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Abstract

This study used Monte Carlo simulations to examine the ability of the two-stage least-squares 

(2SLS) estimator and two-stage residual inclusion (2SRI) estimators with varying forms of 

residuals to estimate the local average and population average treatment effect parameters in 

models with binary outcome, endogenous binary treatment, and single binary instrument. The 

rarity of the outcome and the treatment were varied across simulation scenarios. Results showed 

that 2SLS generated consistent estimates of the LATE and biased estimates of the ATE across all 

scenarios. 2SRI approaches, in general, produced biased estimates of both LATE and ATE under 

all scenarios. 2SRI using generalized residuals minimized the bias in ATE estimates. Use of 2SLS 

and 2SRI is illustrated in an empirical application estimating the effects of long-term care 

insurance on a variety of binary healthcare utilization outcomes among the near-elderly using the 

Health and Retirement Study.

1. INTRODUCTION

Instrumental variables (IV) methods are used to obtain causal estimates of the effects of 

endogenous variables on outcomes using observational data. These methods mediate 

potential bias from unmeasured confounders affecting observed treatment through 

identifying and specifying an instrumental variable, which may represent a “natural 

experiment” affecting treatment through satisfying two principle assumptions: the 

instrument is sufficiently correlated with the endogenous variable (strength), and the 

instrument is uncorrelated with the error term in the outcome equation (validity). IV 

methods are usually implemented using a two-stage approach where the first-stage estimates 

an expectation of the endogenous variable conditional on measured confounders and one or 
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more instrumental variables. The second stage model then predicts outcomes as a function of 

the estimated treatment values from the first-stage, measured confounders, and potentially 

other control variables.

In what has been popularly dubbed as the two-stage least-squares (2SLS) approach, the first 

and second stage models are parametrized using ordinary least squares regression, where the 

model fit is chosen through minimizing the sum of squared residuals from linear models. 

The 2SLS approach is a special case of the more general two-stage predictor substitution 

(2SPS) method, which follows the procedure described above but may apply alternative 

methods for estimating first- and second-stage models. Alternatively, one can obtain the 

residuals from the first stage regression and then run the second stage regression with the 

original endogenous variable, observed confounders and the residuals from the first stage as 

an added covariate. This approach, known as the two-stage residual inclusion (2SRI) 

approach, is analogous to the 2SLS approach when both first- and second-stage models are 

linear.

These estimation methods were originally derived in a linear setting with continuous 

endogenous treatments and continuous outcome measures. The target parameter for these 

estimations is the average causal effect, which is the average of the partial derivative of a 

continuous outcome with respect to a continuous endogenous variable. However, these 

estimators but are often applied to what may be considered an inherently non-linear setting, 

such as with binary treatment or outcome measures. When treatment (exposure) or outcome 

is binary and therefore has a conditional expectation that follows a probability scale, a non-

linear model featuring a convenient cumulative density function (CDF) is often used to 

model the conditional mean of the treatment indicator in the first-stage or outcome in the 

second-stage. Popular approaches include using probit or logit regression models.

In these settings, it is well established that the 2SPS approach produces biased estimates of 

the population average treatment effect (ATE) (Blundell and Powell 2001; Terza et al. 2008). 

Under full parametric assumptions of joint-normality, bi-variate probit models can be used 

to model the two stages simultaneously (Bhattacharya et al. 2006) and estimate the ATE

Alternatively, it has been suggested that nonlinear 2SRI is the appropriate approach for 

estimation when first- or second-stage models have a dependent variable that is binary or 

otherwise suited for non-linear regression; especially when full parametric assumptions, 

where statistical joint distribution of error terms of the exposure and outcomes are specified, 

are not wanted (Blundell and Powell 2003, 2004; Terza et al. 2008). Nonlinear 2SRI 

methods identify the ATE through relying on the concepts that support control function 

methods (Blundell and Powell 2003, 2004), which were developed in the context of 

continuous endogenous variables. However, applicability of nonlinear 2SRI to models with 

binary endogenous treatments remains contentious.

Finally, with a non-linear data-generating process for outcomes, treatment effects are 

heterogeneous by construction. This raises complexity and confusion in that the specific 

treatment effect parameter identified by the 2SLS or 2SRI approaches may differ and 

generally depends on whether treatment effects are heterogeneous across the population and 
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vary across levels of observed or unobserved confounders (aka essential heterogeneity). In 

such a situation, it is well–established that traditional IV approaches such as 2SLS identify 

an average treatment effect across only the subgroup of “marginal” individuals whose 

treatment choices were affected by changes in the specified instrumental variable(s) 

(Heckman 1997; Heckman et al. 2006, Basu et al. 2007). When the instrumental variable is 

binary (which is the focus of this paper), this effect is known as the local average treatment 

effect (LATE) (Imbens and Angrist 1994). It is an average of the treatment effects for each 

individual at the margin, or the marginal treatment effects, whose treatment choice would be 

affected by the change in the level of the instrument (Heckman 1997; Heckman et al. 2006, 

Basu et al. 2007; Kowalski 2016). Both 2SLS and the analogous strictly linear application of 

2SRI will generate consistent estimates of LATE as long as the linear mean model 

specifications in both stages are correct.1

Terza et al. (2007, 2008) claimed that nonlinear 2SRI, but not 2SLS or 2SPS, produced 

consistent estimates of ATE in models with inherently nonlinear dependent variables. 

However, it is not clear which treatment effect parameter is being estimated under a 2SRI 

approach for a binary treatment. Particularly in applications with binary IVs, the 2SRI 

approach relies on functional form assumptions for identification (as explained below) that 

are difficult to test in most applied setting and many analysts, especially economists, have 

favored the 2SLS approach regardless of whether treatment and outcome are continuous or 

binary. As such, many questions remain about the best approaches to IV estimation with 

such data. On one hand, linear probability models may not provide a good fit to the data, 

especially when treatment or outcome variables are “rare” or otherwise imbalanced in 

nature, which in turn may lead to imprecise estimates. On the other hand, probit and logit 

models may provide a better fit to observed data overall but generate biased estimates 

depending on the support of the residual distribution (across all X’s).

For example, Chapman and Brooks showed that small changes to the simulation settings of 

Terza et al. (2007) resulted in different results and conclusions about the properties of 2SLS 

and 2SRI. They showed that 2SLS produced consistent estimates of LATE across alternative 

scenarios while 2SRI estimates were not generally consistent for either ATE or LATE. 

However, the evidence produced by Chapman and Brooks is limited in that their scenarios 

all included two continuous instrumental variables and had treatment and outcome rates near 

50%, a setting that may have inadvertently favored the 2SLS method.

Moreover, there is a debate in the health econometrics literature about the right form of the 

residual to be used in 2SRI approaches. Garrido et al. (2012) compared results from 2SRI 

models with different versions of residuals when applied to health expenditure data. They 

found that results varied widely depending on the type of residuals they use in the second 

stage. They raised the concern that raw residuals may not be the right control function 

variable. However, there is no theoretical rationale as to why different forms of the residual 

matter and the authors did not perform simulations to show which one is better. Chapman & 

1The LATE effect is non-parametrically identified in a 2SLS setting within any cell defined by levels of all observed covariates X 
(Imbens and Angrist 1994). However, in a regression setting with many X’s, where a full saturated model is typically not used, the 
consistency of estimating LATE would rely on the appropriateness of the linear model specification.
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Brooks’ only considered 2SRI with raw residuals when showing general inconsistency of 

2SRI for ATE and LATE. Further, Chapman & Brooks did not report coverage probabilities 

for their estimates, a necessary component for making comparisons on properties of 2SLS 

and nonlinear 2SRI methods and for considering potential strengths and limitations of these 

approaches in practice.

In this paper, we try to provide theoretical and empirical evidence to inform these debates.2 

We first extend the recent assessment conducted by Chapman & Brooks using a simple 

scenario with binary outcome, a binary treatment that is made endogenous by a continuous 

unobserved confounder, binary instrument, and a binary measured confounder. There is an 

abundance of examples in the applied health literature where such a full binary setting is of 

relevance. Our empirical example illustrates this case. 2SRI and 2SLS methods can also be 

applied to other settings such as for count data and expenditure models. This paper does not 

say anything about the performance of these estimators in those settings.

After a theoretical discussion on the properties and expected behaviors of alternative 

estimators, we test the capability of 2SLS and alternative specifications of 2SRI methods for 

estimating alternative average treatment effect concepts across a range of simulation 

scenarios varying by the rarity of the treatment and the outcomes using extensive Monte-

Carlo simulation exercises.

Results show that the 2SLS method with binary IV produced consistent estimates of LATE 

across the entire range of rarity for either treatment or the outcome. The rarity of either did 

not affect the coverage probabilities of these estimators. In contrast, the 2SRI approach with 

any residuals studied was a biased estimator for LATE. In principle, nonlinear 2SRI 

estimators are designed to estimate the ATE parameter. However, 2SRI estimates of ATE 

were also generally biased, with the level of bias varying by residual form and outcome 

rarity. General conclusions from results of these simulation models are consistent with those 

of the more limited scenarios considered by Chapman & Brooks. Among 2SRI models, 

those using generalized residuals were most often least biased in estimating ATE, though 

2SRI with Anscombe residuals generated less biased estimates in scenarios with very rare 

outcomes (<5%). Implications of these results are discussed.

Finally, we examined the implications of model choice using an empirical setting that 

resembles the simulated scenario with endogenous binary treatment, binary outcomes, and 

binary observable confounders. The alternative instrumental variable methods were applied 

to evaluate the effect of long-term care insurance on a variety of health care utilization 

outcomes using tax treatment as an instrument for long-term care insurance holding, as has 

been validated in the literature (Goda 2011; Konetzka, et al. 2014, Coe, Goda and Van 

Houtven 2015). The results from applying the alternative estimators are discussed in the 

context of our simulation results.

2There are other forms of estimators that deal with a binary outcome and a binary endogenous treatment model, such as a GMM 
approaches (McCarthy and Tchernis 2011) and semi-parametric estimators (Abadie 2003; Abrevaya et al. 2009, Chiburis 2010; Shaikh 
and Vytlacil 2011). However, these estimators are not as popular as the 2SLS and the 2SRI approaches and so we do not cover them in 
this paper.
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2. ECONOMETRIC THEORY & METHODS

In what follows, we provide an intuitive explanation of the underlying theory of these 

methods rather than the full formal theory

Consider the binary structural response model

yi = 1 yi* > 0 , (1)

where the latent variable yi* follows a linear model of the form

yi
∗ = xiβ + ui, (2)

where xi is a row vector of covariates and ui is a stochastic disturbance term for individual i. 

Throughout this section, bold-face is used to represent a vector. If ui is independent of xi, a 

single index regression model such as:

E yi |xi = G xiβ G a = Pr ui > − a (3)

can be used to obtain consistent estimates of β. However, it may often be the case that ui is 

not independent of xi because some component of xi, say di, is determined jointly with yi* 

such that

xi = di, wi , yi = 1 diβ1 + wiβ2 + ui > 0 , and di ⊥ui, (4)

where ⊥ indicates statistical independence. Let the reduced form of di, which we denote to 

be the endogenous binary treatment variable, be given as

di = E di |wi, zi + vi
= λ wi, zi + vi

(5)

where zi = vector of instrumental variables, λ is the true function through which di is 

determined by wi and zi, vi is a stochastic disturbance term, and E(vi | wi, zi) = 0 by 

construction. It is assumed throughout that expectation of d is a non-trivial function of z 
given w.

For evaluation research, interest generally lies in estimating β parameters or, more 

specifically, the components of β that represent the causal effect of an exogenous shift in 

treatment, di, on the response probabilities. The interpretation of those parameters of interest 

then must be considered. The broadest and perhaps most intuitive treatment effect parameter 

is the average treatment effect (ATE), which represents the mean change in outcome that 
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would be realized if everyone in a target population changed from not receiving treatment to 

receiving treatment. The ATE can be written as

ATE(w) = ∫
u ∈ U |w

E yi |wi, ui, di = 1 − E yi |wi, ui, di = 0 ⋅dF(u |w)

= G β1 + wiβw − G wiβw

(6)

where ATE (w) represents the conditional average treatment effect for a sample, which may 

be distinct in the mix of characteristics w.

If it is the case that treatment effects are heterogenous across the population and this 

heterogeneity is related to treatment choice (i.e., essential heterogeneity) then treatment 

effectiveness will vary over levels of ui when components of w are unmeasured by the 

researcher (i.e., there are unmeasured confounders). As a result, identification of ATE will 

require strong assumptions. First, the ATE can be estimated through identification of the 

function represented by G(.), which is to akin to identifying the full parametric distribution 

of ui. In the absence of full parametric assumptions, the ATE can be identified in special 

cases using instrumental variables methods, where the specified IV(s) fully identify the 

conditional distribution of ui | vi, which can then be integrated over the distribution of vi 

identified in the IV-based first-stage model. More simply put, the specified IV(s) must be 

considered as potentially influencing treatment choice for all types of individuals in the 

sample, defined by their levels of observed and unobserved characteristics. These IV 

assumptions may be particularly difficult to satisfy when a single binary instrument is used, 

as only two points of support in the distribution of vi are identified non-parametrically.

More generally, as Imbens and Angrist (1994) have shown, the IV effect estimated using a 

single binary IV, zi, is referred to as the local average treatment effect (LATE) and is given 

as:

LATE w = E yi |wi, zi = 1 − E yi |wi, zi = 0 / E di |wi, zi = 1 − E di |wi, zi = 0 (7)

The LATE reflects the average causal effect of di on the probability of yi among those 

(marginal) individuals whose treatment statuses would likely change with a change in the 

level of the instrumental variable (Angrist & Imbens 1994, 1996; Heckman 1997). The 

LATE parameter is only “locally” interpretable in the context of the instrument specified. 

Even with very strong instruments that lead all patients in the sample to be marginal, LATE 

will not often converge to the ATE because, unlike randomization, the instrument may put 

more weight on some marginal patient than others. Therefore, since it is often difficult to 

identify the marginal patients directly (i.e., to know for whom the instrument affected 

choice), it may also be difficult to understand to whom the estimate applies (Heckman 1997; 

Newhouse and McClellan, 1998). In some cases where a binary IV is related to a specific 

policy, LATE may be interpretable as the effect of changing di among those individuals who 
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would be induced to change their treatment status by the policy (Heckman et al. 2006). 

Naturally, if the true treatment effect is constant then the true LATE and ATE are the same.

The following discussion focuses on three popular approaches for estimation of mean effects 

on response probabilities from an instrument-driven exogenous shift in the treatment di: the 

fully parametric bivariate probit (BVP) model, the semi-parametric residual inclusion (2SRI) 

approach, and the linear two-stage least squares (2SLS) approach. Each of these methods 

employ different assumptions and attempt to identify different parameters. In fact, Chiburis 

et al. (2012) have argued that many of the documented differences in the treatment effect 

estimates from 2SLS and bi-variate probit models in the literature may be driven by the fact 

that they are estimating different parameters to begin with. We now look at these estimators 

in detail.

2.1 Approach 1 (Fully parametric): e.g. Bivariate-Probit

If the joint distribution of the structural error term ui and the reduced form error term vi were 

parametrically specified (e.g. Gaussian), and λ(wi, zi) is parametrically specified, then under 

some normalization of the Var(ui) (Blundell and Smith 1986),

E yi | di, wi, vi = Pr ui > − diβ1 − wiβ2 | vi
= Φ diβ1 + wiβ2 + ρvi ,

(8)

where ρ is the vector of population regression coefficients of ui on vi. The parameters β, λ(.) 

and ρ can be estimated using maximum likelihood estimation. When both yi and di are 

binary, this approach can be implemented using a bivariate probit regression (Heckman 

1978). However, bivariate probit models can be sensitive to heteroscedasticity and are 

usually more robust when treatment probabilities approach 0 or 1 (Chiburis et al. 2012). If 

the underlying distributions are correctly specified, this method structurally recovers the 

average treatment effect (ATE) parameter since ui | vi, identified through the IV, is 

structurally linked to ui through the parametric assumption.

The sample analog for the population treatment effect parameter identified by this approach 

is given by:

EW{Ev{Φ(1 ⋅ β1 + wiβ2 + ρ ⋅ vi) − Φ(0 ⋅ β1 + wiβ2 + ρ ⋅ vi)}}, (9)

where ·  indicates that these quantities have been estimated from the data at hand.

2.2 Approach 2 (Semi-parametric): e.g 2SRI

The semi-parametric approach uses estimates of the reduced form error term, vi, to control 

for endogeneity of di in the outcomes structural model (Blundell and Powell 2004). The 

identification of β1 and the distribution functions of the error term, ui, is through 

distributional exclusion restrictions, the first of which requires that the dependence of ui on 

each of di, wi and zi are completely characterized by the reduced form error vector vi:
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ui|di, wi, zi ui|di, wi, vi
ui | vi

(10)

Under this assumption,

E yi | di, wi, vi = Pr ui ≤ − diβ1 − wiβ2 | di,wi, vi
= F diβ1 + wiβ2 | vi .

(11)

where F(.) is the conditional c.d.f. of -ui given vi.

The marginal distribution function G(.) with respect to -ui could be identified using a control 

function approach such as (Blundell and Powell 2004):

G diβ1 + wiβ2 = ∫ F diβ1 + wiβ2, v1 HV, (12)

where Hv is the distribution function of v. Consequently, ATE can be identified using (6). 

Note that, unlike the fully parametric approach, one can be agnostic about the parametric 

distribution of ui and vi as long as the distributional exclusion criterion is met. However, 

Blundell and Powell’s (2003) identification relies on a continuous vi. Moreover, the 

identification of ATE relies on the fact that the error term in the outcomes model is 

additively separable. These conditions allow for a counterfactual to be determined without 

the need for any additional functional form assumptions given that the β are consistently 

estimated. However, in non-linear models, such as those in (2), these counterfactuals 

inherently depend on the functional form assumption of the control function.

For example, in practice, this approach is implemented through “residual inclusion”, which 

follows estimating the error term in the first–stage regression and then including these 

estimated residuals as a covariate in the second-stage outcomes regression. A recycled 

predictions approach can then be used to recover the marginal effect of di on E(yi).

However, when implementing this approach for a binary treatment variable, the residuals 

from the first stage would always be positive for treatment recipients and negative for non-

recipients. Hence, in a non-linear outcomes model, the conditional treatment effect, 

conditional on any level of the estimated vi (say, vi), must be obtained via extrapolation. 

Figure 1 illustrates this idea for a group of individuals with the same wi, which is kept 

implicit, but different values of zi, which leads to difference values of vi. Suppose the 

residuals among treatment recipients are 0.1, 0.2, 0.3, 0.4, 0.7 and those among non-

recipients are −0.1, −0.2, −0.3, −0.4, −0.7. Conditional on a positive level of the residual vi+, 

E y|d = 1, vi + = E y1 | vi +  is obtained from the data where y1 is the potential outcome 

under treatment. However, the counterfactual outcome, i.e. the corresponding potential 
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outcome y0 for treatment recipients, which are supposed to be estimated from the outcomes 

of similar patients under no treatment, cannot be directly estimated as there are no non-

recipients that have a positive level of the residual by construction.

Once the parameters of the F(), the CDF-based regression function used to model the binary 

outcome as a function of d and the residuals, are estimated, the counterfactual outcomes for 

treatment recipients over the distribution of positive residuals has to be obtained via 

extrapolation of the functional specification of F() over the positive residuals and turning off 

the indicator d to 0.. Similar extrapolation is required for estimating the counterfactual 

outcomes y1 for treatment non-recipients over the distribution of negative residuals. Figure 

1(a) illustrates this extrapolation. The overall treatment effect is then obtained by averaging 

the conditional treatment effects obtained over the distribution of vi.

Symmetry in the distribution of vi, to the extent that it can be attained, can facilitate this 

extrapolation. Most forms of residuals used in non-linear settings attempt to mimic a normal 

distribution. Alternate forms of residuals, such as standardized, deviance, Anscombe, and 

generalized (Gourieroux et.al., 1987), may also be used in the residual inclusion approach 

and have been explored Garrido et al. 2012). When estimated by a nonlinear approach, such 

as probit or logit, raw-scale residuals for a binary treatment variable will always lie between 

0 and 1 in absolute values. Therefore, each type of residual transformation is likely to spread 

the support of the residual distribution on the real line. For example, if predicted Pr(d|z) = 

0.4 and 0.7 for two observations with d = 1, then the raw-scale residuals will be 0.6 and 0.3 

respectively, but the standardized residuals ( = (d − p(z))/ (p(z)(1 − p(z))) will be 1.22 and 

0.65 respectively. Consequently, standardized residuals may provide a better fit to the 

outcomes data and increase the robustness of extrapolations. For example, when the 

treatment is rare, the raw-scale residuals on either the negative or the positive side are likely 

to be far away from zero. Transformation can help these residuals to spread out, so as to 

increase accuracy when estimating the functional form of the outcome conditional on these 

residuals. A priori, it is difficult to predict what form of residuals from a binary treatment 

model would best approximate the non-separable error term in the outcomes equation.

It is worth reiterating that a central problem, beyond the issue of non-overlap in support of vi

as discussed above, when the instrumental variable is also binary is that only two points on 

the support of vi are identified for any level of w. Model fit and extrapolation is based only 

on those two points in the support for vi .

2.3 Approach 3 (Non-parametric): e.g. 2SLS

Distinct from BVP and 2SRI approaches discussed above, which are designed to identify the 

ATE, a 2SLS approach is designed to estimate the LATE parameter. A 2SLS approach 

attempts to estimate the LATE from the data non-parametrically by estimating the slope of 

outcomes and exposure, conditional on the instrument. In the case of a single binary 

instrument, this slope is based upon the two points of support identified by the two levels of 

the instrument. That is, it plugs in the sample analogs of the numerator and the denominator 

in the LATE parameter defined above. However, this process assumes that the mean 
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outcomes and the exposure models are linear in terms of wi.3 When one or both of these 

linear specifications are violated, 2SLS may be a biased estimator for the outcome 

probabilities (Horace and Oaxaca 2006). While this could, in turn, induce bias in the 

estimation of LATE, some have suggested that risk of such bias is minimal in many applied 

settings and concerns are exaggerated. (Angrist and Fernandez-Val 2001)

The 2SLS approach of linear IV models can be viewed as a special case of control function 

methods (Telser 1964), where both first and second stage regressions are linear. However, 

since 2SLS approaches rely only on mean–independence requirements, and not on the full 

conditional independence of the distribution as in (8), demands the “correct” specification of 

the first-stage to provide consistent estimates of the second-stage parameters (Blundell and 

Powell, 2004). However, this requirement seems to apply mostly for the estimation of ATE; 

as the LATE value is not necessarily equivalent or determined by the true structural 

parameters under essential heterogeneity. It is unclear how violation of this requirement 

affects estimation of LATE. We expect that for a binary treatment in the first stage, a linear 

approximation of the conditional mean is likely to be most appropriate when the mean 

treatment is close to 50%. Chapman and Brooks (2016) simulation results showed that 2SLS 

methods produced unbiased estimates of the IV effect (i.e weighted average of LATEs 

defined by the continuous IVs that they use) in models with treatment rates near 50%, but 

did not consider binary instruments.

These discussions establish the rationale for the simulations in this paper. It is conjectured 

that 2SRI approach applied to binary endogenous variables can produce biased results when 

extrapolations are not appropriate. Alternative versions of the residuals could improve the 

performance of 2SRI approaches through mutating the scale of the residual distribution 

used, which could influence the estimation of the underlying structural functions through the 

2SRI approach as was observed in Garrido et al. (2012). Second, when the endogenous 

binary variable becomes rare, the linear model specification in the first-stage could break 

down, resulting in biased estimation of second-stage parameters in the 2SLS approach. 

These biases could then compound biases from misfit of the linear model to rare outcomes 

in the second-stage.

3. SIMULATIONS

We consider the simplest case where we have a binary outcome (yi), a binary treatment (di), 

three binary controls (wi) and a binary instrument (zi). We chose three binary controls so that 

the residuals from the first stage regression have at least thirty unique values in their support. 

The central questions we try to answer with these simulations are: Can linear approximation 

(2SLS) provide consistent estimates of the LATE for a binary outcome/binary endogenous 

variable model? What form of residuals are most suited to a correctly specified nonlinear 

2SRI (Probit-Probit) approach? How do the results change if outcomes (yi) and/or treatment 

(di) become rare?

3There can certainly be a more elaborate model building exercise that can overcome this problem, but such exercises are seldom found 
in the economics and health economics literature. In any case, such exercises typically lead one away from a simple linear model into 
the realm of non-linear models.
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The data generating processes (DGPs) are described below (subscripts i are suppressed for 

clarity).

3.1 Exposure (treatment) DGP

d∗ = α0 + α1 ⋅ w1 + α2 ⋅ w2 + α3 ⋅ w3 + αz ⋅ z + αU ⋅ wU − ω , (13)

where (α1, α2, α3) = (0.5, 1, 2), αU = 1, αZ = 1. Observed variables w1, w2, w3 and z are all 

binary variables with mean equal to 0.5, generated by dichotomizing standard normal 

variables around the value of 0. Together, (αU· wU – ω) represents the empirical error term 

for the treatment model and consists of the binary unobserved confounder, wU, which is also 

based on dichotomizing a Normal (0,1), and the continuous model disturbance term, ω ~ 

Normal(0,1). Observed treatment, d, is derived from the index function (d* > 0) and Pr(d) = 

Φ( (α0 + 2.25)/√3.5625)). We vary the model intercept, α0, to take on values of −2, −1.25, 

−0.3, 0.5, and 1.5 which correspond to Pr(d) = 0.55, 0.70, 0.85, 0.93, and 0.995 respectively.

3.2 Outcomes DGP

y* = β0 + βD ⋅ d + β1 ⋅ w1 + β2 ⋅ w2 + β3 ⋅ w3 + βU ⋅ wU − ε (14)

Together (βU· wU – ε) represents the empirical error term, u, from the theoretical outcomes 

model under Section 2. Across all simulation models, true values of coefficients (β 1, β 2, 

β3) were set to (1,1,1), the coefficient for the unmeasured confounder, βU, was set to 2, and 

coefficient on treatment, βD, was set to 1. The model disturbance term ε ~ Normal(0,1) and 

Pr(y|d) = Φ( (β 0 + β D· d + 1.5)/√5.75)). We vary β 0 across simulations to take on values 

of −2, 0.5, 1.5, and 2.5 which correspond to Pr(y) = 0.51, 0.82, 0.93 and 0.96 respectively.

3.3 Target parameters

The primary target parameters were the ATE and the LATE. True values for the ATE and 

LATE concepts were calculated in each simulation as:

ATE = E y|d = 1 − E y|d = 0 = Φ β0 + 2.5 / 5.75 − Φ β0 + 1.5 / 5.75 (15)

LATE = Ew [E(y |z = 1, w) − E(y |z = 0, w)]/[E(d |z = 1, w) − E(d |z = 0, w)] (16)

where w = (w1, w2, w3, wu). The true value of the LATE parameter was simulated based on 

100 samples of 1 million observations each.

Basu et al. Page 11

Health Econ. Author manuscript; available in PMC 2019 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.4 Simulations

Estimates were generated using Monte-Carlo simulation methods, using 1,000 samples of 

50,000 observations each to mitigate finite sample issues and also to align our simulation 

with our empirical example. For each of the 1,000 simulated samples, 500 bootstrap re-

samples were drawn and used to calculate standard error and coverage values. Percent bias 

was calculated as (Δk - LATE)*100/LATE or (Δk - ATE)*100/ATE averaged over all 

simulated samples, where Δk is the estimated treatment effect for sample k. The coefficient 

of variation is based on the standard deviation of the mean estimates across the 1,000 

Monte-Carlo samples divided by the average of the mean estimates from those samples. 

Finally, coverage probabilities for LATE and ATE were determined by averaging I ((Δk – 

1.96* SEk) ≤ LATE ≤ (Δk + 1.96* SEk)) and I ((Δk – 1.96* SEk) ≤ ATE ≤ (Δk + 1.96* SEk)), 

respectively, across all 1,000 samples, where I() is an indicator function and SEk is the 

sample-specific standard error obtained via bootstrap.

Simulations were repeated using a sample size of 5,000 to magnify any finite sample issues, 

and those results are presented in the appendix.

3.5 Estimators

We compared the following estimators:

1. IV regression with LPM (2SLS)

2. Probit-Probit 2SRI with

a. raw residuals as (di − d),

b. standardized (Pearson) residuals given by (di − dı)/ {(1 − dı)dı},

c.
deviance residuals, given by 2 yilog

di
dı

+ (1 − di)log
1 − di
1 − dı

 and

d. Anscombe residuals, (A(di) − A(dı))/[A′(dı) {(d−dı)dı}], where 

A(di) = (B(di,
2
3 , 2

3 ) −B(d, 2
3 , 2

3 ))/[ {(1 − dı)dı}]−
1 6 and B() is a Beta 

Function.

e. Generalized residuals (Gourieroux et al. 1987): dı′ ⋅ (d−dı)/{(1 − dı)dı}

3. Bi-variate probit regression model, which is the MLE for the DGPs.

3.6 Results

Descriptive statistics for our DGPs are provided in Table 1. As expected, the true mean 

average treatment effect (ATE) parameter values varied across scenarios varying the 

intercept in the outcome models, β 0, but not across scenarios varying the intercept in the 

treatment models. LATE, however, varies with the intercepts in both the outcome and 
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treatment choice models. As outcomes become rare, following an underlying probit model, 

both ATE and LATE decrease.

Simulation results are presented in Tables 2 and 3. Table 2 reports percent bias, the 

coefficient of variation, and coverage probabilities on the LATE. We find that 2SLS always 

provides consistent estimates of LATE, irrespective of the treatment rarity or outcomes 

rarity. This indicates that 2SLS can consistently estimate the LATE effect even if the linear 

probability model misfits the data and produces out of range predictions. Results do not 

show any major drop in coverage probabilities for LATE across simulation design points. 

Estimates from nonlinear 2SRI and bi-variate probit were generally biased for the LATE.

Table 3 reports percent bias, the coefficient of variation and coverage probabilities on the 

ATE. As expected, given the DGPs, bi-variate probit always produced the least biased 

estimates of the ATE. Also as expected, 2SLS produced biased estimates of ATE, especially 

as the ATE and LATE became increasingly distinct in value with rarer treatment and 

outcome. Results showed that all of the 2SRI estimators produced substantially larger biases 

(and poor coverage probabilities) than bi-variate probit in estimating ATE. This highlights 

the difficulty of estimating the ATE through extrapolation using the first-stage residuals. 

Among the residual inclusion approaches, 2SRI with generalized residual appeared to have 

the least bias in estimating ATE in most cases. However, the corresponding coverage 

probabilities were low.

One interesting observation was that, for rare outcomes (such as those below 5%), 2SRI with 

Anscombe residuals produced the least bias in estimating ATE, with coverage probabilities 

close to 95% in each case. The coverage probabilities did not detoriorate when treatment 

also became rare. This may indicate that the Anscombe transformation of the first-stage 

residuals are helping to better approximate the distribution of ui|vi where the outcomes are 

rare and, therefore, abetting the extrapolation for the counterfactuals.

Results for patterns of bias with 2SLS and 2SRI held similar for the simulations with a 

sample size of 5000 (Appendix Tables A2 and A3).

4. EMPIRICAL EXAMPLE

To illustrate the potential impact of the estimation method on empirical results, we use the 

case of long-term care insurance (LTCI) and its impact on long-term care (LTC) utilization. 

This issue has been studied by Konetzka, He, Guo and Nyman (2014) and Coe, Goda and 

Van Houtven (2015). This application is fitting to illustrate the concepts examined in the 

simulation models, as it is characterized by: 1) a relatively low E(Y) -- few elderly hold 

long-term care insurance; 2) an empirically strong and widely accepted instrumental variable 

– state tax policies that reduce the cost of insurance influence LTCI holding; and 3) multiple 

outcomes, at varying means Pr(Y).

4.1 Data

Three main data sources were used, following Coe, Goda and Van Houtven (2015): (1) the 

Health and Retirement Study (HRS) (including RAND versions) (http://
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hrsonline.isr.umich.edu/); (2) the HRS restricted geographic identifiers (HRS/G), in order to 

match the individual to the state of residence, and (3) state-level tax subsidy data for the 

purchase and holding of state-approved LTCI policies (GS Goda, 2011).

Data from ten waves of the HRS (1996–2010), a publicly available, bi-annual survey of the 

near elderly in the U.S. were used.4 Respondents were ages 50 and older when they initially 

entered the sample and many respondents are observed long enough to have used some type 

of long-term care. To increase the relevance of the instrumental variable used for analysis – 

the state tax subsidy – the sample was limited to individuals who report filing taxes and 

individuals in the top half of the income distribution in our sample. The sample size 

consisted of 46,639 individual-wave observations. The Cross-Wave Geographic Information 
(State) file matches respondents to their state of residence, which is then matched to hand-

collected data from individual state income tax return forms from 1996–2010 that describe 

tax subsidy programs for private long-term care insurance.

4.2 Measures and Descriptive Statistics

Five binary outcome measures were created; the measures had varying means to illustrate 

the bias due to the estimation methods. Each outcome measure is created from HRS data one 

wave (approximately two years) ahead of the data used to create explanatory measures 

described below. Descriptive statistics for the data are shown in Table 3.

Informal Helper—Defining informal care in the HRS requires an algorithm based on 

several variables. The process first identifies whether the person received care for specific 

IADLS and ADLS and then uses information from relationship codes measured in the helper 

file to determine whether the care was from a child, a friend or another relative to ensure that 

the care recipient was not paid. We create 3 variables based on who provided the informal 

care: 60 percent of the sample receives informal care from any person; 43 percent receive 

informal care from a child; 16.5 percent receive care from other relatives.

Home Health care—The formal home health care variables are: “Since the previous 

interview, has any medically-trained person come to your home to help you, yourself?” In 

2000, the HRS clarified that medically-trained persons include professional nurses, visiting 

nurse’s aides, physical or occupational therapists, chemotherapists, and respiratory oxygen 

therapists, which may represent an expansion of the definition of home health care. 6.8 

percent received home health care.

Nursing home care—The HRS asks: “Since (Previous Wave Interview Month-Year/In 

the last two years), have you been a patient overnight in a nursing home, convalescent home, 

or other long-term health care facility?” For individuals who died between waves, nursing 

home use was measured from data in the HRS exit interviews. 2.3 percent received nursing 

home care.

4Earlier waves of the survey are omitted because of the lower quality information on the LTCI question (Finkelstein and McGarry, 
2006) and state information is not yet available for later waves.
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LTCI (mean=0.157)—Starting in the 1996 wave, respondents were asked to respond yes or 

no to the following question: “Not including government programs, do you now have any 

long term care insurance which specifically covers nursing home care for a year or more or 

any part of personal or medical care in your home?”. LTCI status is defined as having LTCI 

in year t, based on the recorded response to this question; 15.7 percent of individual-waves 

had long-term care insurance.

State Tax Subsidy (an instrument for LTCI)—Following the literature, a binary 

variable indicating whether a state has a tax subsidy available in a particular year was 

created to be used as an instrument for LCTI. The state tax subsidy indicated any subsidy, 

regardless of the form of the subsidy (i.e., credit or a deduction), the fraction of premiums 

eligible, monetary caps on the value of the subsidy, income limits, or whether the state 

subsidy was available in addition to the federal subsidy (GS Goda, 2011; Konetzka et al. 

2014; Coe, Goda and Van Houtven 2015). The availability of a state tax subsidy varied 

considerably over time and across states; while only three states had tax incentives for LTCI 

in 1996, a total of 24 states plus the District of Columbia had adopted a subsidy by 2008. 

Prior literature has provided evidence that the state tax subsidy is empirically important in 

whether someone holds an LTCI policy and meets essential criteria for use as an 

instrumental variable in this context. In the first stage regression, the estimated coefficient on 

the binary state tax subsidy variable suggested that individuals in states with subsidies are 

about three percentage points more likely to own LTCI (F-stat: 65.93, p<0.001).

Individual-level control variables—Control variables in the models included binary 

variables indicating respondent’s marital status, sex, number of children, retirement status, 

education, income, race, ethnicity, health status (fair or poor self-reported health and the 

presence of any limitations in the activities of daily living (ADLs)), and age fixed effects.

Fixed-effects—All models include year and state fixed-effects. The year fixed-effects 

account for time trends in the data while the state fixed-effects account for non-time-varying 

differences across states. The inclusion of state fixed-effects suggests that the empirical 

models identify the effect of LTCI coverage on outcome for individuals whose LTCI 

coverage was sensitive to within-state differences in the state tax policy.

Analyses included use of all estimators represented in the simulations models described in 

the previous section. Each estimator was used to estimate the effect of long-term care 

insurance on each of the five outcomes described above, using the binary state tax subsidy 

variable as an instrumental variable. For each estimator, estimates from 500 clustered 

bootstrap samples were used to compute standard errors for the marginal effect in each case.

4.3 Results

The simulation results indicated that 2SLS should produce consistent estimates of LATEs, 

regardless of treatment or outcome rarity. Conversely, results suggested 2SRI models were 

likely to produce bias in estimating average treatment effects on outcomes (ATE or LATE), 

with generalized residuals estimator (2SRI-Gres) producing the least bias. For very rare 

outcome, such as nursing home care and home health care in our empirical application, 2SRI 
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with Anscombe residual (2SRI-ares) may produce estimates close to the unbiased estimates 

of ATE.

Table 4 provides summary statistics for outcomes and other variables used in the empirical 

models. The marginal effects and their bootstrapped standard errors are shown in Table 5.

The 2SLS-based consistent LATE estimates for LTCI were −0.302 (Informal care from any 

source), −0.329 (Informal care from child), 0.161 (Informal care from relatives), −0.252 

(home health care), and 0.087 (Any nursing home care). The interpretation of LATE always 

refers to the marginal individuals. For example, in the model predicting informal care from 

any source, the LATE estimate suggests that LTCI decreases the use of informal care from 

any source by 30 percentage points among people who are moved to acquire LTCI due to the 

subsidy. Sometimes, LATE can provide treatment effects estimates that are difficult to 

interpret, and may even be considered nonsensical, even when the IV is policy-driven. For 

example, assuming that access to LTCI would increase receipt of formal care, which will act 

as a substitute for all forms of informal care, the effect of LTCI on Informal care from any 

source would perhaps not be expected to be smaller than the effect on Informal care from 

child, yet that is what LATE suggests. Similarly, it is difficult to envision how the effect 

from having LTCI, for those who have insurance due to state subsidies, increases informal 

care from a relative; though this LATE estimate does not reach statistical significance. One 

may invoke complicated stories about complementarity between formal care and informal 

care from relatives and particularities about the generosity of LTCI for those who have it due 

to state subsidies, to explain these result. Then again, the real world is full such complexities 

and taking the time to disentangle such nuanced relationships may be considered 

worthwhile. Note that the LATEs for different outcomes belong to the same marginal group 

of patients who are influenced by this specific IV.

Treatment effect estimates produced from the 2SRI models are often quite different from the 

2SLS-based LATE estimates. This was expected. The 2SRI-Gres estimates of ATE for LTCI 

are −0.268 (Informal care from any source), −0.179 (Informal care from child), −0.111 

(Informal care from relatives), −0.077 (home health care) and 0.023 (Any nursing home 

care). Taken at face value, these estimates did not have the contextual inconsistencies, as it 

relates to our a priori theory about the relationships under study, that were seen in LATE 

estimates. The 2SRI estimates were also quite similar to those produced by the Bi-Probit 

model, especially when outcomes mean was close to 0.50. It is quite plausible that the 

underlying distribution of outcomes is well approximated by a normal distribution when the 

binary outcome mean is close to 0.50, and hence, for these outcomes, the bi-probit model is 

likely to produce consistent estimates of ATE.5 For rarer outcomes, the bi-probit estimates 

and the 2SRI-gres estimates differ and it is not clear if any of those estimates are unbiased 

estimates of ATE.

For any nursing home care, which is the rarest outcome, 2SRI-ares (with Anscombe 

residuals) estimates of ATE are close to being unbiased, according to our simulations. 

5Note that in contrast to our simulations, where we generate all outcomes under the normal distribution and found the BVP perform 
better for rare outcomes, here we are suggesting that when the outcomes mean is around 50% its underlying data-generating process is 
more likely to be normal.
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Although this point estimate of 0.038 differs from that of Bi-probit (= 0.023), neither reach 

statistical significance. Hence, it is reasonable to conclude that the overall average effect of 

LTCI in the entire population does not significantly affect any nursing home care.

5. CONCLUSIONS

The economics literature is teeming with applications where linear probability models are 

used for binary outcomes. In case of instrumental variables methods, both the binary 

treatment (in 1st stage) and the binary outcome (in 2nd stage) are often modeled with linear 

probability models with two-stage least squares (2SLS) estimators. In contrast, a control 

function approach may be used with non-linear models (e.g. probit or logit applied to first 

and/or second stage models) where the estimated residuals from the first stage are used as an 

additional covariate in the second stage. However, the residual inclusion approach does not 

identify a treatment effect non-parametrically. Instead, it relies on extrapolation for the 

counterfactual outcomes conditional of the level of a residual using the functional form used. 

The proper characterization of these residuals is thought to be important to carry out such 

extrapolations. This research considered the case where a local average treatment effect 

(LATE) parameter is non-parametrically identified using a binary instrument in the presence 

of all binary covariates. Extensive simulations that varied the rarity of both the outcome and 

treatment were performed to answer questions of whether 2SLS or 2SRI methods with 

different forms of residuals has the least bias in estimating the LATE or the ATE parameters.

Results show that the 2SLS method with binary IV, applied to a binary endogenous 

treatment and a binary outcome, produces consistent estimates of LATE across the entire 

range of rarity for either treatment or the outcome. The rarity of either does not affect the 

coverage probabilities of these estimators. In contrast, the 2SRI approach with any residuals 

studied was a biased estimator for LATE. However, in principle, the 2SRI estimators are 

designed to estimate the ATE parameter. Yet, still, results showed that 2SRI does not appear 

dependable for producing unbiased estimates of ATE. Rather, there were varying levels of 

bias associated with 2SRI estimates of ATE. Among the residual forms, 2SRI with 

generalized residuals appeared to produce the least biased estimates of the ATE. For very 

rare outcomes (<5%) 2SRI with Anscombe residual generated the least bias in estimating 

ATE. We conjecture that the symmetric transformation of these residuals may be leading to 

better extrapolation properties of the 2SRI estimators. However, whether these findings 

represent a general operating characteristic of 2SRI or are unique to our simulation settings 

is not known.

Results from this study conform with the simulation results of Chapman and Brooks (2016), 

who compared 2SLS and nonlinear 2SRI with raw residuals in simulation models with 

binary treatment, binary outcome, and continuous instruments to find that 2SLS produced 

consistent estimates for the IV effect while 2SRI did not reliably estimate either the ATE or 

the IV effect. However, their study did not examine models with binary instruments, vary 

rarity of treatment or outcome from approximately 0.5, examine alternative forms of 2SRI 

residuals, or report coverage probabilities of estimates. The results of this study provide 

additional and more comprehensive evidence showing how 2SLS are consistent estimators 
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of LATE over a wide range of scenarios varying by rarity of binary outcomes and binary 

treatments.

We hope that this work will help the applied researcher to cautiously approach and interpret 

the results generated from IV estimation in models with binary treatment, binary outcome 

and binary instrumental variable. Careful interpretation of treatment effects that are 

identified and being estimated, as well as the potential for bias arising from methodologic 

decisions, are key factors to consider in conducting these analyses and responsibly reporting 

the results from them. While estimating the LATE may be straightforward given a valid 

instrument, the interpretation of LATEs is often nuanced and may heighten the potential for 

unintentionally misleading or erroneous inferences and conclusions. On the other hand, 

interpreting population mean treatment effect parameters such as the ATE is straight-forward 

but estimating them is often problematic and potentially infeasible, as doing so demands 

either richer data or a slew of statistical assumptions that may not be met. Moreover, under 

settings of essential heterogeneity in treatment effectiveness, the potential usefulness of a 

population wide average effect may be limited and more nuanced parameters are required 

for practical impact. It’s important that researchers understand precisely the assumptions 

underlying identification of alternative treatment effect concepts and the related theory to 

support an approach for estimating them. We are hopeful that our results and discussions can 

help untangle these challenges.
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Appendix

Table A1:

Simulations results (N=5,000) for Local Average Treatment Effects (LATEs) - %Bias 

(Coeff. Var.) {Coverage Pr}

E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

0.50~0.60 Naïve Probit 170 [.02] {0} 182 [.03] {0} 242 [.03] {0} 381 [.03] {0} 845 [.04] {0}

2SLS −1 [.27] {.94} −2 [.35] {.95} −4 [.71] {.96} −11 [2.08] {.96} −61 [27.76] {.97}

2SRI −47 [.59] {.67} −31 [.5] {.83} 44 [.37] {.86} 208 [.35] {.45} 476 [.85] {.58}

2SRI - sres 11 [.27] {.92} 32 [.29] {.82} 96 [.33] {.59} 215 [.42] {.52} 428 [.99] {.53}

2SRI - dres −103 [−9.25] {.14} −99 [38.24] {.28} −47 [1.25] {.82} 131 [.58] {.76} 534 [.75] {.5}

2SRI - ares −88 [2.74] {.24} −81 [1.98] {.41} −32 [.94] {.86} 123 [.59] {.79} 488 [.81] {.54}

2SRI - gres −46 [.56] {.65} −32 [.49] {.82} 24 [.44] {.91} 155 [.46] {.67} 399 [.98] {.61}

Bi.Probit −22 [.31] {.83} −16 [.34] {.89} 9 [.49] {.93} 54 [1.06] {.87} 297 [1.83] {.47}

0.80 ~0.90 Naïve Probit 233 [.04] {0} 185 [.04] {0} 155 [.04] {0} 160 [.04] {0} 226 [.06] {0}

2SLS −3 [.52] {.95} −1 [.37] {.95} −1 [.36] {.94} −2 [.53] {.95} −7 [1.74] {.96}

2SRI −3 [.47] {.95} −36 [.54] {.75} −70 [1.01] {.33} −78 [1.71] {.42} −44 [1.71] {.79}
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E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

2SRI - sres 74 [.19] {.39} 69 [.17] {.32} 57 [.18] {.41} 61 [.22] {.52} 106 [.34] {.55}

2SRI - dres −75 [2.27] {.73} −95 [7.59] {.26} −103 [−9.52] {.09} −94 [5.58] {.22} −33 [1.26] {.82}

2SRI - ares −52 [1.07] {.83} −68 [1.09] {.49} −76 [1.15] {.23} −70 [1.18] {.44} −18 [1.02] {.84}

2SRI - gres −4 [.45] {.96} −31 [.47] {.8} −51 [.58] {.5} −59 [.87] {.51} −38 [1.35] {.79}

Bi.Probit −5 [.4] {.94} −31 [.4] {.74} −47 [.45] {.43} −52 [.62] {.47} −33 [1.11] {.8}

0.9 ~ 0.95 Naïve Probit 322 [.05] {0} 232 [.05] {0} 165 [.05] {0} 143 [.06] {0} 160 [.08] {0}

2SLS −2 [.96] {.93} 0 [.61] {.93} 1 [.46] {.93} 0 [.52] {.93} −5 [1.15] {.95}

2SRI 58 [.44] {.82} −9 [.54] {.92} −69 [1.18] {.41} −94 [4.73] {.22} −83 [3.52] {.53}

2SRI - sres 134 [.19] {.15} 97 [.19] {.19} 64 [.2] {.43} 43 [.21] {.66} 51 [.29] {.77}

2SRI - dres −27 [1.35] {.94} −77 [2.57] {.69} −97 [10.3] {.19} −98 [12.3] {.14} −77 [2.09] {.51}

2SRI - ares 0 [.86] {.94} −45 [.96] {.83} −66 [.98] {.4} −72 [1.08] {.34} −55 [1.13] {.64}

2SRI - gres 52 [.43] {.81} −8 [.51] {.91} −47 [.63] {.57} −66 [.9] {.34} −67 [1.47] {.57}

Bi.Probit 24 [.54] {.92} −21 [.51] {.88} −50 [.57] {.45} −62 [.71] {.29} −60 [1.09] {.55}

0.95~0.98 Naïve Probit 492 [.07] {0} 322 [.07] {0} 202 [.08] {0} 150 [.09] {0} 130 [.12] {0}

2SLS −3 [2] {.94} −4 [1.1] {.94} −2 [.66] {.94} 0 [.58] {.95} −1 [.9] {.95}

2SRI 158 [.47] {.83} 34 [.53] {.99} −61 [1.22] {.64} −101 [−37.55] {.25} −92 [6.21] {.51}

2SRI - sres 236 [.29] {.32} 144 [.21] {.17} 84 [.24] {.56} 41 [.26] {.81} 19 [.34] {.92}

2SRI - dres 56 [1.15] {.95} −52 [2.02] {.98} −92 [5.92] {.45} −98 [15.37] {.19} −87 [2.92] {.41}

2SRI - ares 86 [.82] {.95} −14 [.91] {1} −55 [.96] {.64} −70 [.98] {.39} −65 [1.27] {.53}

2SRI - gres 148 [.47] {.81} 25 [.52] {.99} −38 [.7] {.73} −67 [.89] {.43} −74 [1.64] {.48}

Bi.Probit 26 [2.05] {.85} −7 [.78] {.97} −50 [.73] {.64} −68 [.74] {.34} −70 [1.25] {.46}

2SRI – sres: 2SRI with standardized residuals; 2SRI – dres: 2SRI with deviance residuals; 2SRI – ares: 2SRI with 
Anscombe residuals; 2SRI-gres: 2SRI with generalized residuals

Table A2:

Simulations results (N=5,000) comparing to Average Treatment Effects (ATEs) - %Bias 

(Coeff. Var.) {Coverage Pr}

E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

0.50~0.60 Naïve Probit 248 [.02] {0} 237 [.03] {0} 210 [.03] {0} 187 [.03] {0} 163 [.04] {0}

2SLS 28 [.27] {.88} 18 [.35] {.91} −13 [.71] {.94} −47 [2.08] {.94} −89 [27.76] {.96}

2SRI −32 [.59] {.86} −17 [.5] {.9} 31 [.37] {.89} 84 [.35] {.66} 61 [.85] {.71}

2SRI - sres 44 [.27] {.81} 58 [.29] {.68} 78 [.33] {.64} 88 [.42] {.68} 47 [.99] {.67}

2SRI - dres −104 [−9.25] {.3} −99 [38.24] {.39} −52 [1.25] {.8} 38 [.58] {.85} 77 [.75] {.69}

2SRI - ares −85 [2.74] {.42} −78 [1.98] {.53} −38 [.94] {.84} 33 [.59] {.86} 64 [.81] {.69}

2SRI - gres −31 [.56] {.86} −18 [.49] {.90} 12 [.44] {.91} 52 [.46] {.81} 39 [.98] {.7}

Bi.Probit 1 [.31] {.93} 0 [.34] {.93} −1 [.49] {.93} −8 [1.06] {.86} 11 [1.83] {.5}

0.80 ~0.90 Naïve Probit 244 [.04] {0} 314 [.04] {0} 407 [.04] {0} 488 [.04] {0} 582 [.06] {0}

2SLS 0 [.52] {.95} 43 [.37] {.84} 97 [.36] {.71} 121 [.53] {.82} 95 [1.74] {.93}
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E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

2SRI 0 [.47] {.95} −7 [.54] {.95} −40 [1.01] {.81} −49 [1.71] {.77} 17 [1.71] {.9}

2SRI - sres 79 [.19] {.36} 145 [.17] {.07} 213 [.18] {.02} 262 [.22] {.07} 331 [.34] {.31}

2SRI - dres −74 [2.27] {.74} −93 [7.59] {.53} −105 [−9.52] {.39} −87 [5.58] {.59} 40 [1.26] {.89}

2SRI - ares −50 [1.07] {.83} −53 [1.09] {.78} −51 [1.15] {.75} −32 [1.18] {.81} 71 [1.02] {.89}

2SRI - gres −1 [.45] {.97} 1 [.47] {.94} −3 [.58] {.92} −8 [.87] {.88} 29 [1.35] {.88}

Bi.Probit −2 [.4] {.94} 0 [.4] {.95} 4 [.45] {.95} 9 [.62] {.91} 41 [1.11] {.9}

0.9 ~ 0.95 Naïve Probit 226 [.05] {0} 327 [.05] {0} 482 [.05] {0} 648 [.06] {0} 883 [.08] {0}

2SLS −25 [.96] {.91} 28 [.61] {.91} 121 [.46] {.68} 208 [.52] {.65} 260 [1.15] {.85}

2SRI 22 [.44] {.9} 18 [.54] {.94} −32 [1.18] {.84} −80 [4.73] {.64} −37 [3.52] {.86}

2SRI - sres 81 [.19] {.3} 154 [.19] {.05} 260 [.2] {0} 340 [.21] {.02} 472 [.29] {.19}

2SRI - dres −44 [1.35] {.93} −70 [2.57] {.81} −93 [10.3] {.59} −93 [12.3] {.57} −13 [2.09] {.85}

2SRI - ares −23 [.86] {.93} −29 [.96] {.91} −25 [.98] {.87} −14 [1.08] {.86} 71 [1.13] {.93}

2SRI - gres 18 [.43] {.92} 18 [.51] {.94} 17 [.63] {.91} 3 [.9] {.9} 27 [1.47] {.9}

Bi.Probit −4 [.54] {.95} 2 [.51] {.94} 10 [.57] {.93} 16 [.71] {.91} 52 [1.09] {.93}

0.95~0.98 Naïve Probit 202 [.07] {0} 326 [.07] {0} 546 [.08] {0} 815 [.09] {0} 1277 [.12] {0}

2SLS −50 [2] {.89} −3 [1.1] {.94} 110 [.66] {.86} 265 [.58] {.7} 491 [.9] {.79}

2SRI 32 [.47] {.96} 35 [.53] {.99} −16 [1.22] {.95} −103 [−37.55] {.71} −50 [6.21] {.79}

2SRI - sres 72 [.29] {.79} 146 [.21] {.17} 295 [.24] {.03} 417 [.26] {.03} 612 [.34] {.24}

2SRI - dres −20 [1.15] {.96} −52 [2.02] {.98} −83 [5.92] {.8} −94 [15.37] {.71} −25 [2.92] {.83}

2SRI - ares −5 [.82] {.96} −14 [.91] {1} −4 [.96] {.96} 10 [.98] {.93} 109 [1.27] {.93}

2SRI - gres 27 [.47] {.95} 26 [.52] {.99} 32 [.7] {.98} 21 [.89] {.94} 55 [1.64] {.91}

Bi.Probit −36 [2.05] {.94} −6 [.78] {.97} 7 [.73] {.94} 18 [.74] {.93} 78 [1.25] {.93}

2SRI – sres: 2SRI with standardized residuals; 2SRI – dres: 2SRI with deviance residuals; 2SRI – ares: 2SRI with 
Anscombe residuals; 2SRI-gres: 2SRI with generalized residuals

Table A3:

Simulations results (N=50,000) for Average Treatment Effects (LATEs) with logit Data 

generating Process - %Bias (Coeff. Var.) {Coverage Pr}

E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

0.50~0.60 2SRI −13 [.23] {.84} −5 [.21] {.91} 11 [.2] {.89} 24 [.21] {.82} 35 [.3] {.84}

2SRI - ares −46 [.42] {.38} −30 [.33] {.72} 4 [.23] {.91} 40 [.19] {.69} 82 [.19] {.37}

2SRI - gres −13 [.23] {.81} −5 [.21] {.91} 11 [.2] {.91} 24 [.21] {.83} 35 [.3] {.84}

0.80 ~0.90 2SRI 2 [.2] {.9} −11 [.25] {.88} −28 [.35] {.76} −42 [.54] {.7} −60 [1.26] {.68}

2SRI - ares −32 [.37] {.62} −39 [.4] {.54} −26 [.34] {.75} −2 [.29] {.93} 40 [.3] {.86}

2SRI - gres 2 [.2] {.85} −11 [.25] {.83} −28 [.35] {.74} −42 [.54] {.7} −60 [1.26] {.68}

0.9 ~ 0.95 2SRI 13 [.2] {.85} 0 [.23] {.92} −25 [.36] {.8} −52 [.68] {.65} −82 [2.68] {.57}

2SRI - ares −19 [.34] {.82} −29 [.37] {.71} −25 [.36] {.79} −8 [.32] {.9} 30 [.35] {.93}

2SRI - gres 13 [.2] {.74} 0 [.23] {.88} −25 [.36] {.78} −52 [.68] {.64} −82 [2.68] {.57}
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E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

0.95~0.98 2SRI 22 [.19] {.78} 11 [.23] {.9} −16 [.37] {.87} −52 [.84] {.65} −94 [9.6] {.53}

2SRI - ares −9 [.32] {.88} −18 [.36] {.84} −18 [.38] {.84} −6 [.37] {.9} 26 [.41] {.96}

2SRI - gres 22 [.19] {.66} 11 [.23] {.85} −16 [.37] {.86} −52 [.84] {.67} −94 [9.6] {.53}

2SRI – ares: 2SRI with Anscombe residuals; 2SRI-gres: 2SRI with generalized residuals

Table A4:

Simulations results (N=50,000) for Average Treatment Effects (LATEs) with cloglog Data 

generating Process - %Bias (Coeff. Var.) {Coverage Pr}

E(Y) Estimators Pr(D) = 0.55 Pr(D) = 0.70 Pr(D) = 0.85 Pr(D) = 0.93 Pr(D) = 0.995

0.50~0.60 2SRI −25 [.23] {.64} −18 [.21] {.78} −4 [.2] {.92} 7 [.21] {.93} 16 [.31] {.9}

2SRI - ares −54 [.43] {.19} −40 [.33] {.44} −10 [.23] {.91} 21 [.19] {.85} 59 [.19] {.51}

2SRI - gres 27 [.09] {.68} 35 [.1] {.45} 83 [.1] {0} 162 [.09] {0} 250 [.07] {.01}

0.80 ~0.90 2SRI 1 [.2] {.93} −11 [.24] {.9} −28 [.34] {.76} −42 [.53] {.7} −59 [1.19] {.68}

2SRI - ares −32 [.35] {.69} −38 [.38] {.58} −26 [.33] {.77} −1 [.29] {.93} 41 [.3] {.85}

2SRI - gres 33 [.08] {.67} 37 [.1] {.61} 39 [.15] {.6} 57 [.25] {.63} 174 [.47] {.65}

0.9 ~ 0.95 2SRI 27 [.19] {.74} 12 [.23] {.91} −15 [.36] {.88} −45 [.68] {.72} −77 [2.47] {.63}

2SRI - ares −9 [.33] {.9} −20 [.37] {.85} −14 [.36] {.88} 6 [.33] {.93} 48 [.34] {.88}

2SRI - gres 26 [.08] {.95} 36 [.11] {.79} 43 [.16] {.69} 48 [.26] {.77} 109 [.66] {.88}

0.95~0.98 2SRI 64 [.19] {.43} 49 [.23] {.68} 14 [.37] {.94} −33 [.81] {.85} −89 [7.68] {.67}

2SRI - ares −13 [.31] {.97} 10 [.36] {.92} 11 [.38] {.93} 27 [.37] {.94} 70 [.4] {.93}

2SRI - gres 14 [.1] {1} 26 [.12] {.98} 41 [.18] {.84} 45 [.27] {.86} 101 [.73] {.94}

2SRI – ares: 2SRI with Anscombe residuals; 2SRI-gres: 2SRI with generalized residuals
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Figure 1: 
Illustration of residual inclusion approach for binary treatment variable.
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Table 4:

Descriptive Statistics for HRS dataset

Binary Variables Mean (sd)

Outcomes

 Informal Care from Any Source 0.60 (0.49)

 Informal Care from Child 0.43 (0.50)

 Informal Care from other Relative 0.165 (0.37)

 Home Health Care 0.068 ( 0.25)

 Any Nursing Home Care 0.023 (0.15)

Treatment

 LTCI coverage 0.157 (0.364)

IV

 Subsidies 0.335 (0.472)

Other covariates

 Marital status==2 0.11 (0.32)

 Marital status ==3 0.17 (0.37)

 Marital status==4 0.06 (0.24)

 Female 0.56 (0.5)

 No. of children==1 0.1 (0.3)

 No. of children==2 0.31 (0.46)

 No. of children==3 0.22 (0.42)

 No. of children==4 0.13 (0.34)

 No. of children==5 0.15 (0.36)

 No. of children==6 0.01 (0.11)

 Retired 0.47 (0.5)

 Education category ==2 0.35 (0.48)

 Education category ==3 0.26 (0.44)

 Education category ==4 0.3 (0.46)

 Income category==2 0.36 (0.48)

 Income category==3 0.64 (0.48)

 Race category ==2 0.06 (0.25)

 Race category ==3 0.03 (0.18)

 Fair/Poor health 0.17 (0.37)

 Any ADL 0.1 (0.29)
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