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Our previous studies showed that ZBTB7A played an important role in promoting nasopharyngeal carcinoma (NPC) progression.
However, molecular mechanisms of different levels of ZBTB7A are still unclear. It is necessary to search molecular markers which
are closely connected with ZBTB7A. We selected NPC sublines CNE2 with stably transfecting empty plasmid (negative control,
NC) and short hair RNA (shRNA) plasmid targeting ZBTB7A as research objectives. Microarray was used to screen differentially
expressed long noncoding RNAs (lncRNAs) andmessenger RNAs (mRNAs) via shRNA-CNE2 versusNC-CNE2. Quantitative PCR
(qPCR) was used to validate lncRNAs andmRNAs from the sublines, chronic rhinitis, and NPC tissues. Bioinformatics was used to
analyze regulatory pathwayswhichwere connectedwith ZBTB7A.The 1501 lncRNAs (long noncodingRNAs) and 1275 differentially
expressed mRNAs were upregulated or downregulated over 2-fold. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis revealed that the upregulated or downregulated carbohydrate and lipid metabolisms probably
involved in carcinogenicity of shRNA-CNE2 (P-value cut-off was 0.05). In order to find the molecular mechanisms of ZBTB7A, we
validated 12 differentially expressed lncRNAs and their nearby mRNAs by qPCR. Most of the differentially expressed mRNAs are
closely connected with carbohydrate and lipid metabolisms in multiply cancers. Furthermore, part of them were validated in NPC
and rhinitis tissues by qPCR. As a result, NR 047538, ENST00000442852, and fatty acid synthase (FASN) were closely associated
with NPC. ZBTB7A had a positive association with NR 047538 and negative associations with ENST00000442852 and FASN.The
results probably provide novel candidate biomarkers for NPC progression with different levels of ZBTB7A.

1. Introduction

Nasopharyngeal carcinoma (NPC) is an endemic malignant
head and neck tumor in southern China [1, 2]. Epstein-Barr
virus (EBV) and tumor metastasis related factors are closely
connected with NPC progression [3, 4]. The biomarkers
of EBV include Epstein-Bar encoded small nuclear RNA
(EBER) in tissues, EBVDNA, and anti-EBV antibodies in cir-
culating plasma or serum. All of them are important predic-
tors in early diagnosis and prognosis of NPC. Furthermore,

plasma EBV DNA is a better marker in advanced NPC than
others [5–7].However, a fewpatients have negative EBVDNA
in plasma [8, 9]. The negative result indicates a limitation of
EBV DNA. In order to improve detection rate of NPC, it is
imperative to search novel candidate biomarkers.

ZBTB7A is also named as Pokemon, FBI-1, OCZF, and
LRF. It is a critical transcription factor in the poxvirus
and zinc finger/broad complex, tramtrack, and bric-a-
brac (POZ/BOZ) and Krüppel (POK) family, which can
specifically bind DNA through the Krüppel-like C
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fingers and repress transcription by interacting transcrip-
tional cofactors with POZ/BTB domain [10]. TakahiroMaeda
[11] firstly discovered that ZBTB7A was a proto-oncogene
because it peculiarly repressed the transcription of tumor
suppressor alternative reading frame (ARF). Overexpression
of ZBTB7A promotes lymphomas progression [11]. It also
plays an oncogenic role in non-small cell lung cancer [12],
ovarian cancer [13], breast cancer [14], hepatocellular carci-
noma [15], and osteosarcoma [16]. However, loss of ZBTB7A
shows it is a tumor suppressor in prostate cancer [17],
melanoma [18]. The dual roles of ZBTB7A controversially
appear in a kind of cancer such as colorectal cancer [19,
20] and gastric cancer [21, 22]. Basing on the complex
roles in multiply cancers, ZBTB7A is confirmed to be a
significant target of prognosis and therapy [11–22]. It is also
an important proto-oncogene in NPC [23–25]. ZBTB7A level
of NPC tissues was mostly higher than that of chronic rhini-
tis tissues [23]. Overexpression of ZBTB7A promoted cell
vitality, migration, and invasion (Supplementary Materials,
Figure S1 and S2). The tumorigenicity of NPC cell lines
CNE2 and CNE3 with transiently decreasing ZBTB7A was
weaker than that of cells transfecting empty plasmid [24, 25].
However, progression of NPC cell lines CNE2 and 5-8F was
compensatorily promotedwhen ZBTB7Awas stably knocked
down [24]. The results indicate that ZBTB7A probably con-
nects with complex pathways including oncogene and tumor
suppressor genes.

Long noncoding RNAs (lncRNAs) are non-protein-
coding transcripts with more than 200 nucleotides in length
[26]. Since lncRNA microarray is continuously developed
[27], lncRNAs have been demonstrated to involve in bio-
logical processes of cancer [28–30]. Some lncRNAs such
as antisense noncoding RNA in the INK4 locus (ANRIL),
HOXA transcript at the distal tip (HOTTIP), and differ-
entiation antagonizing non-protein-coding RNA (DANCR)
deteriorate NPC development [31–33]. Maternally expressed
gene 3 (MEG3) and LINC0086 suppress proliferation of NPC
cells [34, 35]. Although the connections between ZBTB7A
and lncRNAs are reported in osteosarcoma and non-small
cell lung cancer [16, 36, 37], their relationships are still
mysterious in NPC.

Therefore, it is meaningful to discover the unknown
field. We will screen differentially expressed lncRNAs and
messenger RNAs (mRNAs) from NPC cell sublines with
stably transfecting empty plasmid and short hair RNA
(shRNA) plasmid targeting ZBTB7A by lncRNA microarray.
Bioinformatics will be used to search potential connections
between ZBTB7A and relevant pathways. Part of them will
be selected and validated by qPCR in the sublines, chronic
rhinitis, and NPC tissues.

2. Methods

2.1. Patient Selection. After being approved by patients, 20
chronic rhinitis and 60 NPC tissues were obtained using
biopsy (July 2016-February 2017). All of them were preserved
in liquid nitrogen. The tissues were confirmed by pathology
from the formalin-fixedparaffinwax-embedded samples.The
pathological type of NPC was undifferentiated carcinomas of

the nasopharyngeal type (UCNT). This study was approved
by the ethics committee of The People’s Hospital of Guangxi
Zhuang Autonomous Region.

2.2. Cell Culture. CNE2 and CNE3 were preserved in
Research Center of Medical Sciences, The People’s Hospital
of Guangxi ZhuangAutonomousRegion (Nanning, Guangxi,
China). CNE2 was established from a patient suffering from
NPC in Guangdong Province. The histological type of NPC
was a poorly differentiated squamous carcinoma [38]. CNE3
was established from a patient suffering from liver metastatic
carcinoma of primary NPC in Guangxi Province. The his-
tological type of liver metastatic carcinoma and CNE3 was
a poorly differentiated adenosquamous carcinoma [39], but
that of CNE3 turned poorly differentiated adenocarcinoma
after 20 years [40]. As a team member of Professor Yi
Zeng, Wei Jiao has cultured and detected the cell lines in
our hospital [23–25, 41, 42]. 5-8F and 6-10B were kindly
provided by Professor Musheng Zeng (State Key Laboratory
of Oncology in South China, Sun Yat-Sen University Cancer
Center, Guangzhou, Guangdong, China). They were grown
in RPMI Medium 1640 basic with 10% fetal bovine serum
(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA).
NP69was kindly provided by Professor Sai-WahTsao (School
of Biomedical Sciences, University of Hong Kong, Hong
Kong SAR). NP69 was in Keratinocyte-SFM with 5% Bovine
Pituitary Extract and Recombinant Epidermal Growth Factor
(Gibco). All of them were in supplementary material. Based
on the prior study [24], we used CNE2 sublines with stably
transfecting empty plasmid and shRNA plasmid targeting
ZBTB7A to screen differentially expressed lncRNAs and
mRNAs. The sublines were named as negative control-CNE2
(NC-CNE2) and shRNA-CNE2, of which tumorigenicity was
stronger than that of NC-5-8F and NC-6-10B [24].

2.3. LncRNAMicroarray. shRNA-CNE2 and NC-CNE2 were
used in lncRNA microarray. Both of them were acquired
from three different passages. Total RNA was extracted by
TRIZOL (Invitrogen, Carlsbad, CA, USA). RNA quantity
and quality were measured by NanoDrop ND-1000 (Thermo
Fisher Scientific, Inc.). RNA integrity was assessed by stan-
dard denaturing agarose gel electrophoresis. The Arraystar
Human lncRNAMicroarray V3.0 was designed for the global
profiling of human lncRNAs and protein-coding mRNAs.
30,586 lncRNAs and 26,109 mRNAs could be detected by
third-generation lncRNA microarray.

2.4. RNA Labeling and Array Hybridization. Sample label-
ing and array hybridization were performed according to
the Agilent One-Color Microarray-Based Gene Expression
Analysis protocol (Agilent Technology, Santa Clara, CA
95051, USA) with minor modifications. Briefly, mRNA was
purified from total RNA after removal of ribosome RNA
(rRNA; mRNA-ONLY� Eukaryotic mRNA Isolation Kit;
Epicentre, Madison, WI 53719, USA). Each sample was
amplified and transcribed into fluorescent complementary
RNA (cRNA) along the entire length of the mRNAs without
3󸀠 bias utilizing a random priming method (Arraystar Flash
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RNA Labeling Kit; Arraystar, Inc., Rockville, MD 20850,
USA). The labeled cRNAs were purified by RNeasy Mini
Kit (Qiagen, Düsseldorf, Nordrhein-Westfalen, Germany).
The concentration and specific activity of the labeled cRNAs
(pmol Cy3/𝜇g cRNA) were measured by NanoDrop ND-
1000. 1 𝜇g of each labeled cRNA was fragmented by adding
5 𝜇l 10 x Blocking Agent and 1 𝜇l of 25 x Fragmentation
Buffer, then themixture was heated at 60∘C for 30min, finally
25 𝜇l 2 x GE hybridization buffer was added to dilute the
labeled cRNA. 50 𝜇l of hybridization solution was dispensed
into the gasket slide and assembled to the lncRNA expression
microarray slide. The slides were incubated for 17 h at 65∘C
in an Agilent Hybridization Oven. The hybridized arrays
were washed, fixed, and scanned with using the Agilent
DNA Microarray Scanner (part number G2505C; Agilent
Technology).

2.5. Data Analysis. The Agilent Feature Extraction software
(version 11.0.1.1) was used to analyze acquired array images.
Quantile normalization and subsequent data processing were
performed with using the GeneSpring GX v12.1 software
package (Agilent Technologies). Differentially expressed
lncRNAs andmRNAs between the two groupswere identified
using fold-change >2 as the cut-off. Hierarchical clustering
and combined analysis were performed using homemade
scripts. Gene ontology (GO) and pathway analysis were
performed in the standard enrichment computationmethod.

2.6. Validation of the Differentially Expressed LncRNAs and
MRNAs by QPCR. The total RNA of NC-CNE2 and shRNA-
CNE2 cells, chronic rhinitis, and NPC tissues was extracted
by TRIZOL (Invitrogen) and reversely transcribed by Super-
Script � III Reverse Transcriptase Kit (Invitrogen). 12 lncR-
NAs and their nearby mRNAs were selected basing on
data analysis. All of them were differentially expressed.
The quantitative PCR (qPCR) was executed with 2 × PCR
master mix (Arraystar) by ViiA 7 qPCR System (Applied
Biosystems; Thermo Fisher Scientific, Inc.). Specific primers
of the lncRNAs and nearby mRNAs were designed by Primer
5.0 (Table 1). The reaction program consisted of an initial
denaturation step at 95∘C for 10minutes; denaturation at 95∘C
for 10 seconds, and annealing at 60∘C for 60 seconds for 40
cycles; the dissociation stage at 95∘C for 10 seconds, 60∘C
for 1 minute, 95∘C for 15 seconds, and 60∘C for 15 seconds.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was
used as an internal control.The experiments were performed
in triplicate. The fold-change of the lncRNAs and mRNAs
were calculated by the 2 Delta-delta cycle threshold (Ct)
method.

2.7. Statistical Analysis. Statistical analysis was performed by
SPSS 13.0 and sigmaPlot 12.5 (SPSS Inc., Chicago, IL, USA),
GraphPad Prism 5.0 (GraphPad Software, San Diego, CA,
USA). The results of the assays were presented as mean ±
Standard Deviation (SD). Statistical differences between two
groups were evaluated with independent samples t-test. In
GO analysis, Fisher’s exact test was used to search more
overlap between the differentially expressed list and the GO

annotation list than that of being expected by chance. In
scatter plot of tissues by qPCR, Mann Whitney U test was
used if the variances were significantly different through F
test. P<0.05 was considered to be statistically significant.

3. Results

3.1. Differentially Expressed LncRNAs and MRNAs in NPC
Cells with Low Expression of ZBTB7A. After quantile nor-
malization of the raw data, the expression profiles of 23947
lncRNAs and 21058 mRNAs were obtained from shRNA-
CNE2 and NC-CNE2 (Figure 1). Cluster analysis showed
some lncRNAs and mRNAs were differentially expressed
via shRNA-CNE2 versus NC-CNE2 (Figures 1(a) and 1(b)).
Box plot showed the distribution of normalized intensity
values of test and control groups was generally symmetrical
(Figures 2(c) and 2(d)). Scatter plot figuratively showed
relative folds of 1501 lncRNAs (738 upregulated and 763
downregulated) and 1276 mRNAs (679 upregulated and 597
downregulated), which were over 2-fold. The number of
differentially expressed lncRNAs and mRNAs was listed.
We divided them into 3 groups according to different fold-
change. There were 2-5-fold-change, 5-10-fold-change, and
more than 10-fold-change. 77 lncRNAs and 44 mRNAs were
over 10-fold-change (Table 2).

3.2. GO Analysis. GO is a system of standard classification
of gene function, including biological process (BP), cellular
component (CC), and molecular function (MF). The results
showed the significant GO terms of differentially expressed
genes.We found that the highest enrichedGO terms of upreg-
ulatedmRNAs were response to stress (GO: BP), cytoplasmic
part (GO: CC), and oxidoreductase activity (GO: MF) (Fig-
ure 2(a)). The highest enriched GO terms of downregulated
mRNAs were response to stress (GO: BP), cytoplasm (GO:
CC), and catalytic activity (GO: BF) (Figure 2(b)).The results
indicated some differentially expressed lncRNAs and relevant
mRNAs probably involved in the activities.

3.3. KEGG Pathway Analysis. Kyoto Encyclopedia of Genes
and Genomes (KEGG) is a database resource for knowing
high-level biological functions and utilities. KEGG pathways
were constructed to better know the biological pathways
and search the molecular mechanisms of NPC progression.
The results showed significant pathways of differential genes.
KEGG pathways connected with upregulated (Figures 3(a)
and 3(b), left) mRNAs and downregulated (Figures 3(a) and
3(b), right) differentially distributed mRNAs. The top upreg-
ulated pathway was steroid hormone biosynthesis. Steroid is
a kind of lipid. The top downregulated pathway was protein
digestion and absorption. The third downregulated pathway
was peroxisome proliferators-activated receptor (PPAR) sig-
naling pathway, which included important lipid metabolism.
463 differentially expressed mRNAs were closely associated
with carbohydrate and lipid metabolisms. The pathways of
lipid metabolism probably were more meaningful than those
of carbohydrate metabolism because of more enrichment
scores in lipid pathways. In upregulated pathways, the scores
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Table 1: The list of specific primers of 12 differentially expressed lncRNAs and nearby mRNA designed utilizing primer 5.0.

Number Seqname Prime Sequence
(GeneSymbol)

1∗ NR 047538 F:5󸀠CCCTTATTTTATTCCTGGCTCC3󸀠

(CDKN2B-AS1) R:5󸀠CGGATAGAGCAATGAGATGACC3󸀠

NM 004936 F:5󸀠AGCGAAACACAGAGAAGCGG3󸀠

(CDKN2B) R:5󸀠CAGCAGACATTGGAGTGAACG3󸀠

2∗ NR 033967 F:5󸀠ACAGCAGAAAATGCCCACG3󸀠

(SLC2A1-AS1) R:5󸀠GGTTCCCAAATTGTTCCTACC3󸀠

NM 006516 F:5󸀠ATCATCGGTGTGTACTGCGG3󸀠

(SLC2A1) R:5󸀠GTTCTCCTCGTTGCGGTTG3󸀠

3∗ ENST00000585189 F:AGCTCTGGCATCTCCAGTCA
(RP11-192H23.5) R:CAGATCCTGCCGTTGTTACC
NM 005165 F:5󸀠CAGGATAAGGGCATCGTCG3󸀠

(ALDOC) R:5󸀠GCTGGCAGATACTGGCATAAC3󸀠

4∗ ENST00000398216 F:5󸀠ATGGGTTGAGGGTCTGTTGT3󸀠

(RP11-54O7.2) R:5󸀠TTTTCTGAGTGGCCTGGGT3󸀠

NM 005101 F:5󸀠CAGCTCCATGTCGGTGTCAG3󸀠

(ISG15) R:5󸀠GAGGTTCGTCGCATTTGTCC3󸀠

5∗ ENST00000442852 F:5󸀠TGTCTTCATTAGTCTGGTCCTCC3󸀠

(XXbac-BPG27H4.8) R:5󸀠CCTTTCTCCTGGTCATTTGTTC3󸀠

NM 003897 F:5󸀠CACTCCCCAAAAAGAATCCG3󸀠

(IER3) R:5󸀠CTCCGCTGTAGTGTTCTGAGTTC3󸀠

6∗ uc001enh.1 F:5󸀠CGAGCAATGTTCTGTAGTTGTC3󸀠

(AX747132) R:5󸀠GTAAGAATAATATGCCTGGGAA3󸀠

NM 006472 F:5󸀠CTGATGGGCGGGTGTCTGT3󸀠

(TXNIP) R:5󸀠GGCAAGGTAAGTGTGGCGG3󸀠

7∗ TCONS 00019671 F:5󸀠CAGAGGAAAATAGATGCGACAG3󸀠

(XLOC 009475) R:5󸀠TGCGTTCTTAGCCGTGATG3󸀠

NM 182709 F:5󸀠CTCTACCTGTGCGAGTTCTGC3󸀠

(KAT5) R:5󸀠TGTGGAAGCCCTTACAGTCATAC3󸀠

8∗ TCONS 00020439 F:5󸀠TTCCACCAAAAGCCAGCAC3󸀠

(XLOC 009769) R:5󸀠GACTGGGGTTGACCACTCTGT3󸀠

NM 002205 F:5󸀠GTGACTACTTTGCCGTGAACCA3󸀠

(ITGA5) R:5󸀠GAGATGAGGGACTGTAAACCGA3󸀠

9∗ TCONS 00025256 F:5󸀠CTTGGGAATAGGGTCATCG3󸀠

(XLOC 012590) R:5󸀠GCTTCTCCTGTGTGTCTGTCTC3󸀠

NM 004104 F:5󸀠TCCGAGTCTCCTGACCACTACCT3󸀠

(FASN) R:5󸀠GCAGCACCACATCCTCAAACA3󸀠

10∗ TCONS 00029013 F:5󸀠TCAAAGGAGCAAGGGGAACT3󸀠

(XLOC 013936) R:5󸀠 CGCACTTAGCAACCATCACA3󸀠

NM 101395 F:5󸀠CTGAGCAGACAGGCTGGTATT3󸀠

(DYRK1A) R:5󸀠ACAGGTTATCGGCAGAGGTAG3󸀠

11∗ TCONS 00029159 F:5󸀠GCAAAATGGGGAGGATGAGGT3󸀠

(XLOC 014103) R:5󸀠ACCGTCTTGAGGCAGGTGTT3󸀠

NM 173354 F:5󸀠CTGAGCAGACAGGCTGGTATT3󸀠

(SIK1) R:5󸀠ACAGGTTATCGGCAGAGGTAG3󸀠

12∗ TCONS 00013537 F:5󸀠 GATGGGGATAGGAGGTTGGA3󸀠

(XLOC 006176) R:5󸀠GGTGAATTGGGAGATGGAGAA3󸀠

NM 000940 F:5󸀠TTTTACCAACTCCCTCCTGTCA3󸀠

(PON3) R:5󸀠 TGCCCAACTGTATCACCTTCA3󸀠

13∗∗ NM 002046.5 F:5󸀠GGGAAACTGTGGCGTGAT3󸀠

(GAPDH) R:5󸀠GAGTGGGTGTCGCTGTTGA3󸀠

Seqname: the sequence identifier; GeneSymbol: the symbol of the lncRNA or mRNA.
∗ In Number 1-Number 12, 12 differentially expressed lncRNAs and their nearby mRNAs were validated by qPCR. Italic scripts represented sequence name,
gene symbol, and prime sequences of the mRNAs.
∗∗ GAPDH was used as an internal reference control.
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Figure 1: RNA expression profiles in shRNA-CNE2 and NC-CNE2 cells.Hierarchical clustering indicated (a) lncRNA and (b) mRNA profiles.
Box plot of (c) lncRNA or (d) mRNA profiles was a traditional method for visualizing separately the distribution of dataset. Scatter plot of (e)
lncRNA or (f) mRNA profiles was a convenient visualization for assessing the variation of chips. T1-T3 meant test groups which were stably
transfected with shRNA plasmid targeting ZBTB7A. C1-C3 meant negative control groups which were stably transfected with blank plasmid.
‘Red’ showed relatively high expression. ‘Green’ showed relatively low expression.The values of the x- and y-axes were the average normalized
signal values of NC-CNE2 and shRNA-CNE2 in the scatter plot (log 2 scaled).

of steroid hormone biosynthesis and steroid biosynthesis
were 5.04301 and 3.129842. In downregulated pathways, the
score of PPAR signaling pathway was 2.035416 (all p<0.05)
(Table 3).

3.4. Signal Pathway Analysis. Steroid hormone biosynthesis
was markedly activated in NPC cells with low expres-
sion of ZBTB7A. Aldo-keto reductase family 1 member
C3 (AKR1C3) was markedly upregulated in the pathway.
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Figure 2: GO (gene ontology) analysis. (a) GO upregulated. (b) GO downregulated. The P value denoted the significance of GO terms
enrichment in the DEmRNAs.The lower the p-value, themore significant the GOTerm (P value ≤0.05 was recommended). DE, differentially
expressed; BP, biological process; CC, cellular component. MF, molecular function. ∗ It meant oxidoreductase activity, acting on the CH-CH
group of donors, NAD or NADP as acceptor. ∗∗ It meant oxidoreductase activity, acting on the CH-CH group of donors. ∗ ∗ ∗ It meant
oxidoreductase activity, acting on the aldehyde or oxo group of donors.
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Table 2: The number of differentially expressed lncRNAs and mRNAs (shRNA-CNE2 vs. NC-CNE2, p<0.05).

Regulation Fold-change Total
2-5 5-10 >10

lncRNA
Up-regulation 666 38 34 738
Down-regulation 662 58 43 763
mRNA
Up-regulation 598 67 14 679
Down-regulation 507 60 30 597

Table 3: Top up-regulated and down-regulated KEGG pathways of carbohydrate and lipid metabolisms (shRNA-CNE2 vs. NC-CNE2,
p<0.05).

Pathway ID Definition Count Enrichment Fisher-P
Score Value

Up-regulated
hsa00140 Steroid hormone biosynthesis 58 5.04301 0.00000906
hsa00100 Steroid biosynthesis 46 3.129842 0.00074158
hsa05205 Proteoglycans in cancer 204 1.970321 0.01070727
hsa00053 Ascorbate and aldarate metabolism 27 1.744802 0.01799693

Down-regulated
hsa03320 PPAR signaling pathway 69 2.035416 0.00921689

hsa00072 Synthesis and degradation of 10 1.570479 0.02688568
ketone bodies

hsa00510 N-Glycan biosynthesis 49 1.40886 0.03900677

PPAR signaling pathway was markedly suppressed in the
cells. Fatty acid binding protein 4 (FABP4) was markedly
downregulated. The differentially expressed mRNAs of the
pathways were associated with lipid metabolism, such as
AKR1C3 and FABP4 (Figure 4).

3.5. QPCR Validation. lncRNAs mainly include antisense
lncRNAs, enhancer lncRNAs, and long intergenic noncoding
RNAs (lincRNAs). They have different biological functions
through regulating nearby mRNAs [43–45]. In order to
validate authenticity and reliability of lncRNA microar-
ray, 12 differentially expressed lncRNAs and their nearby
mRNAs were detected by qPCR. The differentially expressed
mRNAs are closely connected with carbohydrate and/or lipid
metabolisms of cancers, which means the lncRNAs probably
interact with cancers via the mRNAs. The results of qPCR
were consistent with those of lncRNA microarray through
shRNA-CNE2 versus NC-CNE2. All of them have shown
the same upregulation or downregulation trend (Figure 5).
6 lncRNAs (NR 033967, ENST00000398216, uc001enh.1,
TCONS 00019671, TCONS 00025256, TCONS 00029013)
and 1 mRNA (integrin subunit alpha 5, ITGA5) would
not be used in next assay because the results of qPCR
were not considered to be statistically significant (P>0.05).
The other differentially expressed lncRNAs (NR 047538,
ENST00000585189, ENST00000442852, TCONS 00020439,
TCONS 00029159, TCONS 00013537) and mRNAs (cyclin-
dependent kinase inhibitor 2B (CDKN2B), solute car-
rier family 2 member 1 (SLC2A1), aldolase C (ALDOC),

interferon-stimulated gene 15 (ISG15), immediate early
response 3 (IER3), thioredoxin-interacting protein (TXNIP),
lysine acetyltransferase 5 (KAT5), FASN (fatty acid synthase),
dual specificity tyrosine phosphorylation regulated kinase 1A
(DYRK1A), salt inducible kinase 1 (SIK1), and paraoxonase
3 (PON3)) were continuingly validated by qPCR in chronic
rhinitis and NPC tissues (Table 4). The results showed that
NR 047538, ENST00000442852, fatty acid synthase (FASN),
and ZBTB7A were closely connected with NPC (Figure 6).
ZBTB7A had a positive association with NR 047538 and
negative associations with ENST00000442852 and FASN
(Figure 7).

4. Discussion

lncRNA microarrays have been used in studies of multiple
cancers [27, 46, 47]. Differentially expressed lncRNAs and
mRNAs can be found by the method, which reveals some
lncRNAs are important regulatory factors inmelanoma, renal
tumor, hepatocellular carcinoma, and colorectal cancer [48–
51]. lncRNA ANRIL, also called NR 047538, promotes NPC
progression via reprogramming cell glucose metabolism [31].
lncRNAHOTAIR promotes tumorigenesis of NPC via upreg-
ulating FASN, which is a pivotal enzyme of lipid metabolism
[52]. Therefore, the technique is effectively applied in NPC
study of exploring possible connections between ZBTB7A
and differentially expressed lncRNAs.

Comparing to protein levels of ZBTB7A of NPC cell lines
CNE2, CNE3, 5-8F, and 6-10B (Supplementary Materials,
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Figure 3: KEGG pathways in shRNA-CNE2 compared to NC-CNE2. (a)Themost significantly enriched KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways were illustrated by bubbles. The y-axis indicated the enrichment factors, which refers to the upregulated (left) and
downregulated (right) differentially expressed mRNA number to the total mRNAs in a certain pathway. The size of bubble indicated mean
number of mRNA enriched in a given pathway. The colour of bubble indicated P value (adjusted p value). (b) Bar plots represented enriched
KEGG pathways associated with upregulated (left) and downregulated (right) DE mRNAs. The y-axis indicated average change fold of the
implicated mRNAs. Sig, significant; DE, differentially expressed.

Figure S1(a)), we selected CNE2 and 5-8F with high expres-
sion of ZBTB7A as the objectives of stably knocking down
ZBTB7A [24]. Then we selected CNE3 and 6-10B with low
expression of ZBTB7A as the objectives of transfecting with
ZBTB7A plasmid. The cells were transfected with plasmids
and selected by G418. The best concentrations were 200
𝜇g/ml (6-10B) and 230 𝜇g/ml (CNE3). The concentration
was, respectively, reduced to 100 𝜇g/ml and 115 𝜇g/ml after
10 days. The clone cells were stably cultured during 15
passages. The cells stably transfected with plasmids were
named NC-6-10B, ZBTB7A-6-10B, NC-CNE3, and ZBTB7A-
CNE3. The protein levels of ZBTB7A-6-10B and ZBTB7A-
CNE3 were higher than those of control groups (Supplemen-
tary Materials, Figure S1 (b)). ZBTB7A-6-10B and ZBTB7A-
CNE3 separately had stronger tumorigenicity thanNC-6-10B

andNC-CNE3 by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-
2-H-tetrazolium bromide (MTT) and transwell assays (Sup-
plementary Materials, Figure S2). The results of transiently
and stably knocking down ZBTB7A in NPC cell line CNE2
were opposite [24]. We hypothesize that some important
pathways vicariously maintain carcinogenicity of NPC cells.
Therefore, it is a good method to search unknown pathways
of connecting with ZBTB7A by lncRNA microarray.

CNE2 cells have specific characteristic of NPC because
they are susceptible to EBV infection in vitro, while Hela
cells are resistant [53]. They also have specific biomarkers
and pathways of NPC [27, 54, 55]. Considering the differ-
entially stable carcinogenicity, NC-CNE2 and shRNA-CNE2
were suitable models for screening differentially expressed
lncRNAs and mRNAs NPC by lncRNA microarray.
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(a) (b)

Figure 4:Thedifferentially expressedmRNAs in important ranked pathways. (a) UpregulatedmRNAs in steroid hormone biosynthesis. 2.8.2.2,
SULT2B1 (sulfotransferase family 2Bmember 1); 1.3.1.22, SRD5A3 (steroid 5 alpha-reductase 3); 1.1.1.213, AKR1C2 (aldo-keto reductase family
1 member C2); 1.1.1.50, AKR1C4; 1.1.1.149, AKR1C1; 1.1.1.51, AKR1C3; 1.14.14.1, CYP3A5 (cytochrome P450 family 3 subfamily A member 5);
1.14.13.-, CYP3A4 (cytochrome P450 family 3 subfamily A member 4); 2.4.1.17, UGT1A6, (UDP glucuronosyltransferase family 1 member
A6). (b) Downregulated mRNAs in PPAR signaling pathway. PPAR, peroxisome proliferators-activated receptor; FABP, fatty acid binding
protein; aP2, FABP4; HMGCS2, 3-hydroxy-3-methylglutaryl-CoA synthase 2; Apo-CIII, apolipoprotein C3; MCAD, ACADM (acyl-CoA
dehydrogenase medium chain); GyK, GK (glycerol kinase). The regulated mRNAs in shRNA-CNE2 compared to NC-CNE2 were marked
in coloured boxes. Red box indicated an upregulated mRNA; yellow box indicated a downregulated mRNA; green box indicated that no
significant difference was observed.

Table 4: The p values of the differentially expressed lncRNAs and nearby mRNAs by microarray and qPCR.

lncRNA Types∗ Microarray qPCR mRNAs Microarray qPCR
P value PCC

NR 047538 Antisense 0.01588 0.02259 CDKN2B 0.00328 0.01983
NR 033967 Antisense 0.00769 0.4833∗∗ SLC2A1 0.01188 0.00221
ENST00000585189 Antisense 0.001 0.00173 ALDOC 0.00156 0.00313
ENST00000398216 Enhancer 0.00246 0.065∗∗ ISG15 0.00059 0.00002
ENST00000442852 Enhancer 0.00008 0.00145 IER3 0.00065 0.00324
uc001enh.1 Enhancer 0.01706 0.06825∗∗ TXNIP 0.00623 0.0168
TCONS 00019671 lincRNA 0.00055 0.10619∗∗ KAT5 0.00278 0.03497
TCONS 00020439 lincRNA 0.000001 0.00359 ITGA5 0.00372 0.0562∗∗
TCONS 00025256 lincRNA 0.00052 0.23031∗∗ FASN 0.00031 0.00072
TCONS 00029013 lincRNA 0.02408 0.77654∗∗ DYRK1A 0.03928 0.0035
TCONS 00029159 lincRNA 0.00378 0.01099 SIK1 0.00857 0.00126
TCONS 00013537 lincRNA 0.04786 0.02526 PON3 0.0000002 0.00021
∗ According to the relationships of lncRNAs and nearby mRNAs, the types of lncRNAs were generally divided into antisense lncRNA, enhancer lncRNA,
lincRNA (long intergenic noncoding RNA).
∗∗ p value >0.05
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Figure 5: Validation of lncRNA microarray by qPCR through shRNA-CNE2 versus NC-CNE2. (a) 12 differentially expressed lncRNAs and (b),
(c) nearby mRNAs were validated by qPCR through shRNA-CNE2 versus NC-CNE2. The heights of the columns in the charts represent
the mean expression values of fold-change. CDKN2B, cyclin-dependent kinase inhibitor 2B; SLC2A1, solute carrier family 2 member 1, also
named glucose transporter 1 (GLUT1); ALDOC (aldolase C); ISG15 (interferon-stimulated gene 15); IER3 (immediate early response 3);
TXNIP (thioredoxin-interacting protein); KAT5 (lysine acetyltransferase 5); ITGA5 (integrin subunit alpha 5); FASN (fatty acid synthase);
DYRK1A (dual specificity tyrosine phosphorylation regulated kinase 1A); SIK1 (salt inducible kinase 1); PON3 (paraoxonase 3).

As a result, some differentially expressed mRNAs indi-
cated that ZBTB7A may connect with oncogenic and onco-
suppressive pathways (Supplementary Materials, Figure S3
and Table S1). Loss of ZBTB7A caused upregulation of some
oncogenes such as matrix metalloproteinase-10 (MMP10)

[56] and lysyl oxidase-like 2 (LOXL2) [57], and downregu-
lation of some tumor suppressor genes such as suppressor
of cytokine signalling (SOCS3) [58] and fibulin 1 (FBLN1)
[59]. The results indicate that ZBTB7A possibly plays an
oncosuppressive role. However, loss of ZBTB7A also caused
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Figure 6:Validation of microarray data by qPCR in NPC and chronic rhinitis tissues.The expressions of (a) 5 differentially expressed lncRNAs,
(b) 5 differentially expressed mRNAs, and (c) ZBTB7A were detected by qPCR in NPC and rhinitis tissues. ∗ p<0.05, ∗∗ p<0.01.

downregulation of some oncogenes such as myosin light
chain kinase (MYLK) [60] and chloride intracellular channel
5 (CLIC5) [61] and upregulation of some tumor suppressor
genes such as interleukin-24 (IL24) [62] and arachidonate 15-
lipoxygenase, type B (ALOX15B) [63]. The results indicate
that ZBTB7A possibly plays an oncogenic role. Interestingly,
we find that some genes have opposite effects in carcinogene-
sis, such as cellular retinoic acid binding protein 2 (CRABP2)
[64, 65], epithelial membrane protein 3 (EMP3) [66, 67],
transglutaminase 2 (TGM2) [68, 69], Yes associated protein 1
(YAP1) [70, 71], CDKN2A interacting protein (CDKN2AIP)

[72], and BRCA2 and CDKN1A interacting protein (BCCIP)
[73]. The genes can promote or inhibit cells growth in differ-
ent conditions or stages of cancer (Supplementary Materials,
Figure S3 and Table S1).

We went on disclosing that carbohydrate and lipid
metabolisms probably involved in NPC progression through
KEGG analysis. In order to search the molecular mecha-
nisms of ZBTB7A, we selected 12 differentially expressed
lncRNAs and their nearby mRNAs to validate. 12 differen-
tially expressed mRNAs included FASN, CDKN2B, SLC2A1,
ALDOC, ISG15, IER3, TXNIP, KAT5, ITGA5, DYRK1A,
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Figure 7: ZBTB7A were separately connected with NR 047538, FASN, and ENST00000442852 by scatter plot. ZBTB7A had a positive
association with (a) FASN and negative associations with (b) NR 047538 and (c) ENST00000442852. p<0.05 was considered to be statistically
significant.

SIK1, and PON3. Basing on the bioinformatics analysis, the
lncRNAs and mRNAs are possibly associated with cancer
cells progression via carbohydrate or lipid pathway. In order
to exclude the contaminated possibility by Hela cell, parts of
them were validated in NPC and rhinitis tissues by qPCR.
lncRNA NR 047538, lncRNA ENST00000442852, and fatty
acid synthase (FASN) were closely associated with NPC.
ZBTB7A had a positive association with NR 047538, while
having negative associations with ENST00000442852 and
FASN. The results provide novel candidate biomarkers for
NPC progression with different levels of ZBTB7A.

LncRNA NR 047538 and FSAN were important markers
and regulatory factor in NPC [31, 74]. LncRNA NR 047538
can promote NPC progression by upregulating GLUT1
expression [31]. It is also associated with lipid pathways [75].
Sex determining region Y-box 2 gene (SOX2) induces prolif-
eration of NPC cells through activating lncRNA NR 047538
[76]. Downregulation of lncRNA NR 047538 inhibits NPC
tumorigenicity and enhances the efforts of radiotherapy
and chemotherapy via regulating microRNA 125a and let-
7a [77, 78]. FASN is an important enzyme of lipogenesis. It
promotes NPC progression through remarkably providing
endogenous fatty acid [52]. Interestingly, we found that sterol
regulatory element binding transcription factor 1 (SREBF1)
also was upregulated by lncRNA microarray and qPCR
(Supplementary Materials, Figure S4 and Table S1). SREBF1
is the transcript of sterol regulatory element binding protein
1 (SREBP1). Activated SREBP1 enters nucleus and transcribes

the genes of lipid metabolism such as FASN [79]. EBV-
encoded latent membrane protein 1 (LMP1) induces cell
proliferation and NPC metastasis via activating SREBP1 and
its downstream FASN [80].

The potential biomarker lncRNA ENST00000442852 has
not been reported. We speculate it may be connected with
the nearby mRNA IER3, which is also called immediate
early response gene X-1 (IEX-1). It is immediately regulated
by transcriptional factors, inflammatory cytokines, growth
factors, and so on [81]. It is connected with poor or good
prognosis in different types of cancers [82, 83].Therefore, the
functions and characteristics of lncRNA ENST00000442852
will be explored in NPC.

Although SLC2A1, CDKN2B, and ISG15 are closely con-
nected with NPC progression in other studies [31, 84, 85], our
results do not show the positive results. The quantity of 20
chronic rhinitis and 60NPC tissues is limited.Thegenotyping
of Guangxi population probably is different from that of
other region. The protein expression of the genes should
be validated by Western blot or immunohistochemistry in
future because of the difference between mRNA and protein
expression of the same gene.

5. Conclusions

Above all, the results showed the changes of the differentially
expressed lncRNAs and mRNAs with stable loss of ZBTB7A
expression in shRNA-CNE2 cells. The results may provide
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potential biomarkers for NPC progression with different
levels of ZBTB7A, such as lncRNA NR 047538, lncRNA
ENST00000442852, and FASN. In the future, we will deeply
dig the connections between the lncRNAs/mRNAs and
ZBTB7A in NPC.
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