Table 2.
0.5 | −1 | 0.1 | 0.8 | −2 | −1.309 | −2.302 | Loglik | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Subj‐sp | 0.418(0.130) | −0.959(0.059) | 0.096(0.050) | 0.765(0.071) | −1.900(0.075) | −1.680(0.754) | −1.886(0.094) | −3918.581(18.333) | ||||
Cat‐sp | 0.438(0.172) | −1.007(0.116) | 0.108(0.109) | 0.809(0.084) | −2.017(0.086) | −0.704(0.005) | −2.366(0.125) | −3961.971(14.865) | ||||
|
−1 |
|
|
−2 | −0.693 | −2.302 | Loglik | |||||
Sub‐sp | 0.359(0.130) | −0.882(0.080) | 0.096(0.077) | 0.695(0.088) | −1.739(0.095) | −0.973(0.334) | −1.320(0.099) | −4064.461(18.503) | ||||
Cat‐sp | 0.462(0.170) | −1.000(0.122) | 0.110(0.117) | 0.794(0.085) | −1.997(0.083) | −0.607(0.028) | −2.253(0.129) | −3988.959(16.392) | ||||
|
−1 |
|
|
−2 | −0.223 | −2.302 | Loglik | |||||
Sub‐sp | 0.300(0.132) | −0.766(0.099) | 0.092(0.105) | 0.602(0.11) | −1.509(0.121) | −0.766(0.196) | −0.698(0.112) | −4171.966(17.482) | ||||
Cat‐sp | 0.455(0.194) | −1.004(0.173) | 0.099(0.17) | 0.795(0.089) | −1.985(0.096) | −0.237(0.049) | −2.235(0.165) | −4011.262(19.136) | ||||
|
−1 |
|
|
−2 |
|
−2.302 | Loglik | |||||
Sub‐sp | 0.270(0.129) | −0.691(0.112) | 0.092(0.117) | 0.541(0.122) | −1.376(0.133) | −0.699(0.187) | −0.367(0.117) | −4193.591(19.342) | ||||
Cat‐sp | 0.449(0.200) | −1.003(0.213) | 0.100(0.197) | 0.795(0.088) | −1.985(0.101) | −0.020(0.046) | −2.225(0.177) | −3993.517(23.146) |
Each rows started with Sub‐sp represents the estimates (standard deviation) when data sets were fitted with the DMM model with subject‐specific random effect and rows started with Cat‐sp represents the estimates (standard deviation) when data sets were fitted with DMM model with categorical‐specific random effect having common variance.
λ,σ u,θ are as explained in Figure 1.
Loglik represents the loglikelihood value obtained using the corresponding model.
Rows in gray represent the estimation when the standard deviation of the normally distributed random effect is small.