately evident
that the two types of leaf response curves do not generate the
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same optical response. For the light curves, dynamics of both
DPRI and (F740 are directly driven by the increasing light inten-
sity. Their relations with A, ΦPSII, NPQ and LUE above the peak
value are almost linear, as well as their relations among each
other. By contrast, the CO2 curves produce a seemingly less pre-
dictable response, with higher variations in measured data, and
less obvious relations between the spectral and other variables.

Differences between the two species are generally small (Figs 3,
4): sugar beet (Beta vulgaris) seems to have better capacity for
using elevated CO2 concentrations above 400 ppm, but light
responses of the two species were similar. The difference between

control and reduced soil moisture content was small; for this rea-
son we do not differentiate between species and treatments in the
following results of Vcmax retrieval.

Retrievals of Vcmax

Vcmax and assimilation values estimated with the three methods
are presented in Fig. 5, with supporting statistical information.

In Fig. 5(b) we compare Vcmax retrieved from CO2- and light-
response curves of the same leaves with method 1. The data dis-
play a high level of correlation (R2 = 0.82 and RMSE� 6), with

Fluspect-CX

Biochemical

Measured 
spectra

Simulated 
spectra

Cost 
function

minimized?

Update Vcmax 

YesNo

Retrieved
PROSPECT

params 

Biochemical

Simulated 
A, Fs, Kn

Cost 
function

minimized?

Update Vcmax 

YesNo
Vcmax

Photosynthesis

Methods 1&2(a)

(b) Method 3

Measured 
A (Method 1)

Fs, NPQ (Method 2)

Vcmax
Photosynthesis

Cx = f (NPQ)
 η  = f (ɛ) 

Fig. 2 The schematics for three methods of Vcmax retrieval. (a) In methods 1 and 2, the biochemical model is inverted by constraining the inversion with
either the assimilation rate A curves (method 1) or with nonphotochemical quenching (NPQ) and steady-state fluorescence Fs curves (method 2). (b) In
method 3, the combined model is inverted. First, the PROSPECT parameters (see Table 1) are retrieved once per leaf. Next, the biochemical model is initialized
with standard input values. Parameters for photochemical reflectance Cx and fluorescence quantum efficiency g are prescribed as functions of NPQ and
fluorescence emission efficiency e, following Eqns 9 and 10, respectively. Cx and g, together with the estimated PROSPECT parameters, are provided as inputs
of FLUSPECT. The difference between the FLUSPECT simulation and measured spectra is minimized by a cost function, resulting in the optimization of the
chosen parameters.

Table 2 List of retrieved parameters, their initial values, lower boundaries (LB), upper boundaries (UB) and constraints per each investigated method.

Method Retrieved parameter Unit Initial value LB UB Constraint

1 Vcmax lmol CO2m
�2 s�1 70 0 250 Assimilation rate curves

2 Vcmax lmol CO2m
�2 s�1 70 0 250

K0
n — 2.48 2 6 Fs and NPQ curves

b — 0.114 0 100
c — 2.83 0 100

3 Vcmax lmol CO2m
�2 s�1 70 0 250 ChlF and R or T spectra

K0
n — 2.48 2 6

ς — 0.007 0 0.2

ChlF, Chl fluorescence; Fs, steady state fluorescence; R, reflectance; T, transmittance; NPQ, nonphotochemical quenching. For a full description of parame-
ters, see Table 1.
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very accurate predictions of A (Fig. 5a; R2 = 0.98 and
RMSE� 1).

The two other methods (Fig. 5e,h) capture the span of Vcmax

for both types of response curves, with accurate predictions of A
(Fig. 5d,g, with R2 > 0.80 and RMSE < 4.6). Retrievals of Vcmax

from PAM measurements provide the highest error
(RMSE� 20–23 lmol m�2 s�1). Where hyperspectral data are
used to constrain the model (Fig. 5h), for both CO2 and light
spectral responses, only the magnitude of Vcmax can be estimated
(RMSE < 10), not the variation among leaves. Predictions of A
are accurate, with R2 > 0.85 and RMSE < 4.6.

The residuals (retrieved values minus the values retrieved from
light curves with method 1) for the three methods are also shown
(Fig. 5c,f,i). The smallest range of differences occurs with
method 1, with unreliable estimations from method 2. Methods
2 and 3 show a consistent overestimation of Vcmax, especially at
high Vcmax values.

Retrievals from the light-response curve have a better good-
ness-of-fit (R2 = 0.45) than retrievals from CO2-response curves
(R2 = 0.081). We evaluated other state variables besides Vcmax

and A; Fig. 6 shows that whereas ETR, ΦPSII, and Kn are esti-
mated rather well, simulated Fs is poorly correlated to PAM-

measured Fs. This holds for both the CO2- and light-response
curves, although the latter have a better goodness-of-fit.

The accuracy of spectral fit after optimization between mea-
sured and simulated s or ChlF is presented in Fig. 7. The spec-
tral fit of s and forward ChlF at the selected wavelengths is
similarly good, with error close to 0% on average, with a maxi-
mal deviation of 4% for s and 17% for ChlF. The measure-
ment error of the spectra used for Vcmax retrieval had a
negligible effect on the estimated Vcmax (3%, not shown). Most
of the uncertainty in Vcmax is due to the sensitivity of Vcmax to
the spectra and the model representation. This is illustrated in
Fig. 8, showing the RMSE used as the cost functions for the
first and third methods as a function of Vcmax for one represen-
tative leaf. Both the RMSE of fluorescence and transmittance
have a single minimum, indicating their sensitivity to Vcmax.
The RMSE of fluorescence has a sharp and deep minimum,
which confirms the sensitivity of fluorescence to Vcmax, but the
location of the minimum differs between the CO2- and light-
response curves, which is indicative of a model representation
error. The RMSE of transmittance shows a less sharp mini-
mum, but the location of the minimum agrees between the
CO2 and light curves, and with the value retrieved from the
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assimilation data with method 1. This indicates that the model
cannot fully reproduce the measured spectrum, but the trans-
mittance nevertheless responds to Vcmax and the model is able
to identify the correct value of Vcmax.

We further investigate the separate contributions of the fitting
parameters used in method 3 (Vcmax, K

0
n and ς) to the spectra

simulated by the combined model in Fig. 9. s is influenced most
by Vcmax, less by K

0
n , and -obviously- ς (the scaling of ChlF) has

no effect on s while ChlF is influenced mostly by ς, less by K 0
n ,

and the effect of Vcmax is still relatively small despite the clear sen-
sitivity shown in Fig. 8.

Retrieving Vcmax from FluoWat data For the FluoWat data
(Fig. 10), we obtained similar results as for the chamber
dataset: the correct range of Vcmax values is retrieved (RMSE
c. 13 lmol m�2 s�1), but with low goodness-of-fit. The residu-
als have the same span as obtained for the chamber dataset
(Fig. 5h), albeit reversed: there is an increase in underestima-
tion with increasing Vcmax values. There are no substantial dif-
ferences in results when transmittance or reflectance of the

leaf are used for the retrieval. It should be emphasized that
we used the Vcmax values obtained earlier in the chamber for
validation, because the FluoWat leaf clip does not allow for
gas-exchange measurements.

Discussion

Both the transmittance and the fluorescence spectra (method 3)
contain sufficient information to constrain Vcmax, as demon-
strated by the clear minima in their RMSE with respect to
varying Vcmax (Fig. 8). The results show that, for our dataset,
with limiting span of Vcmax, the magnitude but not the vari-
ability of Vcmax among leaves can be estimated from the cou-
pled model, by using the combined information of
hyperspectral ChlF and green q or s. The RMSE for the esti-
mated Vcmax is nevertheless below 14 lmol CO2 m

�2 s�1,
which complies with the error determined by similar studies of
leaf level responses (Serbin et al., 2012; Dechant et al., 2017)
and by a study on airborne data by Serbin et al. (2015). Both
Serbin et al. (2012) and Dechant et al. (2017) used a much
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wider range of Vcmax (0–200 lmol CO2 m
�2 s�1). Considering

the limited span of Vcmax in our measurements (50–
100 lmol CO2 m

�2 s�1), the low and comparable values of

RMSE are encouraging. Leaf datasets with a known wider span
of maximum photosynthetic capacity would provide a valuable
further validation of the model.
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The response of ChlF to changing CO2 is small, but neverthe-
less meaningful (see dashed line in Fig. 8c). This response is lim-
ited due to the fact that in a CO2-response curve, a reduction of
PQ is compensated by an increase in NPQ and vice versa, with
limited net effect on ChlF. The responses of NPQ and DPRI are
unambiguous, but tuning Vcmax cannot bring the RMSE of trans-
mittance close to zero (Fig. 8b): the effect of NPQ on transmit-
tance is small compared with the accuracy by which we can
reproduce the overall transmittance spectrum.

Potential errors in the Vcmax retrieval with method 3 include
measurement errors, the performance of the optimization
method, and the biochemical and radiative transfer model repre-
sentation. We investigated the potential effects of measurement
errors and accuracy of spectral fit on the retrievals of Vcmax, but

these effects were minimal: up to 3% of the retrieved Vcmax

values. Crucial is the model representation.
Despite controlled experimental conditions, the values of

Vcmax estimated from the assimilation rates (method 1) differ up
to 25% between light and CO2 responses (Fig. 5c). A study by
Miao et al. (2009) has similarly shown that significant differences
exist between different methods of Vcmax retrieval from A curves.
This could be attributed to limitations of the Collatz model
(Collatz et al., 1991) used by Van der Tol et al. (2014), which
does not use the maximum electron transport capacity Jmax of the
original Farquhar model as an additional parameter. The parame-
terization of photorespiration may also contribute to this differ-
ence; photorespiration was not suppressed in our experiment,
which was carried out under ambient O2.
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Differences in the optimized values from transmittance
and fluorescence (Fig. 8b,c) may originate from the pre-
scribed relations of g and Cx to e and Kn, which were
reconciled by using a single cost function for both trans-
mittance and fluorescence, and allowing variations in these
relationships.

We established the link between the radiative transfer model
FLUSPECT and the photosynthesis model via parameter g (the
absolute ChlF quantum yield) to e = Fs/Fo, and Cx to Kn via a cal-
ibrated coefficient (Vilfan et al., 2018). This introduces uncer-
tainty, because PAM Fs cannot be reproduced well by the model.
The poor correlation of PAM Fs to simulated Fs can at least
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partly be explained by the compensation of the effects of PQ and
NPQ, resulting in a relatively small range of Fs, which is then
prone to uncertainties. This was also noted in the development of
the extended biochemical model (Van der Tol et al., 2014,
Fig. 9).

In Van der Tol et al. (2014), two different parametrizations
are given for Kn for different datasets. Obviously, K 0

n , a parame-
ter for the xanthophyll pool size, may vary. In a first attempt to
fit s and ChlF of the light-response curves, we found that retriev-
ing only Vcmax while keeping K 0

n at the default value of Van der
Tol et al. (2014) did not provide a satisfactory fit (not shown
here). It was necessary, therefore, to include K 0

n in the retrieval.
Inclusion of ς was necessary in order to translate Fs in arbitrary
units to absolute values of ChlF yield.

Indeed, the sensitivity analysis (Figs 8, 9) reveals that s simu-
lated with the combined model depends primarily on Vcmax,
whereas the magnitude of ChlF is most affected by the hitherto
unconstrained ς, and K 0

n has a similar effect on both indicators.
These results indicate that both s and ChlF contribute to the
Vcmax estimations.

Potential ill-posedness could be reduced by introducing prior
information on Vcmax; for example, based on vegetation indices
or pigment concentrations, of which Chl concentration is a most
valid candidate (Houborg et al., 2015; Gitelson et al., 2016). A
more mechanistic modelling could potentially reduce the uncer-
tainty in other parameters, such as K 0

n and ς. For example, the
description of energy partitioning to NPQ used in this study
could be replaced with MD12, whereas models developed by
Zaks et al. (2013) and Matuszy�nska et al. (2016) may help con-
strain ς using fluorescence kinetics.

The residuals of two datasets (chamber vs leaf clip) used with
method 3 (Figs 5i, 9) have the same span, which is encouraging,
as it shows that similar results can be achieved with different
types of spectral measurements (i.e. reflectance or transmittance).
In general, predictions of A are at least 10% more accurate for
estimations from light-response curves compared with CO2

responses; and similarly, light-response curves provide a higher
accuracy of Vcmax retrieval.

Our study showed that a quantification of photosynthesis from
transmittance or reflectance and ChlF during light- and CO2-
response curves is possible and very promising.
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