Skip to main content
. Author manuscript; available in PMC: 2020 Apr 3.
Published in final edited form as: J Am Chem Soc. 2019 Mar 21;141(13):5135–5138. doi: 10.1021/jacs.9b01091

Table 1.

Optimization of E-CuAAC by DKRa

graphic file with name nihms-1029461-t0003.jpg

Entry [Cu] source Ligand Temp (°C) Yield (%) er

1 CuI L1 (2.5%) rt 80 57:43
2 (CuOTf)2PhMe L1 (2.5%) rt >98 60:40
3 (CuOTf)2FhMe L2 (2.5%) rt 95 53:47
4 (CuOTf)2PhMe L3 (2.5%) rt 93 86:14
5 (CuOTf)2PhMe L4 (2.5%) rt 80 76:24
6 (CuOTf)2PhMe L5 (2.5%) rt 58 51:49
7 (CuOTf)2PhMe L6 (2.5%) rt 87 52:48
8 (CuOTf)2PhMe L7 (2.5%) rt 65 52:48
9 (CuOTf)2PhMe L8 (2.5%) rt >98 52:48
10 (CuOTf)2PhMe L4 (5.0%) rt 83 88:12
11 (CuOTf)2PhMe L4 (5.0%) 40 >98 99:1
12 Cu(MeCN)4PF6 L4 (5.0%) 40 73 90:10
13 Cu(MeCN)4BF4 L4 (5.0%) 40 82 91:9

Reactions conducted with allylic azide la (0.1 mmol), alkyne 2a (0.12 mmol), in dimethoxyethane (0.2 M), with 2.5 mol% [Cu] and either 2.5 mol% or 5 mol% ligand. Yields based on 1H NMR analysis using 1,3,5-trimethoxybenzene as an internal standard. Chiral HPLC was used to determine er. All yield and er values reflect the average of duplicate trials. See Supporting Information for full details.

graphic file with name nihms-1029461-t0004.jpg