Skip to main content
. Author manuscript; available in PMC: 2019 Jun 26.
Published in final edited form as: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2018 Dec 17;2018:2090–2099. doi: 10.1109/CVPR.2018.00223

Table 3.

Performance comparison on EmotioNet [2] test set. Braces indicate training images with different amount and annotations (see Sec. 4.1 for details). Bracketed and bold numbers indicate the best and second best performance.

AU F1 S score
AlexNet
{gt15kwlb10k}
AlexNet
{gt15kwsc10k}
AlexNet
{gt25k}
DRML
{gt25k}
AlexNet
{gt25kwsc25k}
DRML
{gt25kwsc25k}
AlexNet
{gt15kwlb10k}
AlexNet
{gt15kwsc10k}
AlexNet
{gt25k}
DRML
{gt25k}
AlexNet
{gt25kwsc25k}
DRML
{gt25kwsc25k}
1 11.8 19.8 24.2 25.3 25.3 [26.3] [83.6] 82.6 76.1 76.5 78.2 78.9
4 23.9 32.5 34.7 [35.7] 34.5 35.5 53.9 [63.9] 63.0 61.8 62.9 61.9
5 26.6 37.6 39.5 40.0 39.3 [40.3] [87.5] 86.4 80.1 79.6 79.2 80.1
6 58.8 73.5 73.1 75.3 75.6 [78.7] 69.4 74.8 77.3 78.5 78.6 [79.6]
12 82.1 87.1 86.8 86.6 87.4 [88.1] 73.9 79.1 79.5 78.1 80.5 [80.8]
25 82.1 84.3 88.5 [88.9] 88.8 [88.9] 61.4 67.2 77.1 78.8 78.6 [78.9]
26 24.3 40.2 45.6 46.2 47.7 [49.1] [79.1] 68.5 75.7 76.7 77.6 78.2
Avg. 44.2 53.6 56.1 56.9 57.0 [58.1] 72.6 74.6 75.5 75.7 [76.5] 75.9