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Patients with either primary or metastatic brain tumors quite often have cognitive impairment. 

Maintaining cognitive function is important to brain tumor patients and a decline in cognitive 

function is generally accompanied by a decline in functional independence and performance 

status. Cognitive decline can be a result of tumor progression, depression/anxiety, fatigue/sleep 

dysfunction, or the treatments they have received. It is our opinion that providers treating brain 

tumor patients should obtain pre-treatment and serial cognitive testing in their patients and offer 

mitigating and therapeutic interventions when appropriate. They should also support cognition-

focused clinical trials.
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Introduction

Cognitive abilities in brain tumor patients can be affected by a myriad of factors: the tumor 

itself, depression and anxiety, fatigue, sleep dysfunction, pre-brain tumor cognitive baseline 

(premorbid functioning), pain, and brain tumor treatments themselves (surgery, 

chemotherapy, and radiation). Most often, attention, working memory, and information 

processing speed are affected but patients can present with a wide array of cognitive 

symptoms [1].

Radiation-induced cognitive decline (RICD) is considered a late effect of radiation therapy 

(RT) occurring in 30% or more of patients alive at 4 months after partial or whole brain 

irradiation. For those living over 6 months, that number may rise to 50% [2, 3]. Patients with 

RICD may be unable to continue working and in severe cases may not be able to live 

independently. Memantine, donepezil, methylphenidate, and Ginkgo biloba have all been 

utilized as mitigating pharmacologic strategies with modest levels of success [4••, 5••, 6•, 7]. 

Neurocognitive rehabilitation has been explored as a non-pharmacologic intervention [8•]. 

Preventative strategies include using radiosurgery (SRS) when appropriate for patients with 

brain metastases or whole-brain RT with hippocampal avoidance. Cytoprotective agents 

under investigation include ramipril, fenofibrate, tamoxifen, indomethacin, and pioglitazone 

[9–14]. Here, we review the pathogenesis, diagnosis/classification, and management of 

RICD and discuss strategies used to minimize its risk.

Pathogenesis

Microvascular damage, demyelination, direct damage to neurons and supportive brain 

parenchymal cells, stem-cell depletion, and changes in the brain microenvironment have all 

been reported as components of radiation-induced brain injury (RIBI), the histopathologic 

correlate of RICD [2, 15–38]. RIBI is characterized by multifocal white matter necrosis, 

neuro-inflammation with reactive microglia and astrocyte activation, and cerebrovascular 

injury. The cerebrovascular injury creates blood-brain-barrier disruption with perivascular 

edema, perivascular extracellular matrix accumulation, and haphazard microvascular 

proliferation. Recent evidence indicates chronic oxidative stress and persistent neuro-

inflammation after RT plays a key role in RIBI [13, 39–51]. Inflammation-associated 
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histologic findings include diffuse microglial activation, microglial aggregation at sites of 

necrosis, and mononuclear perivascular cuffing.

Initially, RICD was heavily attributed to depletion of neural stem cells in the subventricular 

zone of the hippocampus. More recently, there has been a growing appreciation for a 

neuroanatomical target theory which suggests that different regions or substructures within 

the brain hold unique significance relative to cognitive function and may have differing 

thresholds for radiation damage [52•].

Presentation and diagnosis

RICD is a clinical diagnosis and a diagnosis of exclusion. Disease progression, mental 

health comorbidity, severe fatigue, medication- or infection-induced delirium, and other 

forms of dementia such as Alzheimer’s disease and vascular dementia must be ruled out.

The early-delayed effects of radiation manifest between 1- and 6-month post-RT and may be 

reversible. They are thought to be a consequence of transient demyelination. Late RICD 

occurs 6 months or later after RT and is considered progressive and irreversible. It is often 

characterized by problems with working memory, attention, executive function, cognitive 

flexibility, and processing speed. Radiographic evidence of white matter damage can support 

the diagnosis of RICD [53–60]. Hallmark radiographic changes include periventricular 

hyperintensities on T2-weighted magnetic resonance imaging (MRI) [61], increases in 

diffusivity, and decreases in fractional anisotropy on diffusion tensor MRI [62–64], and 

periventricular and subcortical low-density lesions detectable on computed tomography [65]. 

The degree of radiologically detectable white matter injury is correlated with the extent of 

cognitive decline.

Neuropsychological assessment is often the key to diagnosing and managing RICD. The 

Mini-Mental Status Exam (MMSE) was used in some older clinical trials reporting cognitive 

outcomes in treated brain tumor patients but was subsequently shown to have inadequate 

sensitivity compared to comprehensive neuropsychological testing [66]. Physicians should 

refer their patients to board-certified (or board-eligible) neuropsychologists who have 

experience working with brain tumor patients.

The value of neuropsychological evaluation

Ideally, neuropsychological assessment occurs at the time of initial diagnosis and before any 

treatments (including surgery) have been initiated. Cognitive evaluation prior to resection 

can predict patient outcomes [1] and can help determine whether a preoperative functional 

MRI, intraoperative language mapping, or transcranial magnetic stimulation may be useful 

[67]. After treatment with surgery, radiation, chemotherapy, or a combination of all three, 

serial neuropsychological evaluations following treatment can track treatment-related 

cognitive decline and can be an early indicator of tumor recurrence (even prior to 

radiographic progression) [68].

The neuropsychologic evaluation of brain tumor patients should be comprehensive in order 

to allow for consideration of all factors that may contribute to cognitive functioning (mood, 
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fatigue, pain, and premorbid functioning). The report can be beneficial to patients and their 

families in a variety of ways. It may prompt the patient’s physicians to offer them 

medications, cognitive rehabilitation, or home health [8•, 69]. A neuropsychologic 

assessment can also help determine patient capacity for decision-making, recommendations 

for driving, care needs, and provide documentation for any necessary disability paperwork 

[1].

Key neurocognitive tests and domains evaluated in a comprehensive evaluation

While most neurocognitive tests are marketed as assessing “language” or “memory,” 

multiple factors can contribute to a single score. For example, the Trail Making Test Part A 

(TMT-A) is commonly referred to as a test of attention but visual acuity, numeracy, and 

processing speed all contribute to performance on this test [70]. The Trail Making Test Part 

B (TMT-B) measures cognitive set- shifting (and is commonly appreciated as a measure of 

executive functioning) but also requires visual processing and motor speed.

The Digit Span (DS) test measures basic and complex attention (often referred to as working 

memory). This test is divided into three tasks: forward span, backward span, and numeric 

sequencing to provide a total score. To measure more complex working memory through the 

mental manipulation and sequencing of alpha-numeric information, the Letter-Number 

Sequencing (LNS) test can be used.

The Hopkins Verbal Learning Test-Revised (HVLT-R) is used to measure multiple aspects of 

learning and memory. Containing 12 words that span three semantic categories, this test 

allows for the measurement of what is referred to as effortful encoding, delayed (free) recall, 

and yes/no recognition. This allows for the elucidation between overt forgetting and 

retrieval-based deficit. There are six alternate forms of the HVLT-R which allows for 

repeated administration over short periods of time.

The Controlled Oral Word Association Test (COWAT) is a commonly appreciated measure 

of phonemic and semantic verbal fluency. Patients are asked to list words beginning with a 

specific letter of the alphabet and then those belonging to a specific category, which 

necessitates executive processing and linguistic fluency. The Boston Naming Test (BNT) is 

used to measure object naming and is exceptionally sensitive to language-dominant 

hemisphere disruption.

Other commonly used measures include those specifically designed to assess information 

processing speed such as the Coding and Symbol Search and those designed to assess verbal 

and visual abstract reasoning such as the Similarities and Matrix Reasoning which are both 

components of the Wechsler Adult Intelligence Scale, 4th edition (WAIS-IV).

A comparison of the patient’s raw and normalized scores over time can be completed using 

standard metrics that include a change of 1 standard deviation (SD) from baseline and/or 

normative data and reliable change indices (RCI) that allows for a correction of practice 

effects often seen in repeated examination.
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Estimating premorbid functioning, depression, fatigue, and quality of life

Premorbid functioning is assessed through a combination of considerations that includes 

single-word reading, and educational, occupational, and social demographic predictions, 

otherwise known as the Barona estimate.

Emotional and behavioral characteristics are measured via self-report questionnaires like the 

Beck Depression Inventory (BDI –2) and the Beck Anxiety Inventory (BAI). Fatigue is 

similarly measured via the Fatigue Severity Scale (FSS) and functional activities of daily 

living can be measured by the Barthel ADL (basic ADL) or the Functional Activities 

Questionnaire (FAQ; instrumental activities). Cancer-specific questionnaires that assess 

disease-related quality of life and cancer type-specific symptoms are also available in the 

public domain and include the FACT-Cog and the FACT-Br.

Classification of patients with RICD

Although the cognitive effects from brain tumors and their treatment range from mild to 

severe, there is no accepted classification or phenotyping of cognitive impairment in brain 

tumor survivors. This stands in stark contrast to the literature on Alzheimer’s disease (AD). 

The concept of mild cognitive impairment (MCI) as a syndrome prodromal to AD and 

related dementias was introduced over 20 years ago [71]. The National Institute on Aging 

(NIA) and the Alzheimer’s Association (AA) have specified criteria for MCI, dementia, and 

AD. MCI is defined by the presence of a personal concern regarding a change in cognition 

and a measured deficit in at least one major cognitive domain with relative preservation of 

basic and instrumental functional abilities [72]. Additional criteria have been proposed for 

MCI subtypes that distinguish amnestic from non-amnestic cognitive deficits and single 

cognitive domain deficits from multi-domain deficits [73]. These criteria have become 

standard in research and clinical care and have undergone recent updates [74]. Standardized 

diagnostic criteria for MCI [72, 75] and AD [76–78] have helped to stimulate, organize, and 

focus research efforts on AD. Our group recently proposed applying slightly modified MCI 

NIA-AA criteria to cancer survivors with cognitive dysfunction [79–81]. We then 

retrospectively reviewed patients enrolled on our phase 3 randomized trial of donepezil 

versus placebo to estimate the prevalence of MCI in brain tumor survivors. We found that 

two-thirds of post-RT brain tumor survivors met NIA-AA criteria for MCI. Of patients 

meeting MCI criteria, the majority (58%) were subclassified as amnestic MCI-multiple 

domain which is the phenotype most commonly associated with AD. Applying this 

classification schema to patients with RICD does have limitations. In particular, it does not 

help discern between patients with transient/early decline and those with progressive/late 

decline. Classification of cognitive impairment in brain tumor patients could lead to 

improved treatments for RICD and thus should be a research priority for the field.

Treatment options

Treatment options for RICD can be partitioned into pharmacologic or non- pharmacologic 

treatments. Pharmacologic treatment options include donepezil, memantine, 
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methylphenidate, armodafinil, and gingko biloba. Non-pharmacologic treatments include 

cognitive rehabilitation and exercise programs.

Donepezil

Donepezil is an acetyl-cholinesterase inhibitor indicated for mild to moderate Alzheimer’s 

Dementia. A randomized, phase III, open-label, placebo-controlled trial enrolled irradiated 

brain tumor survivors (at least 6 months after RT) and evaluated cognition before treatment 

with donepezil or placebo and then after 24 weeks of medication [5••]. This study did not 

meet its pre-specified primary endpoint (a difference in a cognitive composite score between 

the treatment group and the placebo group). However, patients randomized to donepezil 

performed better on measures of verbal and working memory (HVLT-DR and - IR) as well 

as a measure of motor speed and dexterity (Grooved Pegboard). There was also an 

interaction effect between pre-randomization (baseline) cognitive performance and treatment 

group—patients with poorer initial cognitive functioning benefited more from donepezil 

across multiple domains and in their cognitive composite scores. Similarly, the quality-of-

life analysis of this study showed that patients with greater baseline concern about their 

cognitive function showed improved quality-of-life based on several scales (compared to 

placebo), whereas patients with better baseline quality-of-life had a slight decrease in their 

quality-of-life survey scores with donepezil (versus placebo) [82]. For this reason, donepezil 

continues to be used in the clinic for patients who have objective memory deficits 

(particularly if they have deficiencies on the HVLT) or have at least moderate impairment 

relative to normative data in multiple domains and feel that their memory concerns are 

compromising their quality-of-life.

The starting dose of donepezil is 5 mg and after 4–6 weeks, this can be increased to 10 mg 

daily. Common side effects include headache, urgent and frequent bowel movements, 

anorexia, weight loss, insomnia, and vivid dreams. Care should be taken when prescribing 

this to patients with bradycardia, a prolonged QT interval, or severe COPD because 

increased cholinergic activity can worsen these conditions. Drug interactions or 

incompatibilities include non- steroidal anti-inflammatory drugs (NSAIDS), cardiac 

medications like beta- blockers or calcium-channel blockers, or cholinergic agents like 

pilocarpine.

Methylphenidate

Methylphenidate is a stimulant approved for treatment of Attention-Deficit Hyperactivity 

Disorder (ADHD) and ADD. Some patients have greater difficulties in attention (versus 

memory) and in these patents, a trial of methylphenidate is a reasonable option but there is 

no data supporting its use as a prophylactic agent. There is data that methylphenidate can 

improve fatigue, attention, and cognition in children who received WBRT and in patients 

with chemotherapy-related fatigue [83, 84]. However, a randomized, open-label, placebo-

controlled phase III trial of methylphenidate taken during brain RT and for 8 weeks after 

showed no difference in FACIT-F scores or cognitive measures [6•]. This study was hindered 

by a higher than expected drop-out rate which may have left it underpowered to detect a true 

difference.
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The starting dose of immediate-release methylphenidate is 5 mg BID which can be increased 

by 5 to 10 mg increments per week for a maximum of 60 mg/day divided into two or three 

doses. Common side effects include increased heart rate, blood pressure, or palpitations; 

agitation, sweating, insomnia, emotionally liability, or psychosis; decreased appetite or 

weight loss; and decreased peripheral circulation.

Methylphenidate can lower seizure-thresholds so caution should be used in patients with a 

history of difficult-to-control seizures and is generally not prescribed for patients who are 

having break-through seizures on medications or. The use of methylphenidate is 

contraindicated for patients on Monoamine Oxidase Inhibitors (MAOIs). It should not be 

used in patients with glaucoma or a history of stroke, myocardial infarction, or tachycardia. 

Methylphenidate can cause anorexia and weight loss so do not prescribe it to patients who 

already have cancer-related anorexia.

Armodafinil and modafinil

Armodafinil and its predecessor modafinil are wakefulness-promoting drugs primarily used 

in the treatment of narcolepsy. In a randomized, placebo- controlled phase II trial, patients 

with primary brain tumors receiving at least 45 Gy were randomized to armodafinil or 

placebo during RT and for 1 month after RT. Fatigue, quality-of-life, and cognitive 

performance were all evaluated [85]. While there was not a significant difference in fatigue 

cores between groups at 4 weeks after RT, patients with greater baseline fatigue (below the 

group median) appeared to derive a benefit with improved fatigue levels and higher quality-

of-life ratings in those receiving armodafinil compared to placebo.

The starting dose for armodafinil is 150 mg taken once daily. In narcolepsy, doses up to 250 

mg daily can be used. However, the phase II trial used 150 mg daily without any dose-

escalation. Common side effects include headache, nausea, weight loss, tremor, or dizziness 

among others. The starting dose of modafinil is 100 mg and can be increased every 3–7 days 

up to 400 mg daily. Caution should be used in patients with cardiac disease, hepatic 

impairment, or a history of Tourette’s syndrome.

Cognitive rehabilitation

Cognitive rehabilitation has been shown in a randomized trial to improve subjective and 

objective neurocognitive performance [8•]. In this study, low-grade glioma survivors with 

stable disease were randomized to a cognitive rehabilitation program or a wait list. The 

program consisted of 7 weeks of rehabilitation (which consisted of 6, 2-h sessions with a 

trained neuropsychologist and a computer-based retraining program) and a booster session 3 

months after completion of the rehabilitation program (a telephone call discussing important 

aspects of retraining). The training focused on compensation mechanisms for impaired 

attention, memory, and executive function. Immediately after treatment, patients who 

participated in the rehabilitation program reported improved cognitive functioning on 

questionnaires but did not perform better on objective measures of cognitive performance. 

However, after 6 months, the patients who underwent rehabilitation performed objectively 

better on measures of verbal memory and attention compared to control patients and 
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reported less mental fatigue. This group is currently in the process of validating a computer-

based rehabilitation program [86].

Prevention

Radiosurgery

Currently, the most effect strategy to prevent RICD is to limit the integral dose of RT to the 

brain. Stereotactic radiosurgery (SRS) is highly focused radiation treatment given in a single 

dose and has supplanted WBRT in patients with a limited number of brain metastases 

because cognitive decline is less after SRS than after WBRT. In 2009, Chang et al. published 

the results of a randomized trial of SRS versus WBRT for patients with 1–3 brain metastases 

which showed less cognitive decline with SRS [87••]. At 4 months, only 24% of patients 

receiving SRS had declined in their HVLT-R score compared to 52% of patients in the 

WBRT arm. Overall survival was not different between the two arms. Subsequently, a 

N0574 (which randomized patients with 1–3 brain metastases to SRS alone or SRS + WBRT 

showed a much higher incidence of cognitive decline in the group receiving WBRT than 

those receiving SRS alone [88••]. Then NCGTGN107C/CEC 3 offered confirmation that 

cognitive-deterioration- free survival is longer in patients receiving SRS compared to 

WBRT. In this phase III trial, 194 patients who had undergone resection for a brain 

metastasis < 5 cm were randomized to postoperative SRS to the surgical cavity or WBRT 

[89••]. At 6 months, 52% of patients receiving SRS had cognitive decline compared with 

85% of the patients receiving WBRT. Again, there was no difference seen in survival 

between the two groups. This was a landmark trial and will likely serve as a benchmark and 

historical control study for some years to come.

Hippocampal avoidance

The hippocampus has been recognized as a key anatomic location for memory for quite 

some time. After studies showed that metastases to the limbic circuit are rare, the concept of 

avoiding the hippocampus during WBRT to try to mitigate cognitive side effects evolved and 

was then tested in the multicenter phase II trial [14]. This trial (RTOG 0933) compared 

decline in HVLT-DR in patients treated with hippocampal avoidance to the decline in HVLT-

DR in historical control patients. An initial report of a trial looking at WBRT plus 

memantine versus WBRT with hippocampal avoidance plus memantine (CC001) showed 

that time to cognitive decline was longer in the hippocampal avoidance arm [90••]. There are 

multiple additional clinical trials underway investigating the utility of hippocampal 

avoidance in patients with brain metastases from breast cancer, non-small-cell lung cancer, 

small-cell lung cancer, and glioblastoma.

Memantine

Memantine is an N-Methyl-D-Aspartate (NMDA) receptor antagonist approved for use in 

moderate to severe dementia. The NMDA receptor is a voltage-gated glutamate receptor that 

allow sodium and calcium influx into neurons when activated and holds special significance 

in synaptic plasticity. However, over-activation of the NMDA receptor has been linked to 

glucotoxicity (excitotoxic cell death).
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A randomized, double-blind, placebo-controlled trial enrolled patients anticipated to receive 

WBRT for brain metastases. Patients received memantine or placebo during WBRT and after 

(for a total of 24 weeks) [4••]. The primary endpoint was patient performance on the HVLT-

R-DR at 24 weeks. Similar to the donepezil trial, this study was a negative study (there was 

no statistical difference in HVLT-R-DR scores between memantine and placebo groups at 24 

weeks). However, the study was underpowered as only 29% of patients enrolled completed 

the cognitive evaluation at 24 weeks. On secondary analysis, memantine did delay time to 

cognitive decline and was well-tolerated. Our institutional practice is to discuss the use of 

memantine with patients who require WBRT but who are anticipated to have relatively long 

survival (e.g., patients with EGFR or ALK-mutated lung cancer or breast cancer with 

innumerable metastases which preclude the use of SRS). We do not routinely offer it for 

patients with uncontrolled systemic disease or poor performance status. For patients who 

have already received RT and have memory deficits that have not improved with donepezil, 

memantine is also a reasonable option.

The starting dose for memantine is 5 mg. After 1 week, it can be titrated to 5 mg twice daily 

(BID), then after another week, 10 mg in the morning and 5 mg in the evening (15 mg total) 

and then after another week, 10 mg BID. Common side effects include headaches, dizziness, 

drowsiness, confusion, irritability, and constipation. Caution should be used in patients with 

liver or kidney dysfunction. An abnormal urine pH can lead to decreased drug excretion and 

higher than anticipated blood levels of memantine.

Investigational cytoprotective agents

Preclinical data suggests that angiotensin-converting enzyme (ACE) inhibitors such as a 

ramipril taken during RT may protect against RICD by decreasing radiation-induced 

inflammation [9, 10]. There is an ongoing cooperative group trial investigating its ability to 

reduce RICD in patients with glioblastoma receiving chemoradiation. Similarly, there is 

preclinical data that peroxisomal proliferation-activated receptor (PPAR) agonists such as 

pioglitazone can protect against RICD by via transcriptional inhibition effect on the NF-κB 

pathway which is a key mediator the pro-inflammatory cascade triggered by RT. There are 

emerging data that PPAR-γ agonists can be neuroprotective in stroke, Alzheimer’s disease 

and Parkinson’s disease [91–95]. An initial safety study of pioglitazone in brain tumor 

patients has been completed [96] and there are plans for a cooperative group trial evaluating 

the efficacy of pioglitazone in the prevention of RICD.

Developing a treatment plan for each patient

For patients with complaints of cognitive changes post-RT, it is imperative to elucidate from 

the patient and their caregivers whether depression or fatigue are significant issues. If 

depression and anxiety do not seem to be significant concerns, try to determine their 

cognitive concerns. Often, it is either short- term/working memory or attention. Review their 

medication list to see if there are any anti-cholinergic drugs (most often for urinary 

symptoms), sedating medications (especially things like opioids and gabapentin) which 

could be contributing to cognitive problems. If this is the case, evaluate how necessary these 

medications are for the patient and consider reducing or removing them. Progressive disease 
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should be ruled out with imaging. Reversible causes of cognitive changes should be ruled 

out which generally involves checking B12/folate levels, TSH/free T4, morning cortisol, and 

testosterone levels (in men).

The next step is usually neuropsychological testing. For high-functioning patients who are 

working, we recommend comprehensive evaluation. For patients with a lower performance 

status, an abbreviated testing session with selected tests (see above) may be more 

appropriate and give you enough information to create a care plan.

Our strategy has been to first address depression and fatigue (see Fig.1). If the patient 

acknowledges depression or severe fatigue and the neuropsychologist mentions these factors 

in their report, then consider starting your patient on anti-depressants. Usually, we start with 

a serotonin-uptake inhibitor (SSRI). In patients with both depression and severe fatigue, 

methylphenidate and an SSRI can be started synchronously with methylphenidate acting as a 

bridge since it can take 6 weeks for the clinical effect of SSRIs to become evident. Be 

cautious about using the dopamine-norepinephrine reuptake inhibitor bupropion in patients 

with a history of seizures. If fatigue (without depression) is a key factor, then consider 

armodafinil or modafinil. These medications should also be used cautiously if the patient has 

a history of seizures. For patients whose fatigue seems related to sleep dysfunction, it can be 

helpful to discuss sleep hygiene practices, rule out obstructive sleep apnea, and consider 

melatonin supplementation.

If depression and fatigue do not appear to be significant factors then try to discern from the 

report whether measures of working memory (such as the HVLT), measures of attention (DS 

and TMT-A), or measures of executive function (COWA and TMT-B) are below normative 

data. For patients with complaints of short-term memory problems and corresponding low 

scores on HVLT-IR and HVLT-DR, a trial of donepezil or memantine may be appropriate. 

For patients who complain of attentional difficulties and with deficiencies on DS and TMT-

A, a trial of methylphenidate may be appropriate. If you have not prescribed these 

medications previously, we would advise using a program that checks for drug interactions 

to confirm that none of the patients’ existing medications present a contraindication to the 

use of the medication you are prescribing.
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Fig. 1. 
Treatment algorithm for brain tumor patients with cognitive decline.
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