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Introduction: Immunotherapy is regarded as one of the major breakthroughs in cancer treatment. Despite its success, only a
subset of patients responds—urging the quest for predictive biomarkers. We hypothesize that artificial intelligence (AI)
algorithms can automatically quantify radiographic characteristics that are related to and may therefore act as noninvasive
radiomic biomarkers for immunotherapy response.

Patients and methods: In this study, we analyzed 1055 primary and metastatic lesions from 203 patients with advanced
melanoma and non-small-cell lung cancer (NSCLC) undergoing anti-PD1 therapy. We carried out an AI-based characterization of
each lesion on the pretreatment contrast-enhanced CT imaging data to develop and validate a noninvasive machine learning
biomarker capable of distinguishing between immunotherapy responding and nonresponding. To define the biological basis of
the radiographic biomarker, we carried out gene set enrichment analysis in an independent dataset of 262 NSCLC patients.

Results: The biomarker reached significant performance on NSCLC lesions (up to 0.83 AUC, P< 0.001) and borderline
significant for melanoma lymph nodes (0.64 AUC, P¼ 0.05). Combining these lesion-wide predictions on a patient level,
immunotherapy response could be predicted with an AUC of up to 0.76 for both cancer types (P< 0.001), resulting in a 1-year
survival difference of 24% (P¼ 0.02). We found highly significant associations with pathways involved in mitosis, indicating a
relationship between increased proliferative potential and preferential response to immunotherapy.

Conclusions: These results indicate that radiographic characteristics of lesions on standard-of-care imaging may function as
noninvasive biomarkers for response to immunotherapy, and may show utility for improved patient stratification in both
neoadjuvant and palliative settings.
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Introduction

Cancer immunotherapy has made promising strides as a result of

improved understanding of biological interactions between

tumor cells and the immune system. Both the EMA and the FDA

have approved anti-PD1 antibodies to treat melanoma or non-

small-cell lung cancer (NSCLC) patients with unresectable or

metastatic disease, which progressed under platinum-based

chemotherapy or display high expression of PD-L1 [1–4]—with

overall response rates of 44% and 32% in first and second line in
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melanoma [5, 6] and 19% in second line in lung cancer [7–9].

Unlike traditional cancer treatment, anti-PD1 antibodies po-

tentiate the antitumor immune response.

Despite their remarkable success, clinical benefit remains lim-

ited to only a subset of patients [10]. As immunotherapy is ex-

pensive and could bring toxicity, there is a need to stratify

patients according to likely benefit before therapy. Different bio-

markers have been investigated with variable success, such as

levels of PD-L1 [11–13], presence of tumor-infiltrating lympho-

cytes [14, 15], genetic mutations [16–18] and inflammatory cyto-

kines [19].

Recent emergence of quantitative imaging biomarkers provide

promising opportunities. Unlike traditional biopsy-based assays

that represent only a sample of the tumor, images reflect the entire

tumor burden, providing information on each cancer lesion with

a single noninvasive examination. This is of particular importance

in immunotherapy, where different lesions can have different

microenvironments potentially leading to heterogeneous response

patterns [20]. Previously, radiolabeled anti-PD1 antibodies were

used to visualize specific immunological expressions [21].

Computational imaging approaches originating from artificial

intelligence (AI) have achieved impressive successes in automat-

ically quantifying radiographic characteristics of tumors [22]. AI-

based characterization on radiology is referred to as ‘radiomics’

and can provide more detailed characterization than possible by

eye [22–24]. Radiomics-based biomarkers have shown success in

different tumor types [25–31]; but to the best of our knowledge,

there is no evidence yet in immunotherapy. Tumor morphology,

visualized on imaging, is likely influenced by several aspects of

tumor biology. We hypothesize that a set of morphological char-

acteristics, quantified by radiomics, are related to and may there-

fore act as predictive markers.

In this study, we analyzed all visible cancer lesions to evaluate

the potential predictive value of CT-derived radiomic biomarkers

in metastatic NSCLC and melanoma patients receiving immuno-

therapy. A biologic evaluation was carried out in an independent

validation set of surgical NSCLC patients with imaging and gene-

expression data.

Methods–patients

Immunotherapy dataset

Patients with metastatic melanoma or NSCLC receiving 3 mg/kg/2 weeks
of anti-PD1 at the Netherlands Cancer Institute (NKI) between 2014 and
2016 were retrospectively analyzed (for more information see supple-

mentary material S1, available at Annals of Oncology online). Contrast-
enhanced computed tomography (CE-CT) scans were acquired before
(baseline) and around 12 weeks after start of treatment (follow-up) (see
supplementary material S2, available at Annals of Oncology online). The

study protocol was approved by the Medical Ethics Committee and
Board of Directors of the NKI and informed consent was waived.

Genomics dataset

To provide biological validation, we evaluated an independent, dataset of
surgical NSCLC patients between 2006 and 2009 treated at the H. Lee
Moffitt Cancer Center. Pre-surgical CE-CT (within 60 days of diagnosis)

and gene expression data were available for 262 patients. The University
of South Florida IRB approved and waived informed consent

(IRB#16069); in accordance with HIPAA (more information in supple-

mentary material S4, available at Annals of Oncology online [32]).

Chemotherapy dataset

To study the specificity of the radiomic biomarker for immunotherapeu-

tic response prediction, we retrospectively collected a cohort of 39

patients with stage IV NSCLC treated with cytotoxic chemotherapy at

NKI between 2015 and 2016 (IRBd18079, more information in supple-

mentary material S4, available at Annals of Oncology online).

Imaging data and lesion segmentations

Experienced readers manually delineated lesions on baseline and follow-

up scans. Target lesions were defined as any tumor that was well-

demarcated on both baseline and follow-up with diameter �5 mm (see

supplementary material S5, available at Annals of Oncology online).

Examples are shown in Figure 1A and B.

Response kinetics

To assess the effects of mixed response, we carried out a lesion-per-

lesion assessment of relative change in diameter between baseline and

follow-up, using RECIST criteria. Furthermore, in patients with >1 le-

sion, we classified response patterns on a patient basis as mixed for

patients presenting both responding and progressive lesions and uniform

for patients presenting only responding or progressive lesions (irrespect-

ive of stable lesions). This setup allows for the characterization of overall

tumor burden.

Radiographic differences between responding and
progressive lesions

To generate radiomic sequences for each lesion at baseline, a set of radio-

mic features was defined [33] (see Figure 1E and supplementary material

S6, available at Annals of Oncology online). Radiomic features of

responding and progressive lesions were directly compared with identify

differences. To reduce redundancy, 10 complementary features were

selected using unsupervised feature selection [34]. Statistical significance

was assessed using generalized mixed-effect models—controlling for pa-

tient, tumor type and organ. False discovery rate was at 10% to correct

for multiple comparisons.

Radiomic biomarkers to predict immunotherapy
response of cancer lesions

To assess the performance of the radiomic biomarker, we developed a

machine learning model [35–37]. We trained the model on all lesions

(i.e. progressive, stable and responding) to discern progressive disease.

The dataset was divided into training, tuning and testing sets based on

patient identifiers. The training set was used to model data distributions.

The tuning set was used during training to control for overfitting. The

test set was used for independent evaluation (see Figure 1F and supple-

mentary materials S7 and S8, available at Annals of Oncology online).

Mann–Whitney U test was used for statistical testing of AUC curves, one-

sided McNeils test was used to test if the radiomic biomarker was outper-

forming volume and maximum diameter, and log-rank test was used for

statistical testing of survival performance.

To test for radiomic association with molecular pathways, Spearman’s

rank correlation coefficient was used. Pathways were then ranked by

�log10(p), where p is the correlation P-value, and put into a preranked

gene set enrichment analysis (GSEA) algorithm [38] version 2.0.14 on

the C2 collection version Molecular Signature Database (MSigDB) [39].
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Results

Immunotherapy response kinetics

To assess immunotherapy response kinetics, 203 (123 NSCLC, 80

melanoma) patients were analyzed with a total of 1055 target

lesions (see supplementary material S1, available at Annals of

Oncology online). Lesions were similarly distributed between

NSCLC (n¼ 572, 54%) and melanoma (n¼ 483, 46%). The most

common lesion sites were lung (n¼ 359, 34%), lymph nodes

(n¼ 312, 30%) and liver (n¼ 212, 20%). Most lesions (n¼ 746

versus 309, v2 test P< 0.01) showed either stable (n¼ 395) or

partial response (n¼ 351).

Melanoma lesions showed better overall response than NSCLC

(40% versus 27% responding, P< 0.01; 23% versus 34% progres-

sion, P< 0.01). This trend was more evident for lung lesions,

where we observed progression in NSCLC (39% versus 14%,

P< 0.01) and response in melanoma (48% versus 26%,

P< 0.01). Hepatic melanoma lesions showed response in com-

parison with NSCLC (22% versus 36%, P¼ 0.04). Examples are

shown in Figure 1C and D.

Comparing per-patient response patterns in both cancer types,

we observed that 23% (n¼ 47) showed uniform response, 27%

(n¼ 55) uniform progression and 22% (n¼ 45) mixed response.

The remaining 28% (n¼ 56) of the patients did not have multiple

target lesions or presented only stable lesions. Significantly higher

survival rates were seen in uniform response (log-rank test,

P< 0.01). This was evident in melanoma (log-rank-test,

P< 0.01), while in NSCLC, despite similar trends, did not reach

significance (P¼ 0.08). Per-patient response kinetics are shown

in Figure 2A. Kaplan–Meier curves are shown in Figure 2B and D.

Radiographic differences between responding and
progressive lesions

To investigate radiographic differences between responding and

progressing lesions, we compared their radiomic features (see

supplementary Figure S9.1A and material S2, available at Annals

of Oncology online). Among the most common locations (lung,

lymph nodes, liver and adrenal gland), responding lesions

presented higher levels of irregular patterns (Wavelet.

HLH_GLSZM_ZoneEntropy, Kenward–Roger test P¼ 0.007)

with more compact, spherical profiles (SurfaceVolumeRatio,

P¼ 0.01). Subanalysis on location revealed increased values of

morphological heterogeneity in hepatic, nodal and splenic lesions

associated with response (P< 0.02).

Of the most common NSCLC lesions, similar trends for mor-

phological heterogeneity were seen at the organ level in pulmon-

ary and hepatic lesions, as well as lymph nodes also characterized

by the presence of hypodense regions (P¼ 0.007). No significance

was observed in primary NSCLC tumors. Among most common

melanoma lesions greater morphological heterogeneity showed

association with response (GLCM_DifferenceEntropy,

P¼ 0.006). Similar trends for morphological heterogeneity were

A B C D

E F

Figure 1. (A) Baseline contrast-enhanced CT scan of melanoma patient presenting with metastases in the liver and lymph nodes in the axilla
and subclavicular area. (B) Follow-up scan of the same patient showing complete response in the axillary region and partial response of the
lesions in the liver and neck. (C) Baseline CT scan of an NSCLC patient presenting lesion in the left lung, that showed progression at a later
FU CT (data not shown). (D) Baseline CT scan of a melanoma patient presenting lesions in the right lung that showed response at a later FU
CT (data not shown). (E) Schematic representation of the radiomics feature extraction process. (F) Schematic of the machine learning
process.
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seen but lower sample numbers did not allow to pass the patient

correction.

Radiomic biomarker to predict immunotherapy
responding and stable lesions

To assess the performance of radiomics to rule out progression,

we used machine learning to develop a single radiomic biomarker

with 133 patients in the discovery set and 70 patients in test (see

supplementary material S3, available at Annals of Oncology on-

line). A random forest with wrapper feature selection was used to

develop radiomic biomarkers based on the performance in the

discovery set (see supplementary material S7, available at Annals

of Oncology online) and was validated on the independent test set.

In NSCLC, radiomic biomarker from pulmonary (0.83 AUC,

Mann–Whitney U test P< 0.001) and nodal metastases (0.78

AUC, P< 0.001) showed significant performance. Satisfactory

performance was observed in NSCLC primary tumors (0.79

AUC, P¼ 0.05), hepatic (0.75 AUC, P¼ 0.13) and adrenal lesions

(0.70 AUC, P¼ 0.18) but did not reach significance mostly due to

the low number of samples. The model carried out poorly on

both pulmonary and hepatic melanoma lesions (0.55 AUC).

Despite these results, a trend toward significance is shown in

nodal metastases (0.64 AUC, P¼ 0.05) (see Figure 3A).

Evaluation of the radiomic biomarker on all 303 lesions within

the test dataset resulted in significant predictive performance

(0.66 AUC, P< 0.01; see supplementary material S3, available at

Annals of Oncology online).

By combining predictions made on individual lesions, it is pos-

sible to do a pretreatment patient-wise prediction of immuno-

therapy response (see Methods section). Significant

performances were observed to predict OS for both tumor types

(0.76 AUC for all patients, P< 0.01; 0.76 AUC for NSCLC

patients, P< 0.01; 0.77 AUC for melanoma patients, P< 0.01; see

Figure 3B), with a significant survival difference at 1-year of 25%

(77% versus 52%, log-rank-test, P¼ 0.02; see Figure 3C).

Interestingly, in melanoma patients, we observed significant per-

formance to predict OS and response, despite the lower perform-

ance on a lesion level.

This radiomic immunotherapy response biomarker could not

significant predict overall survival in patients treated with cyto-

toxic chemotherapy (P¼ 0.07), nor in terms of overall patient re-

sponse (AUC¼ 0.63; P¼ 0.09). In terms of lesion response, the

biomarker was inversely correlated to response of lung lesions in

nonimmunotherapy patients (n¼ 61, AUC¼ 0.70, P¼ 0.04), but

did not show any significant predictive value in the remaining

nodal (n¼ 61, AUC¼ 0.59, P¼ 0.24) and liver lesions (n¼ 12,

AUC¼ 0.65, P¼ 0.29). See supplementary Figure S9.D, available

at Annals of Oncology online.

Biological validation of the radiomic biomarker

To evaluate the biological basis of the radiomic biomarker, we

evaluated it in an independent dataset of 262 NSCLC patients

with matched array-based gene expression data [32]. Through

ranked GSEA, we found that the top gene sets showing significant

A

B C D

Figure 2. (A) Response kinetics curve depicting individual lesion responses (as dots) on a patient-to-patient basis. (B) One-year survival plot
for all analyzed patients (C) for melanoma patients only, (D) for NSCLC patients only.
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association with the radiomic biomarker were involved in cell

cycle progression and mitosis (supplementary Figure S9.1B,

available at Annals of Oncology online). This indicates that a link

between high tumor proliferation and improved response to im-

munotherapy may exist, and provides rationale for early-

application immunotherapy as a therapeutic option for aggres-

sive rapidly expanding cancers.

Discussion

Our aim was to evaluate radiomics-based models and their po-

tential to predict treatment response in metastatic melanoma and

NSCLC patients receiving anti-PD-1 antibodies.

We found that lesions with more heterogeneous morphologic-

al profiles with nonuniform density patterns and compact

borders are more likely to respond to immunotherapy—

irrespective of organ and/or cancer type. Higher levels of

SurfaceVolumeRatio in nonresponding lesions in both cancers

suggest that more compact and spherical profiles are associated

with better response.

Based on these results, it would be prudent to point out that

morphological heterogeneity does not necessarily correspond to

genetic heterogeneity: infiltration, inflammation, neo-

vascularization and necrosis could also be associated with mor-

phological irregularities. Assuming that a well-vascularized

monoclonal tumor growing in the absence of an immune system

would expand uniformly in all directions, any deviation could

suggest a fault of one of aforementioned characteristics. If we

were to relax one of these conditions, e.g. by adding an immune

system, we would observe infiltration and inflammatory micro-

environment [16] affecting the tumor morphology—now com-

prising more than solely tumor cells. Irregular vascularization

might cause nonhomogeneous growth patterns while hampering

T-cell infiltration [40]. The role of the other compartments need

to be taken into account in order to explain the overall tumor

growth.

Overall results of machine learning model show good predict-

ive performance for NSCLC metastases. In melanoma, the same

model carried out poorly. Besides the smaller melanoma cohort,

the heterogeneous therapeutic backgrounds likely played a role in

the morphological characterization. While NSCLC patients

received chemotherapy as first-line, melanoma patients received

a variety of different treatments before immunotherapy. This

could potentially have led to standardization of defined genetic
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profiles and tumor microenvironments in NSCLC [23, 32, 41,

42]. In melanoma patients the diversity of therapeutic back-

grounds might have induced different genetic profiles and micro-

environments. Despite the lower performance on individual

melanoma lesions, we still see a correlation with response and

overall survival at a patient level, suggesting a relationship be-

tween individual lesion response and overall tumor burden.

GSEA on an external cohort revealed associations of the radio-

mic biomarker to proliferative potential in NSCLC, suggesting

that highly proliferative tumors may show preferential response

to immunotherapy. While standard of care for patients with ag-

gressive cancer showing rapid expansion is platinum-doublet

chemotherapy, these results provides the biological rationale for

previous work demonstrating why combination therapy is a vi-

able option in first-line metastatic settings [43].

To the best of our knowledge, this study is the first of its kind

to investigate radiomics as a noninvasive biomarker for response

to cancer immunotherapy.

We designed the study using a lesion-based approach, reflect-

ing the metastatic condition characterizing patients receiving im-

munotherapy. This enabled us to investigate lesions individually

while avoiding the issue of mixed response. Whenever possible,

we limited selection biases and tried to avoid overfitting. Further

validation in larger cohorts is warranted.

As imaging can provide information of the total tumor burden

which allows the analysis of each lesion individually, its value lies

complementary to currently known biomarkers (limited to single

lesion samples). Despite the correlations found to overall patient

survival and molecular pathways, further studies are needed to

investigate the interaction between single (or clusters of) lesions,

tumor biology and clinical status. Only a multidisciplinary ap-

proach aimed to integrate data from different disciplines can cre-

ate a fully integrated solution that can be implemented into the

clinical workflow.

Conclusions

Our findings suggest associations between radiomics characteris-

tics and immunotherapy response showing consistent trends

across cancer types and anatomical location. Lesions that are

more likely to respond to immunotherapy typically present with

more heterogeneous morphological profiles with nonuniform

density patterns and compact borders. Moreover, we provide a

predictive machine learning model that could be used within the

context of lesion response to treatment, patient treatment re-

sponse, and response pattern characterization. Furthermore, we

evaluated the biological basis of the proposed biomarker and

found to be correlated with cell proliferative potential. Motivated

by the results and the wide availability of routine clinical CT scans

for cancer immunotherapy patients, we aim to expand this re-

search further to the design of clinically applicable automatic

computer models that could support the oncological decision-

making process.

Funding

This work was supported by the Dutch national e-infrastructure

with the support of the SURF Cooperative. The authors

acknowledge financial support from the Informatics Technology

for Cancer Research (ITCR) program (NIH-USA U24CA194354)

and the Quantitative Imaging Network (QIN) program (NIH-

USA U01CA190234) of the NIH.

Disclosure

CS reports grant support from Cancer Research UK, UCLH

Biomedical Research Council, and Rosetrees Trust, AstraZeneca

and personal fees from Boehringer Ingelheim, Novartis, Eli Lilly,

Roche, GlaxoSmithKline, Pfizer, Servier, MSD, BMS,

AstraZeneca, Illumina, Sarah Canon Research Institute and

Celgene. CS also reports stock options in GRAIL, APOGEN

Biotechnologies, and EPIC Bioscience and has stock options and

is co-founder of Achilles Therapeutics. HJWLA reports shares

from Genospace and Sphera, outside of the submitted work. All

remaining authors have declared no conflicts of interest.

References

1. U.S. Food and Drug Administration. Drugs (KEYTRUDA Label).

https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014l

bl.pdf (1 April 2019, date last accessed).

2. U.S. Food and Drug Administration. Drugs (OPDIVO Label). https://

www.accessdata.fda.gov/drugsatfda_docs/label/2017/125554s055lbl.pdf

(1 April 2019, date last accessed).

3. Opdivo: EPAR—Product Information. http://www.ema.europa.eu/docs/

en_GB/document_library/EPAR_-_Product_Information/human/00398

5/WC500189765.pdf (1 April 2019, date last accessed).

4. Keytruda: EPAR—Product Information. http://www.ema.europa.eu/

docs/en_GB/document_library/EPAR_-_Product_Information/human/

003820/WC500190990.pdf (1 April 2019, date last accessed).

5. Wolchok JD, Chiarion-Sileni V, Gonzalez R et al. Efficacy and safety

results from a phase III trial of nivolumab (NIVO) alone or combined

with ipilimumab (IPI) versus IPI alone in treatment-naive patients (pts)

with advanced melanoma (MEL) (CheckMate 067). JCO 2015; 33(Suppl

18): LBA1.

6. Weber JS, D’Angelo SP, Minor D et al. Nivolumab versus chemotherapy

in patients with advanced melanoma who progressed after anti-CTLA-4

treatment (CheckMate 037): a randomised, controlled, open-label, phase

3 trial. Lancet Oncol 2015; 16(4): 375–384.

7. Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus docetaxel in

advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015;

373(17): 1627–1639.

8. Brahmer J, Reckamp KL, Baas P et al. Nivolumab versus docetaxel in

advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015;

373(2): 123–135.

9. Herbst RS, Baas P, Kim D-W et al. Pembrolizumab versus docetaxel for

previously treated, PD-L1-positive, advanced non-small-cell lung cancer

(KEYNOTE-010): a randomised controlled trial. Lancet 2016;

387(10027): 1540–1550.

10. Hodi FS, O’Day SJ, McDermott DF et al. Improved survival with ipili-

mumab in patients with metastatic melanoma. N Engl J Med 2010;

363(8): 711–723.

11. Ma W, Gilligan BM, Yuan J, Li T. Current status and perspectives in

translational biomarker research for PD-1/PD-L1 immune checkpoint

blockade therapy. J Hematol Oncol 2016; 9(1): 47.

12. Meng X, Huang Z, Teng F et al. Predictive biomarkers in PD-1/PD-L1

checkpoint blockade immunotherapy. Cancer Treat Rev 2015; 41(10):

868–876.

13. Kerr KM, Tsao M-S, Nicholson AG et al. Programmed death-ligand 1

immunohistochemistry in lung cancer: in what state is this art? J Thorac

Oncol 2015; 10(7): 985–989.

Annals of Oncology Original article

Volume 30 | Issue 6 | 2019 doi:10.1093/annonc/mdz108 | 1003

https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125514s014lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125554s055lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/125554s055lbl.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003985/WC500189765.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003985/WC500189765.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003985/WC500189765.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003820/WC500190990.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003820/WC500190990.pdf
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003820/WC500190990.pdf


14. Zito Marino F, Ascierto PA, Rossi G et al. Are tumor-infiltrating lympho-

cytes protagonists or background actors in patient selection for cancer

immunotherapy? Expert Opin Biol Ther 2017; 17(6): 735–746.

15. He Y, Rozeboom L, Rivard CJ et al. PD-1, PD-L1 protein expression in

non-small cell lung cancer and their relationship with tumor-infiltrating

lymphocytes. Med Sci Monit 2017; 23: 1208–1216.

16. McGranahan N, Furness AJS, Rosenthal R et al. Clonal neoantigens elicit

T cell immunoreactivity and sensitivity to immune checkpoint blockade.

Science 2016; 351(6280): 1463–1469.

17. Rizvi NA, Hellmann MD, Snyder A et al. Cancer immunology.

Mutational landscape determines sensitivity to PD-1 blockade in non-

small cell lung cancer. Science 2015; 348(6230): 124–128.

18. Hellmann MD, Ciuleanu T-E, Pluzanski A et al. Nivolumab plus ipilimu-

mab in lung cancer with a high tumor mutational burden. N Engl J Med

2018; 378(22): 2093–2104.

19. Ayers M, Lunceford J, Nebozhyn M et al. IFN-c-related mRNA profile

predicts clinical response to PD-1 blockade. J Clin Invest 2017; 127(8):

2930–2940.

20. Whiteside TL. The tumor microenvironment and its role in promoting

tumor growth. Oncogene 2008; 27(45): 5904–5912.

21. Wu AM. Antibodies and antimatter: the resurgence of immuno-PET.

J Nucl Med 2009; 50(1): 2–5.

22. Hosny A, Parmar C, Quackenbush J et al. Artificial intelligence in radi-

ology. Nat Rev Cancer 2018; 18: 500–510.

23. Aerts H, Velazquez ER, Leijenaar RTH et al. Decoding tumour pheno-

type by noninvasive imaging using a quantitative radiomics approach.

Nat Commun 2014; 5: 4006.

24. Aerts H, Hugo JW. The potential of radiomic-based phenotyping in pre-

cision medicine. JAMA Oncol 2016; 2(12): 1636.

25. Coroller TP, Agrawal V, Narayan V et al. Radiomic phenotype features

predict pathological response in non-small cell lung cancer. Radiother

Oncol 2016; 119(3): 480–486.

26. Kirienko M, Cozzi L, Antunovic L et al. Prediction of disease-free sur-

vival by the PET/CT radiomic signature in non-small cell lung cancer

patients undergoing surgery. Eur J Nucl Med Mol Imaging 2017; 45:

207–217.

27. Fave X, Zhang L, Yang J et al. Using pretreatment radiomics and delta-

radiomics features to predict non-small cell lung cancer patient out-

comes. Int J Radiat Oncol Biol Phys 2017; 98(1): 249.

28. Parmar C, Grossmann P, Rietveld D et al. Radiomic machine-learning

classifiers for prognostic biomarkers of head and neck cancer. Front

Oncol 2015; 5: 272.

29. Kickingereder P, Burth S, Wick A et al. Radiomic profiling of glioblast-

oma: identifying an imaging predictor of patient survival with improved

performance over established clinical and radiologic risk models.

Radiology 2016; 280(3): 880–889.

30. Prasanna P, Patel J, Partovi S et al. Radiomic features from the peritu-

moral brain parenchyma on treatment-naı̈ve multi-parametric MR

imaging predict long versus short-term survival in glioblastoma

multiforme: preliminary findings. Eur Radiol 2017; 27(10): 4188–4197.

31. Li H, Zhu Y, Burnside ES et al. MR imaging radiomics signatures for pre-

dicting the risk of breast cancer recurrence as given by research versions

of MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiology

2016; 281(2): 382–391.

32. Grossmann P, Stringfield O, El-Hachem N et al. Defining the biological

basis of radiomic phenotypes in lung cancer. elife 2017; 6: e23421.

33. van Griethuysen JJM, Fedorov A, Parmar C et al. Computational radio-

mics system to decode the radiographic phenotype. Cancer Res 2017; 77:

e104–e107.

34. Swiniarski RW, Skowron A. Rough set methods in feature selection and

recognition. Pattern Recognit Lett 2003; 24(6): 833–849.

35. Cox DR. The regression analysis of binary sequences. J R Stat Soc Ser B

Stat Methodol 1958; 20(2): 215–242.

36. Breiman L. Machine learning. Random Forests 2001; 45: 5–32.

37. Olson RS, Bartley N, Urbanowicz RJ, Moore JH. Evaluation of a tree-

based pipeline optimization tool for automating data science. In

Proceedings of the Genetic and Evolutionary Computation Conference

2016. New York, NY, USA: ACM 2016; 485–492.

38. Subramanian A, Tamayo P, Mootha VK et al. Gene set enrichment ana-

lysis: a knowledge-based approach for interpreting genome-wide expres-

sion profiles. Proc Natl Acad Sci USA 2005; 102(43): 15545–15550.

39. Liberzon A, Subramanian A, Pinchback R et al. Molecular signatures

database (MSigDB) 3.0. Bioinformatics 2011; 27(12): 1739–1740.

40. Huang Y, Goel S, Duda DG et al. Vascular normalization as an emerging

strategy to enhance cancer immunotherapy. Cancer Res 2013; 73(10):

2943–2948.

41. Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012;

481(7381): 306–313.

42. Rios Velazquez E, Parmar C, Liu Y et al. Somatic mutations drive distinct

imaging phenotypes in lung cancer. Cancer Res 2017; 77(14): 3922–3930.

43. Gandhi L, Rodrı́guez-Abreu D, Gadgeel S et al. Pembrolizumab plus

chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med

2018; 378(22): 2078–2092.

Original article Annals of Oncology

1004 | Trebeschi et al. Volume 30 | Issue 6 | 2019


