Skip to main content
. 2019 Feb 13;38(12):2248–2268. doi: 10.1002/sim.8101

Table 2.

The mean estimates (standard deviation) over 1000 replicates when data sets were generated from the Dirichlet‐multinomial mixed model with categorical‐specific random effect with common variance

λ2F= 0.5 λ2E= −1 λ3E= 0.1 λ22EF= 0.8 λ32EF= −2 logσu= −1.309 log(θ)= −2.302 Loglik
Subj‐sp 0.418(0.130) −0.959(0.059) 0.096(0.050) 0.765(0.071) −1.900(0.075) −1.680(0.754) −1.886(0.094) −3918.581(18.333)
Cat‐sp 0.438(0.172) −1.007(0.116) 0.108(0.109) 0.809(0.084) −2.017(0.086) −0.704(0.005) −2.366(0.125) −3961.971(14.865)
λ2F=
0.5
λ2E=1
λ3E=
0.1
λ22EF=
0.8
λ32EF=2 logσu=0.693 log(θ)=2.302 Loglik
Sub‐sp 0.359(0.130) −0.882(0.080) 0.096(0.077) 0.695(0.088) −1.739(0.095) −0.973(0.334) −1.320(0.099) −4064.461(18.503)
Cat‐sp 0.462(0.170) −1.000(0.122) 0.110(0.117) 0.794(0.085) −1.997(0.083) −0.607(0.028) −2.253(0.129) −3988.959(16.392)
λ2F=
0.5
λ2E=1
λ3E=
0.1
λ22EF=
0.8
λ32EF=2 logσu=0.223 log(θ)=2.302 Loglik
Sub‐sp 0.300(0.132) −0.766(0.099) 0.092(0.105) 0.602(0.11) −1.509(0.121) −0.766(0.196) −0.698(0.112) −4171.966(17.482)
Cat‐sp 0.455(0.194) −1.004(0.173) 0.099(0.17) 0.795(0.089) −1.985(0.096) −0.237(0.049) −2.235(0.165) −4011.262(19.136)
λ2F=
0.5
λ2E=1
λ3E=
0.1
λ22EF=
0.8
λ32EF=2
logσu=
0
log(θ)=2.302 Loglik
Sub‐sp 0.270(0.129) −0.691(0.112) 0.092(0.117) 0.541(0.122) −1.376(0.133) −0.699(0.187) −0.367(0.117) −4193.591(19.342)
Cat‐sp 0.449(0.200) −1.003(0.213) 0.100(0.197) 0.795(0.088) −1.985(0.101) −0.020(0.046) −2.225(0.177) −3993.517(23.146)

Each rows started with Sub‐sp represents the estimates (standard deviation) when data sets were fitted with the DMM model with subject‐specific random effect and rows started with Cat‐sp represents the estimates (standard deviation) when data sets were fitted with DMM model with categorical‐specific random effect having common variance.

λ,σ u,θ are as explained in Figure 1.

Loglik represents the loglikelihood value obtained using the corresponding model.

Rows in gray represent the estimation when the standard deviation of the normally distributed random effect is small.