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Abstract

The majority of countries in Africa and nearly one-third of all countries require mortality models 

to infer the complete age schedules of mortality that are required to conduct population estimates, 

projections/forecasts, and other tasks in demography and epidemiology. Models that relate child 

mortality to mortality at other ages are important because almost all countries have measures of 

child mortality. A general, a parameterizable component model of mortality is defined using the 

singular value decomposition (SVD-Comp) and calibrated to the relationship between child or 

child/adult mortality and mortality at other ages in the observed mortality schedules of the Human 

Mortality Database. Cross-validation is used to validate the model, and the predictive performance 

of the model is compared with that of the log-quadratic (Log-Quad) model, which is designed to 

do the same thing. Prediction and cross-validation tests indicate that the child mortality–calibrated 

SVD-Comp is able to accurately represent the observed mortality schedules in the Human 

Mortality Database, is robust to the selection of mortality schedules used for calibration, and 

performs better than the Log-Quad model. The child mortality–calibrated SVD-Comp can be used 

where and when child mortality is available but mortality at other ages is unknown.
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Introduction

Complete age-specific mortality schedules are necessary inputs to a wide variety of formal 

demographic and epidemiological methods. A key example is the biennial World Population 
Prospects (WPP) produced by the United Nations Population Division (United Nations, 
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Department of Economic and Social Affairs, Population Division 2015b). These are 

generally considered the reference population indicators and are widely used by other 

domestic and international agencies as inputs to estimation and modeling exercises. The 

WPP contains estimates of time-, sex-, and age-specific mortality, fertility, and population 

size from 1950 to the present and forecasts of the same quantities to 2100 for all countries of 

the world. Consequently, each WPP update must contain full age-specific mortality 

schedules covering the period 1950–2100.

Some countries in the developing world, particularly in Africa, do not yet have civil 

registration and vital statistic systems that function well enough to report accurately on 

either fertility or mortality. Focusing on mortality, Table 1 displays the number of countries 

or world regions for which no information is available on either child mortality or adult 

mortality, with Africa broken out. Because of the exhaustive coverage of household surveys 

investigating fertility and matemal/child health, essentially the whole world has at least some 

recent information on child mortality (Li 2015). In contrast, 50 countries around the world 

with a total population of nearly 1 billion people have no information on adult mortality, 

with the bulk of those in Africa—33 countries with a total population of 666 million people.

Mortality models are used to solve this problem and produce full age schedules of mortality. 

Table 2 describes the number of countries or world regions for which the U.N. Population 

Division must use mortality models of some kind to produce either estimates of life 

expectancy at birth e0 or full age schedules of mortality. Most African countries require 

mortality models for both, and 38.6 % of countries globally require a model for e0 and 

32.6 % for age-specific mortality.

The standard approach to generating complete age schedules of mortality for countries and 

areas with insufficient data is to take advantage of the fact that they do have information on 

child mortality. Typically, model life tables are used to extrapolate full mortality schedules 

from 5q0—this is what the U.N. Population Division does (making heavy use of the 

traditional Coale and Demeny (1966) model life tables), and the Institute for Health Metrics 

and Evaluation (IHME) uses variations on the modified logit (Mod-Logit) model (Murray et 

al. 2003) to do the same.

The commonly used model life table systems—regional model life tables and stable 

populations (Coale and Demeny 1966), life tables for developing countries (United Nations 

1982), modified logit life table system (Mod-Logit) (Murray et al. 2003; Wang et al. 2013), 

and flexible two-dimensional mortality model (Log-Quad) (Wilmoth et al. 2012)—combine 

a specific model structure and defined variable parameters with a set of fixed parameters that 

summarize the relationships between mortality at different ages in a set of observed life 

tables. All are empirical models in the sense that they summarize observed mortality and use 

that summary to produce predicted mortality schedules that are consistent with observed 

mortality. They come in both regional and continuous forms. The regional models identify 

and replicate commonly observed mortality patterns associated with geographic regions (and 

de facto periods) and allow mortality to vary continuously within each region-specific 

pattern. In contrast, the continuous models generate mortality patterns that vary smoothly. 

Both approaches are essentially two-parameter models. The regional models first identify a 
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discrete region and then use effectively continuously varying life expectancy within each 

region to adjust the level of region-specific mortality. The continuous models have two 

continuously varying parameters (e.g., life expectancy, child mortality, or adult mortality).

Murray et al. (2003) enumerated three characteristics required of mortality models: (1) 

simplicity and ease of use; (2) comprehensive representation of the true variability in sex- 

and age-specific mortality observed in real populations; and (3) validity that is well 

quantified by comparing age schedules of mortality predicted by the model with 

corresponding observed life tables. To those I would add (1) generality with respect to the 

underlying model structure; (2) flexibility in terms of input parameters; and (3) an ability to 

handle a wide range of age groups, including very narrow, without having to fundamentally 

alter the structure of the model.

This work defines and describes a new SVD component–based mortality modeling 

framework that satisfies all of those requirements. The SVD-component framework provides 

a general, flexible way to model any demographic age schedule as a function of covariates or 

predictors that are related to age-specific variation in the age schedule. Here, the SVD-

component framework is demonstrated by creating a mortality model that predicts single-

year-of-age mortality schedules using either 5q0 or both 5q0 and 45q15 as predictors, similar 

to both the Mod-Logit and Log-Quad models. The resulting model can be used to produce 

single-year-of-age mortality schedules from 5q0 alone that are consistent with observed 

mortality schedules, and this could be useful for those like the U.N. Population Division 

who must manipulate full age schedules of mortality but have observed values only for 5q0. 

The resulting SVD-component model performs better than the current state-of-the-art two-

parameter model (Log-Quad), provides predictions by single year of age, and is easily 

extensible to include additional predictors beyond child and adult mortality.

Mortality Models

Traditional model life tables (e.g., Coale and Demeny 1966; Ledermann 1969; Murray et al. 

2003; United Nations, Department of Economic and Social Affairs, Population Division 

1955, 1982; Wang et al. 2013; Wilmoth et al. 2012) take an inductive, empirically driven 

approach to identify and parsimoniously express the regularity of mortality with age based 

on observed relationships in large collections of high-quality life tables. Some fertility 

models (e.g., Coale and Trussell 1974; Lee 1993) do the same. An alternative, sometimes 

deductive approach, can be found in the wide variety of parametric or functional-form 

mortality models (e.g., Gompertz 1825; Heligman and Pollard 1980; Li and Anderson 2009; 

Makeham 1860) that define age-specific measures of mortality in an analytical form, 

sometimes with interpretable parameters. Brass (1971) developed a new approach with his 

two-parameter relational model that has been extended and refined in many ways, (for 

example, Murray et al. 2003; Zaba 1979). More recently, the Log-Quad model of Wilmoth et 

al. (2012) combines empirical and functional-form approaches to mortality models.

Population forecasting has motivated another important family of related mortality models. 

Forecasting generates many iterations of age-specific mortality and fertility into the future, 

and those are usually based on a summary of the corresponding age-specific mortality and 

fertility in the past. Hence, there is an immediate need to represent full age schedules and 
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their dynamics compactly. This has led to the widespread use of dimension-reduction or 

data-compression techniques to reduce the dimensionality of the problem so that only a few 

parameters are necessary to represent age schedules and their dynamics. Ledermann and 

Breas (1959) appear to have been the first to use principal components analysis (PCA) to 

summarize age-specific mortality and generate model life tables, and many subsequent 

investigators refined this approach (e.g., Bourgeois-Pichat 1962,1990; Ledermann 1969; 

United Nations, Department of Economic and Social Affairs, Population Division 1982). 

Following the early use of PCA to build model life tables, PCA and related methods, such as 

the singular value decomposition (SVD) (e.g., Good 1969; Stewart 1993; Strang 2009), have 

been widely used and refined by forecasters to create time series models of mortality and 

fertility (e.g., Bozik and Bell 1987; Lee 1993; Lee and Carter 1992). See Bell (1997) for a 

comprehensive summary of this line of development in various fields, dominated by 

actuarial science and applications in forecasting.

The Lee-Carter approach (Lee 1993; Lee and Carter 1992) has been widely used in 

demography. The model as presented in Lee and Carter (1992) is

ln(mxt) = ax + bxkt + εxt , (1)

where x is age, t is time, m is a matrix of age- and time-specific mortality rates, a is the 

time-constant vector of mean (over columns of m) logged age-specific mortality rates 

through time, and b is the time-constant first left singular vector from an SVD 

decomposition of the matrix of residuals generated by subtracting a from each column of m.

Fitting the model requires three separate steps: (1) calculate ax; (2) calculate the residuals rxt 

= ln(mxt) – ax; and (3) extract the first left singular vector from the SVD of r and calculate a 

value of kt for each column of m that minimizes the elements εxt (kt, are essentially the 

elements of the first right singular vector multiplied by the first singular value of this SVD).

The Lee-Carter model contains two conceptually separate elements: (1) a one-parameter 

(i.e., kt) model of the full age-specific mortality or fertility schedule, and (2) a time series 

model for that parameter. The temporal sequence of values taken by kt is the focus of a 

stochastic time series model that is responsible for the temporal dynamics of the method, 

including the forecasts. Development of the time series model is previewed in earlier work 

by the authors (Carter and Lee 1986).

Putting aside the time series model for kt it becomes clear that the structure of the Lee-

Carter model appears to be a simplified version of the more complex age-period-cohort 

mortality model conceived earlier by Wilmoth and elaborated over a number of years 

(Wilmoth 1990; Wilmoth and Caselli 1987; Wilmoth et al. 1989).1 Wilmoth’s model is 

designed to separate and identify age, period, and cohort effects in an age and time matrix of 

1The core ideas underlying the Wilmoth model appear in his doctoral dissertation (Wilmoth 1988), with further refinement in the 
following years, culminating in the English-language summary (Wilmoth 1990).
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mortality rates. The basic structure is log(mx) = (mean model) + (residual model), with the 

final form

f i j = αi + β j
mean model

+ Σm=1
ρ ϕm γimδ jm

first residual model

+ θk
second residual model

+ εi j , (2)

where i is age, j is period, k = (j – i) indexes cohorts, f is logged age- and period-specific 

mortality (log(m)), α is an age effect, β is a period effect, the sum Σm = 1
ρ ϕm γim δ jm is over 

a set of ρ rank-1 matrices from the SVD of the residuals remaining after the main effects are 

subtracted from f and θk is a residual cohort effect remaining after subtracting both the main 

effects and the SVD approximation of the first residuals from f. This form first appears in 

Wilmoth et al. (1989).

The model is fit in three steps, effectively explaining ever more nuanced variation in a 

sequence of residuals: (1) calculate αi, and βj such that they minimize the first residuals rij = 

fij – (αi + βj); (2) use the first ρ terms from the SVD of the matrix of residuals r to calculate 

the second residual sij = rij − Σm = 1
ϕ ϕm γim δ jm ; and (3) calculate values for the elements 

of θk such that they minimize sij – θk = εij. The SVD or multiplicative term 

Σm = 1
ρ ϕm γim δ jm took shape over several publications (Wilmoth 1990; Wilmoth and 

Caselli 1987; Wilmoth et al. 1989) to eventually be the standard SVD form that appears in 

the final model, with the SVD first appearing in Wilmoth et al. (1989).

An examination of Eqs. (1) and (2) reveals the relationship between the Wilmoth and Lee-

Carter models. Moving from Wilmoth to Lee-Carter requires the following steps: (1) remove 

the main period effect βj and the cohort effect θk, and (2) take only the first term in the SVD 

approximation of the first residual. The SVD term then becomes ϕ1γi1δj1 or, dropping the m 
= 1 index, γi(ϕδj). Replacing Wilmoth’s i and j with Lee-Carter’s x and t and letting k = ϕδ 
makes the equivalence clear. Lee and Carter (1992) acknowledged that their model has much 

in common with the Wilmoth model. They cited Wilmoth by way of explaining the SVD 

solution to calculating the elements of b, whereas this is just the simplest rank-1 form of the 

time-varying term in the model Wilmoth proposed.

Motivated by the U.N. Population Division’s work that sometimes involves predicting full 

age schedules of mortality from child (and adult) mortality (Li 2015), Wilmoth et al. (2012) 

presented another adaptation of the original Wilmoth model, this time to generate model life 

tables as a function of 5q0 or (5q0, 45ql5). Adopting the nomenclature from log-linear 

models, this log-quadratic (Log-Quad) model has the following form:

log(mx) = ax + bxh + cxh
2 + vxk, (3)

where x is age; m is age-specific mortality; a, b, and c are constant age-specific coefficients 

for the quadratic mean model; h is the input value of log(5q0); v is an age-specific correction 

factor; and k is a coefficient for v. Correction factor values vx are identified by calculating 
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the SVD of the matrix of residuals that remain after the quadratic portion of the model is 

subtracted from life tables that are part of the Human Mortality Database (HMD) 

(University of California, Berkeley and Max Planck Institute for Demographic Research 

n.d.) and using the resulting first left singular vector as a starting point.2 Thus, the Log-Quad 

model has the now familiar mean/residual form of the original Wilmoth model, and the 

structure of the residual model is a one-term version of the SVD form originally proposed by 

Wilmoth et al. (1989). The Log-Quad’s contribution is an innovative new mean model that 

takes advantage of the empirically observed curvilinear relationship between child mortality 

and mortality at other ages. The Log-Quad model is elegant, simple, and parsimonious—one 

(5q0) or two (5q0 and k)3 parameters—and it performs well, accurately representing a wide 

range of life tables, including life tables with very low mortality, and generally 

outperforming all other model life tables (Wilmoth et al. 2012).

Other investigators have worked on a variety of matrix-summary approaches to characterize 

the variability in mortality rates, but none of their work has been as widely used as the Lee-

Carter model. Working independently, Fosdick and Hoff (2012) developed an explicitly 

statistical separable factor analysis model to summarize mortality in the HMD, and at its 

core, this is similar to the SVD term in Wilmoth’s model. Also working independently, I 

developed a component model of mortality inspired by the use of matrix factorization 

methods and the fast Fourier transform in image compression (Clark 2001). The component 

model is a simple linear sum of independent, age-varying vectors (components) that, when 

combined with appropriate weights, can closely approximate age-specific mortality 

schedules. This model has the simple basic form

m = Σi = 1
c wiui + r, (4)

where m is a vector of age-specific mortality rates, ui, are a set of c vectors containing age-

varying values identified in a set of observed mortality rates, wi are weights, and r is a vector 

of residuals. This is similar to Ledermann’s original use of factor analysis to build a system 

of model life tables based on factors resulting from a PCA decomposition of a matrix of age-

specific mortality rates (Ledermann 1969; Ledermann and Breas 1959) and the PCA-based 

model underlying the U.N. model life tables (United Nations, Department of Economic and 

Social Affairs, Population Division 1982), both of which have the mean/residual structure of 

the Wilmoth models because they use PCA operating on a centered data cloud. The 

component model has been used to summarize mortality data from the INDEPTH Network 

using PCA-derived components (Clark 2001; Clark et al. 2009; INDEPTH Network 2002), 

similarly for the HMD (Clark and Sharrow 2011a,b), and more recently in work on small-

area estimates of mortality (Alexander et al. 2017). This approach combines a simple linear 

model with PCA, SVD, or similar methods to concentrate information along a few 

dimensions; see Clark (2015) for a detailed discussion.

2The first left singular vector of the HMD residuals are massaged slightly to ensure all elements of v are positive and smooth.
3If desired, k is chosen so that the resulting mortality schedule matches an input value 45q15.
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The component model is similar to the SVD-inspired first residual model term in Wilmoth’s 

Eq. (2). However, neither Wilmoth nor subsequent investigators identified or developed the 

relationship between the SVD decomposition of a matrix of mortality rates and the 

columnwise weighted-sum model in Eq. (4). A key conceptual difference between the two 

approaches is that Eq. (4) does not have a mean model. Consequently, the factors identified 

by the SVD model everything, not just the residual as in all the Wilmoth-inspired models. 

The first component, u1, is effectively the mean age-specific mortality schedule, and its 

weight reflects the overall level of mortality. The remaining components, ui for i > 1, define 

deviations from the average age pattern, independent of level. All this follows directly from 

the properties of the SVD and a substantive interpretation of both the left and right singular 

vectors when applied to demographic age schedules (Clark 2015). Additionally, the weights 

are viewed as continuously varying parameters that can be the object or output of additional 

models—for example, clustered using objective clustering methods to identify groups of 

similar age schedules, estimation using either traditional or Bayesian methods, or predicted 

from covariates that vary systematically with age schedules, as this article demonstrates.

Finally, along with other researchers, I applied the component model to HIV-related 

mortality in countries with large HIV epidemics (Sharrow et al. 2014). In that article, we 

demonstrated that the weights in Eq. (4) vary systematically with HIV prevalence. We took 

advantage of that fact to build a model that predicts three weights as a function of HIV 

prevalence and then predicts mortality age schedules from the predicted weights using Eq. 

(4). The resulting HIV-calibrated component model uses the weights as a link between HIV 

prevalence and full age schedules of mortality.

In this article I describe how the SVD can be used to develop a general modeling framework 

for demographic age schedules. This framework has the important advantages of being (1) 

straightforward and easy to understand and use; (2) general and applicable to any 

demographic age schedule; (3) able to incorporate covariates or predictors in a unified way; 

and (4) able to handle age groups of any granularity (e.g., one year or five years) in the same 

way. I demonstrate this framework by creating and validating an accurate one- or two-

parameter mortality model based on age-patterns of mortality contained in the HMD.

Data

Human Mortality Database Life Tables

The HMD contains rigorously cleaned, checked, and validated information on deaths and 

exposure from a number of mainly developed countries “where death registration and census 

data are virtually complete.” The data are aggregated and presented in a wide variety of 

formats. The objective of this analysis is to capture and characterize as much variability in 

age-specific mortality as possible, and consequently I use the 1 × 1 HMD life tables for each 

sex. Those provide all columns of a standard life table for single calendar years by single 

year of age from 0 to 110+. Each country provides data for different historical periods, and 

some countries are subdivided into more specific subpopulations. In the latter situation, a 

national population life table is typically provided that aggregates across the subgroups. 

Both the national and subgroup populations are included in this analysis to maximize the 

variability in age-specific mortality schedules in the overall data set. A few of the 1 × 1 life 
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tables from the HMD contain problems: (1) the life tables for Belgium 1914–1918 for both 

sexes contain no data; and (2) the female life tables for Iceland in 1852 and the Maori 

Population of New Zealand in 1949, 1956, and 1959 display implausible mortality at older 

ages. All those life tables are excluded. Table 3 contains an organized list of the life tables 

included in this analysis: 4,610 life tables for each sex and 9,220 in total. The HMD data 

used in this analysis were downloaded on Friday November 2, 2018 from the HMD web site 

(http://www.mortality.org/hmd/zip/all_hmd/hmd_statistics.zip).

Model Scales

This analysis is conducted on life table probabilities of dying for those who survive to the 

beginning of each one-year age group. Single-year probabilities, 1qx, are taken directly from 

the HMD life tables; five-year probabilities, 5qx, are calculated as 5qx = 1 − ∏a = x
x + 4 (1 − qa); 

and 45q15 is calculated as 45q15 = 1 − ∏a = 15
59 (1 −1 qa) Child mortality refers to 5q0, and 

adult mortality refers to 45q15.

The natural scale of the models is the full real line, so life table probabilities of dying, q, are 

transformed using the logit function logit(x )= ln x
1 − x  so that their transformed values 

occupy the full real line. Outputs from the models are transformed back to the probability 

scale with range [0,1] using the expit function expit(x)= ex

1 + ex , inverse of the logit.

Methods

Relevant Characteristics of the SVD

This section summarizes from Clark (2015). The SVD (e.g., Good 1969; Stewart 1993; 

Strang 2009) is a matrix factorization method that decomposes a matrix X into three matrix 

factors with special properties:

X = USVT . (5)

U is a matrix of left singular vectors (LSVs) arranged in columns, V is a matrix of right 

singular vectors (RSVs) arranged in columns, and S is a diagonal matrix of singular values 

(SVs). The LSVs and RSVs are independent and have unit length. If one views the columns 

of X as a set of dimensions, then the rows of X locate points defined along those dimensions

—the data cloud. The RSVs define a new set of dimensions that line up with the axes of 

most variation in the data cloud. The first RSV points from the origin to the data cloud, or if 

the cloud is around the origin, then it points along the line of maximum variation within the 

cloud. The remaining RSVs are orthogonal to the first and each other and line up with 

successively less variable dimensions within the cloud. The elements of the LSVs are values 

that correspond to the projection of each point along the new dimensions defined by the 

RSVs. The SVs effectively stretch the new dimensions defined by the RSVs in accordance 

with the variation in the cloud along each RSV. The numeric value of each SV is the square 

root of the sum of squared distances from the origin to each point along the corresponding 
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SVD dimension, and their squares sum to the total sum of squared distances from the origin 

to each point along all of the original dimensions.

The basic form of the SVD in Eq. (5) can be rearranged to yield two new useful expressions:

X = Σi=1
ρ siuivi

T (6)

and

xℓ= Σi = 1
ρ sivℓiui, (7)

where ui, are LSVs, vi are RSVs, si are SVs, ρ is the rank of X, xℓ are columns of X, and vℓi 
are the elements of RSV vi. (see the online appendix, section A). Equation (6) says that X 
can be written as a sum of rank-1 matrices, each created from one of the LSVs by applying 

weights in the form of the elements of the corresponding RSV. Equivalently, Eq. (7) says 

that each column xℓ of X can be written as the weighted sum of the LSVs with the weight for 

each being the ℓth element of the corresponding RSV.4 The LSVs and SVs are constant, so 

the weights are the variables in these expressions, and their values determine how much of 

each LSV is added to the mixture to represent the original data. Finally, because the LSVs 

are independent, ordinary least squares (OLS) regression can be used to estimate models that 

relate xℓ to the LSVs. If the constant is constrained to be 0, then the coefficients are equal to 

sivℓi.

Because the RSVs define successively less variable dimensions in the data cloud, the first 

term in Eqs. (6) and (7) contains the most information and subsequent terms contain less and 

less (Golub et al. 1987). Including all ρ terms replicates the original data matrix X or any of 

its columns xℓ exactly, while including only the first few terms provides a good 

approximation.

SVD Component (SVD-Comp) Model

Given an A × L matrix, Q, of mortality schedules for each sex, calculate the SVD(QZ) = 

UzSzVZ
T. Using the resulting factors as in Eq. (7), each A-element mortality schedule, qzℓ, is 

approximated as the c-term sum,

qzℓ ≈ Σi = 1
c vzℓi ⋅ sziuzi, (8)

where A is the number of age groups and rows in Qz; L is the number of life tables and 

columns in Qz; z ∈, {female, male}; c ≤ ρ the rank of Qz; and ℓ ∈ {1 … L} indexes mortality 

schedules (Golub et al. 1987). The A-element LSVs, uzi, and the SVs, szi, are constant 

across all mortality schedules. Because c ≤ ρ, the sum on the right is an approximation of the 

4This is the expression used to model the first residual in Wilmoth’s age/period/cohort model, shown in Eq. (2).
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mortality schedule, as indicated by the ≈. As is clear in the upcoming section on calibration 

of SVD-Comp, c = 4 is sufficient to make the approximation almost perfect across the entire 

HMD. If viewed as a data compression technique, all 4,610 sex-specific mortality schedules 

in the HMD can be very closely approximated with just four age-varying components—a 

greater than 99.9 % reduction in the volume of data required to represent the HMD. The 

elements that vary among mortality schedules are the RSVs, vzi, whose elements, vzℓi, are the 

weights in the sum. This is a continuously varying model, such as Mod-Logit (Murray et al. 

2003) and Log-Quad (Wilmoth et al. 2012), rather than a regional model, such as the Coale 

and Demeny (Coale and Demeny 1966) and U.N. model life tables (United Nations, 

Department of Economic and Social Affairs, Population Division 1982) model life tables.

Figure 2, presented later in the article, displays the scaled LSVs, sziuzi, obtained from the 

SVD of the matrix of logit-scale 1qx values contained in the HMD. The SVD-Comp model 

is simply a weighted sum of those components. The first component represents the average 

shape and scale of human mortality by age, and the remaining three components add age-

specific modifications to that basic shape; that is, all values of the first component are 

negative (because of the logit transformation), whereas the second through fourth 

components cross the x-axis.

When the vzℓi are replaced by values that can be related to covariates, as they are just below 

in Eqs. 9–11, the modeling framework becomes highly flexible: like traditional model life 

tables, this framework can be used inductively to produce a mortality model that generates 

age schedules of mortality that are consistent with a collection of observed mortality 

schedules, or it can be used deductively to generate new age schedules based on a theoretical 

understanding of how a covariate should affect each component in the model. In general, the 

age pattern of the scaled LSVs in the sum can be interpreted and manipulated theoretically; 

see upcoming Fig. 2 and the results discussed in the section “Factors of the SVD.”

Parameterization Using 5q0 and (5q0, 45q15)

Equation (8) describes a relationship between the elements of the RSVs and the age 

schedule of mortality. Consequently, if a covariate is related to the age schedule of mortality, 

it will necessarily also have a relationship with the elements of the RSVs, particularly the 

first few RSVs corresponding to the SVD-defined dimensions that capture the majority of 

the variability in the data cloud formed by the HMD life tables. It is possible to take 

advantage of this fact to define and estimate models that relate the elements of the RSVs to 

child mortality and adult mortality. These take the form

vzℓi = f zi(5q0zℓ) (9)

and

vzℓi = f zi(5q0zℓ,45 q15zℓ, ), (10)
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where, again, z ∈ {female, male}; i ≤ ρ indexes the RSVs; and ℓ ∈ {1 … L} indexes both the 

elements of the RSVs and the values of child and adult mortality, one for each sex-specific 

mortality schedule. Each sex-specific RSV has its own separate model, fzi, that can be used 

to produce predicted values for the weights in Eq. (8) using new values for 5q0z and 45q15z.

Following my earlier work with others (INDEPTH Network 2002; Sharrow et al. 2014), the 

final model for any age schedule of mortality probabilities, qz, associated with given values 

for a set of weights Wzi = fzi(5q0) or Wzi = fzi(5q0z, 45q15 z,) is

qz = Σi = 1
c wzi ⋅ sziuzi . (11)

Equation (11) relates either child mortality (5q0) or both child and adult mortality (5q0, 

45q15) to full age schedules of mortality according to the patterns of those relationship that 

exist in the original set of HMD life tables, Q, using a very compact approximation.

This is a fully general approach to predicting mortality or any other demographic age 

schedules. Equations (9) and (10) can be replaced with models that summarize the 

relationships between any covariate and elements of the RSVs and weights, and age can be 

aggregated into any age groups; doing so requires simply recalculating the SVD on the age-

aggregated data set.

Calibrating SVD-Comp to the Relationship Between 5q0 and Mortality at Other Ages in the 
HMD

All computation is carried out using the R statistical programming environment (R 

Foundation for Statistical Computing 2016).

Calibration SVDs—The life tables of the HMD are arranged into two A × L matrices (Qz) 

of single-year, age-specific life table probabilities of dying (1qx), one for each sex. A = 

number of age groups = 110 L = number of life tables = 4,610; and z ∈ {female, male}. The 

SVD5 of each Qz yields ρ LSVs, uzi; RSVs, vzi; and SVs, sz. To ensure that all age groups 

have approximately the same influence when calculating the SVDs, each mortality schedule 

is offset from the origin6 by −10, and the offset is added back to predicted mortality 

schedules. Four of the new dimensions identified by each SVD are retained—that is, c = 4 in 

Eq. (11). For females, those account for 0.998328, 0.000936, 0.000071, and 0.000058 of the 

total sum of squares, respectively, or together 0.999392. Corresponding figures for males are 

0.998595, 0.000824, 0.000103, and 0.000052, and together 0.999575. Section C of the 

online appendix contains additional information on the total sum of squares explained by 

each component of the SVD.

5SVDs are calculated using the svd function in the base package of R.
6This ensures that the whole data cloud is separated from the origin by an amount that is substantially greater than the typical value of 
each logit-transformed mortality rate, and therefore each age group has roughly equivalent leverage in the optimization required to 
identify the first new dimension of the SVD. The remaining dimensions are effectively identified on a centered data cloud.
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Models for Predicting Weights.—Based on Eqs. (9) and (10), regression models are 

defined that relate the RSVs vzi to 5q0z and 45q15z. Scatterplots of the elements of the RSVs 

versus logit(5q0) in Figs. E1 and E2 in the online appendix make it clear that the 

relationships are not linear or simple. With no theory to guide the choice of predictors, I 

tried all combinations of simple transformations of logit(5q0) and logit(45q15) and their 

interactions. The resulting models explain almost all the variance in the elements of v1 R2 ≈ 
97% for both sexes for both sexes), the vast majority of the variance in the elements of v2 

(R2 ≈ 87 % for both sexes), and one-third to one-half the variance in the elements of v3 and 

v4. Additionally, I tried to avoid overfitting or creating odd boundary effects in the predicted 

values that would have made out-of-sample predictions immediately implausible. These 

models behave sensibly up to the edges of the sample. The final models are

vzℓi = czi + βz1i ⋅5 q0zℓ + βz2i ⋅ logit(5q0)zℓ + βz3i ⋅ logit(5q0)zℓ
2 + βz4i ⋅ logit(5q0)zℓ

3

+βz5i ⋅45 q15zℓ + βz6i ⋅ logit(45q15)zℓ
2 + βz7i ⋅ logit(45q15)zℓ

3

+βz8i ⋅ logit(5q0)zℓ ⋅ logit(45q15)zℓ + εzℓi,

(12)

where i ∈ {1 : 4} indexes the SVD dimensions, and ℓ indexes mortality schedules and 

elements of vzi. OLS regression is used to estimate coefficients for the eight regression 

models defined in Eq. (12), and the estimated values are contained in online appendix D, 

Tables D1 and D2. With new values for both 5q0 and 45q15 as inputs, these models are used 

to predict values for the weights in Eq. (11)—that is, for prediction, vzℓi on the left-hand side 

is replaced with Wzi.

Models for Adult Mortality—To accommodate a one-parameter model that uses only 5q0 

as an input, I define a regression model that relates adult mortality logit(45q15)z to child 

mortality 5q0Z. The scatterplot of logit(45q15) versus logit(5q0) in Fig. E3 in the online 

appendix reveals a slightly complicated relationship that is neither linear nor systematically 

curvilinear. Again, without theory as a guide, I tried a variety of models, including various 

simple transformations of 5q0. The resulting models explain most of the variance in 

logit(45q15) (R2 = 93 % for females, and 79 % for males). The final models are

logit(45q15)zℓ = cz + βz1 ⋅5 q0zℓ + βz2 ⋅ logit(5q0)zℓ

βz3 ⋅ logit(5q0)zℓ
2 + βz4 ⋅ logit(5q0)

zℓ
3 + εzℓ

(13)

OLS regression is used to estimate coefficients for the two regression models defined by Eq. 

(13), and the estimated coefficients are contained in Table D3 in the online appendix. This 

model is used to predict values for 45q15 when only 5q0 is supplied as an input. Then both 

the input value for 5q0 and the predicted value for 45q15 are used in Eq. (12) to predict the 

weights in Eq. (11).

Models for Mortality in the First Year of Life—Figure E4 in the online appendix 

displays the relationship between logit(1q0) and logit(5q0). Mortality falls very rapidly in the 
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first few years of life. Using the child mortality rate (5q0), a five-year summary of mortality 

between ages 0 and 5, as a predictor of single-year mortality within that same five-year age 

group is relatively uninformative. Experimentation reveals that 5q0 predicts 1q1 through 1q4 

well and 1q0 slightly less well. The prediction of 1q0 can be improved by modeling the 

relationship between logit(1q0) and logit(5q0) separately as

logit(1q0)zℓ = cz + βz1 ⋅ logit(5q0)zℓ + βz2 ⋅ logit(5q0)zℓ
2 + εzℓ (14)

OLS regression is used to estimate the coefficients of this model, displayed in Table D4 of 

the online appendix. The model explains essentially all the variance in logit(1q0) (R2 > 99 % 

for both sexes) and is used to predict values for 1q0 directly from the input value of 5q0.

Using the Model

The full model is used as follows:

1. Identify input values for 5q0 and optionally 45q15, and transform them to the logit 

scale. If 45q15 is not available, predict logit(45q15) using the input value for 5q0 

and the regression coefficients corresponding to Eq. (13).

2. Use the input values for logit(5q0) and logit(45q15) obtained in Step 1 and the 

regression coefficients estimated using Eq. (12) to predict values for the weights 

Wzi defined in Eq. (11).

3. Insert the weights predicted in Step 2 into Eq. (11) to calculate a predicted age 

schedule of mortality probabilities, q, on the logit scale.

4. If desired, improve the prediction of logit(1q0) using the regression coefficients 

corresponding to Eq. (14) to directly predict logit(1q0) from the input value of 

logit(5q0) from Step 1. Replace the first element of q with this predicted value for 

logit(1q0).

5. Add 10 to each element of q to account for the offset used when calculating the 

SVDs of the HMD mortality schedules.

6. Take the expit of q to yield single-year age-specific probabilities of dying on the 

probability scale.

Model Validation

The general sensitivity of the model to exactly which mortality schedules are used for 

calibration is assessed using a cross-validation approach. Fifty random samples of 50 % of 

the HMD mortality schedules are drawn, the model is calibrated with each using the 

previously described calibration process, and all the HMD mortality schedules are predicted. 

For each of the 50 models, prediction errors are calculated for all mortality schedules as the 

difference qℓ − qℓ. The error distributions of the in-sample and out-of-sample mortality 

schedules are summarized and compared.
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To investigate the sensitivity of the overall modeling approach to the number of mortality 

schedules used to calibrate the model, I conduct another cross-validation exercise with 

varying sample sizes. For each sample fraction from 10 % to 90 % in 20 % increments, 50 

random samples are drawn from the HMD life tables. As described just above, I calibrate the 

model using each sample, and I predict all the HMD mortality schedules, calculate errors, 

and summarize and compare error distributions for in- and out-of-sample mortality 

schedules.

Comparing Performance of SVD-Comp and the Log-Quad Model

The Log-Quad model (Wilmoth et al. 2012) is the state-of-the-art mortality model relating 

child and adult mortality to full age schedules of mortality. I compare prediction errors 

produced by both the Log-Quad and SVD-Comp models. I use the Log-Quad model as 

published and the R code provided by Wilmoth et al. (2012) to produce predicted 5qx values 

for each of the HMD mortality schedules using either 5q0 or both 5q0 and 45<715 as inputs. 

The Log-Quad model predicts mortality in five-year age groups. To accommodate the one-

year age groups (1qx) predicted by the SVD-Comp model, I use standard life table methods 

to transform predicted single-year to five-year 5qx values. I summarize the distribution of 

errors, qℓ − qℓ, produced by both models in various ways. Comparisons are made only for 

predictions using the same inputs for both models, either 5q0 alone or both 5q0 and 45q15.

I also summarize the overall error produced by each model across all the mortality schedules 

in the HMD. This is done by taking the absolute value of each year-, sex-, and age-specific 

error and then summing the resulting absolute errors across all ages and years for each sex. 

This produces a single number—the total absolute error—that indicates the overall 

difference between the predicted and actual values for all years and ages. In addition to this I 

present total absolute errors in e0.

To assess age-specific errors in q and life table quantities derived from q, I predict qℓ with 

both SVD-Comp and Log-Quad using 5q0 from each HMD life table as input. I construct 

full life tables from qℓ and compared them with the life tables in the HMD.7 I construct age-

specific weights from the lx columns of the HMD life tables by summing lx across all HMD 

life tables in five-year age intervals and then dividing each age-specific sum by the total 

across all ages. The resulting weights correspond to the proportionate lx age structure of the 

HMD life tables. I calculate weighted age-specific absolute errors in q and e by summing 

absolute errors in qx5  and ex at five-year age intervals across all life tables in the HMD and 

then multiplying by the corresponding age-specific weight. The weighted age-specific errors 

in qx5  are a refinement on the overall errors in qx5 , as described earlier, and reveal how close 

each model comes to replicating 5qx at each age. The weighted age-specific errors in ex

provide an age-specific summary of the errors at each age in the derived life table columns 

that are necessary to calculate ex—that is, all the columns.

7The SVD-Comp life tables are constructed using standard procedures in one-year age groups with nax values taken from the HMD 
life tables. The Log-Quad life tables are constructed using R code provided by Wilmoth et al. (2012) in five-year age groups.
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Application to Mexico and South Africa

SVD-Comp and Log-Quad are used to predict age-specific mortality rates for Mexico in 

1983—1985 and South Africa in 2005 using both child and adult mortality as inputs. Data 

for Mexico come from the Human Life Table Database (Max Planck Institute for 

Demographic Research et al. n.d.), and data for South Africa from the World Health 

Organization’s Global Health Observatory data repository (World Health Organization n.d.)

—both downloaded on August 21, 2018.

Mexico was chosen because it is a developing country with reasonable data and generally 

low but otherwise unremarkable mortality. South Africa was chosen because it is a 

developing country with a unique age-specific mortality schedule during the late 1990s and 

early 2000s. HIV/AIDS caused many deaths at very young and adult ages, giving rise to a 

characteristic bulge in mortality at adult ages. Because both Log-Quad and SVD-Comp are 

calibrated using the HMD, which does not contain life tables with HIV/AIDS-related 

mortality, both models are expected to perform reasonably well for Mexico, but neither is 

expected to follow the HIV/AIDS-related mortality bulge in South Africa.

Results

Data and Fits

To provide a sense of the mortality data contained in the HMD and the fits produced by the 

SVD-Comp model, Fig. 1 displays 1qx on the logit scale for Sweden in 1751 and Austria in 

1990, with both data and predicted values produced by SVD-Comp using 5q0 alone as an 

input.

Factors of the SVD

Figure 2 and Table B1 (online appendix) present the sex-specific LSVs from the SVD of the 

full set of HMD mortality schedules scaled by their corresponding SVs, siui (ignoring the 

index for sex z). All elements of s1. u1 are negative so that s1 u1 captures the underlying 

average shape of the mortality profile with age. Weights applied to S1u1 move this 

underlying mortality profile up and down and hence control the overall level of mortality. 

The remaining Siui cross the x-axis and therefore represent age-specific deviations from the 

overall underlying pattern. These scaled LSVs are the components used in the weighted sum 

in Eq. (11). Figure 2 also displays smoothed8 versions of the scaled LSVs. The smoothed 

versions can be used to make the predicted mortality schedules smoother.

Calibration Relationships

Figures E1–E4 (online appendix) display the data and predicted values from the models in 

Eqs. (12), (13), and (14). The corresponding estimated coefficients based on the whole HMD 

and used to calculate the predicted values in the figures are contained in Tables D1–D4 

(online appendix). Figures El and E2 contain scatterplots of the RSV element values versus 

logit(5q0). The figures display both data and values predicted from Eq. (12) using logit(5q0) 

and logit(45q15) predicted from the model in Eq. (13) as inputs. There are clear, quasilinear 

8For components i ∈ (2, 3, 4}, kernel smoother with Gaussian kernel and bandwidth = i + 1 for ages i and older.
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relationships between the elements of the RSVs and logit(5q0). Figure E3 in displays 

logit(45q15) versus logit(5q0), along with the predicted values from Eq. (13). Finally, Figure 

E4 displays logit(1q0) versus logit(5q0), along with predicted values from Eq. (14).

Cross-Validation Prediction Errors

Figure 3 displays sex- and age-specific boxplots of the error distribution for one-year age 

groups from the first cross-validation using 50 samples of 50 % of the HMD to calibrate the 

SVD-Comp model. The errors are generally very small and centered on 0 through roughly 

age 60. At older ages, the size of the errors increases, and the median drifts slightly away 

from 0 in a positive direction, especially at ages older than 90. However, the median error is 

never much more than 0.01, and as displayed in Fig. 5, median errors are significantly 

smaller than those produced by the Log-Quad model at the same ages. The error 

distributions of the in-sample and out-of-sample predictions are indistinguishable at all ages, 

indicating that the SVD-Comp model is not sensitive to exactly which mortality schedules 

are used for calibration when half of them are used.

Varying Sample Size Cross-Validation Prediction Errors

Figures 4 and E6 (online appendix) contain the second set of cross-validation results 

investigating the effect of varying the number of mortality schedules used to calibrate the 

SVD-Comp model. Both figures summarize the overall prediction error distributions (all 

ages and years combined) for the SVD-Comp model by sample status (i.e., in-sample versus 

out-of-sample mortality schedules). The sample fraction varies from 10 % to 90 % in 

increments of 20 %. Figure 4 displays boxplots of the median of medians of overall error. 

This is very similar comparing in-sample and out-of-sample mortality schedules for both 

sexes across all sample fractions. In all cases, a slight positive bias results from the positive 

bias in errors at older ages (see Fig. 3). A similar situation exists for the distributions of the 

interquartile range of overall errors, (Fig. E6). The only systematic change in these 

distributions by sample fraction is that the interquartile range of the indicators calculated 

from the sample decreases as the sample fraction increases, as expected. Inversely, there is a 

weak trend toward increases in the interquartile range calculated in the out-of-sample group 

as the sample fraction increases, also as expected. In general the SVD-Comp model appears 

to be remarkably robust as the number of mortality schedules used for calibration decreases. 

Performance is satisfactory all the way down to the 10 % sample and is good all the way 

down to 30 %.

Comparison Between SVD-Comp and Log-Quad Prediction Errors

Figure 5 displays sex-age-specific boxplots of the distribution of prediction errors for both 

the SVD-Comp and Log-Quad models. The median error by sex and age is close to 0 for 

both models through roughly age 70. At ages older than 70 the median error for the Log-

Quad model is systematically substantially larger than 0, while for the SVD-Comp model 

the median error stays at 0. The sex- and age-specific interquartile ranges are similar for 

both models, very small through roughly age 40, growing slowly between 40 and roughly 85 

and then shrinking again through 110. In general, at ages older than 45 the error distribution 

is biased in a positive direction for the Log-Quad model but is centered on 0 at all ages for 

the SVD-Comp model.
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Table 4 displays the total absolute errors on the natural scale for the SVD-Comp and Log-

Quad models for predictions based on either 5q0 alone or both 5q0 and 45q15. The table also 

presents differences between the total absolute errors for the two models in both additive 

(Log-Quad - SVD-Comp) and proportional form ((Log-Quad - SVD-Comp) / SVD-Comp). 

In all cases, the SVD-Comp model predictions are globally closer to the HMD life tables.

Tables F1 and F2 (online appendix) display the weighted sum of age-specific absolute errors 

in qℓ and eℓ across all 4,610 life tables in the HMD. The last row in each displays the sum 

across all ages. The unweighted total absolute errors in e0 for SVD-Comp calculated using 

one through four components are presented in Table F3 i (online appendix). Predicted values 

for life expectancy at birth, e0, reflect predictions at all ages so that errors in e0 describe the 

cumulative effect of prediction errors at all ages. With each additional component, the total 

absolute errors in e0 are reduced, and four components are required for SVD-Comp to 

perform better than Log-Quad. This is true in spite of the fact that the models used to predict 

the weights for the third and fourth components are not as predictive as those used to predict 

the weights for the first two components (Eq. (12), and Tables D1 and D2 in the online 

appendix).

Finally, Fig. E5 (online appendix) displays predicted 1qx from the SVD-Comp using 5q0 

alone for three different levels of 5q0.

Application to Mexico and South Africa

Figure 6 displays data and predictions from both Log-Quad and SVD-Comp in standard 

five-year age groups for Mexico in 1983–1985 and South Africa in 2005 using both child 

and adult mortality as predictors. The two models produce essentially the same predictions 

for Mexico, and both adequately follow the data given that they are effectively two-

parameter models. The situation for South Africa is different. As expected, neither model is 

able to follow the HIV/AIDS-related bulge at adult ages. Both models thread the predictions 

through the male age schedule reasonably well, overstating the mortality of adolescents and 

young adults and understating the mortality of middle-aged adults. For males, both models 

produce plausible predictions but are unable to reproduce the bulge. SVD-Comp does the 

same for females, essentially cutting off the bulge; however, Log-Quad produces an 

implausible age pattern of mortality, with extremely high mortality for older children, 

adolescents, and young to middle-aged adults. The predictions for South Africa reveal a 

fundamental limitation of all empirically based mortality models: they cannot represent 

mortality age profiles that are fundamentally different from those contained in the data used 

to create them. The solution to this is to identify or create new empirical life tables that 

represent the age profiles in question and include them in the data used to create the models.

Discussion

The SVD-Comp model is a simple framework for building mortality models. Its key 

advantages are (1) a simple linear structure that does not need to be changed for the model to 

be used in a variety of ways; (2) a general interface—that is, the weights in Eq. (11)—

through which input parameters can affect the age pattern of mortality (3) an ability to 
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handle arbitrarily defined age groups without having to alter the fundamental structure of the 

model, such as the one-year age groups used here; and (4) through its structure, an inherent 

constraint that ensures that mortality at each age is related to mortality at each other age 

according to the age patterns reflected in each of the components. In addition to these 

advantages, the model also satisfies the combined list of desired characteristics for a 

mortality model enumerated in the Introduction.

This approach is general and allows all-age mortality schedules (in arbitrarily fine age 

groups) to be predicted from any covariates that are related to age-specific mortality. This 

general relationship is quantified in the models (Eq. (12)) that relate the weights in Eq. (11) 

to the covariates, given that the relationship of each age to all others is maintained through 

the constant components derived from the SVD, and those intra-age relationships are 

affected all together through the weights on the components. This constrains the intra-age 

relationships and relates them to the covariates in a simple, flexible way.

When the weights are modeled as functions of child mortality and calibrated using the 

relationship between the empirical weights (vzℓl in Eq. (8)) and child mortality in the HMD, 

the model serves the same purpose as the Log-Quad model (Wilmoth et al. 2012), and it 

performs slightly better in a direct comparison while having the advantage of directly 

producing mortality schedules by single year of age. Note that this comparison is conducted 

with the Log-Quad as presented in Wilmoth et al. (2012). In that article, the authors 

explicitly favored an estimation technique that would, they claimed, reduce estimation bias 

at the cost of having (slightly) larger prediction errors when evaluated against the historical 

data set—a fact that is apparent in Fig. 5. The published Log-Quad was calibrated to the 

slightly different and smaller set of HMD life tables that existed at the time and met the 

authors’ criteria for inclusion. Consequently, the results of the comparison would likely 

change if the Log-Quad were recalibrated using the same set of HMD life tables described 

and used here. However, given the robustness of the SVD-Comp to the set of life tables used 

in calibration (see the sections Cross-Validation Prediction Errors, and Varying Sample Size 

Cross-Validation Prediction Errors), this potential difference is unlikely to be large.

Concerning calibration and complexity, the cross-validation results clearly demonstrate that 

the calibration to the HMD is robust with respect to exactly which and how many mortality 

schedules are used, and SVD-Comp is no more complex than Log-Quad. SVD-Comp 

requires one SVD calculation and six regression models (four in Eq. (12), one in Eq. (13), 

and one in Eq. (14)) for each sex to capture the relationship between child mortality and 

mortality at other ages in the HMD—12 regression models in total. Log-Quad requires one 

SVD calculation and one log-quadratic model of the general form log(5mx) ~ log(5q0) + 

log(5q0)2 for each five-year age group and another to refine the prediction of 1q0 for each sex

—46 regression models in total. The total number of regression coefficients required by each 

model (for each sex) is: 44 for SVD-Comp and 70 for Log-Quad. The total number of 

discrete values required for prediction (for each sex) is 484 (4.4 per age group) for SVD-

Comp and 92 (3.8 per age group) for Log-Quad. The models directly predict mortality in 

SVD-Comp using single-year age groups and in Log-Quad using five-year age groups. 

Comparing the complexity of the models is not easy and depends on where one focuses, but 

it is clear that neither is obviously more or less complex than the other. Perhaps the only 
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important difference in this respect is that there is nothing in the overall Log-Quad model to 

directly constrain the relationship of mortality at one age to another except for the quadratic 

form of the relationship between mortality at each age and 5q0, whereas SVD-Comp 

manipulates a linear combination of age-specific vectors, so that the relationships between 

ages are constrained to fall within the four-dimensional space defined by the four 

components used by SVD-Comp.

Together with my earlier work with others on an HIV-calibrated version of SVD-Comp 

(Sharrow et al. 2014), this demonstration suggests that it is reasonable to expect that SVD-

Comp could be calibrated in a variety of additional ways to produce useful models that 

relate age-specific mortality to, for example, life expectancy at birth (or some other age), 

GDP, geographic region, period, epidemiological indicators (as in Sharrow et al. 2014), a 

combination of any of these, or something else. Moreover, subtle effects on the age structure 

of mortality, such as the rotation in age-specific mortality identified by Li and Gerland 

(2011), could be incorporated by adding the necessary elements to the models for the 

weights. The same approach could be applied to develop models for the difference between 

underlying age-specific mortality and age-specific mortality affected by specific shocks, 

such as natural disasters, conflicts, or epidemic diseases (e.g., HIV). It is even possible to 

refine the Lee-Carter model in Eq. (1) by adding more components to the SVD-derived bxkt 

term so that the enhanced model could represent a wide range of age patterns instead of the 

constant age pattern included in the existing formulation. This would add more parameters 

to the model, but the payoff might be sufficient to make that worthwhile. Going further, the 

entire Lee-Carter model could be replaced by the SVD-Comp model, which would give it 

the ability to model changing levels and age patterns of mortality independently and 

generally be more flexible.

The general SVD-Comp model in Eq. (11) can be used in another way to interpolate or 

smooth incomplete or noisy age schedules by simply using OLS regression of the 

incomplete mortality schedule against the corresponding elements of the first few 

components, sziuzi, with the constant constrained to be 0, and then predicting the full 

mortality schedule from all elements of the components and the coefficients estimated by the 

regression. Bayesian estimation can also be used to estimate the weights and their 

uncertainty, similar to Sharrow et al. (2013).

The application to Mexico and South Africa confirmed that the HMD-calibrated SVD-Comp 

works at least as well as Log-Quad when applied to mortality schedules in populations well 

outside of the HMD. For South Africa, neither model was able to reproduce the HIV/AIDS-

related mortality bulge at adult ages. SVD-Comp produced plausible mortality schedules for 

both sexes that were as close as possible to South Africa’s, given that it could not reproduce 

the bulge. In contrast, Log-Quad produced a plausible mortality schedule for males but a 

nonsensical schedule for females. These results reveal an urgent need to increase the 

diversity of mortality schedules available in freely accessible archives, such as HMD, and in 

particular, an important need to compile much better mortality data for Africa and other 

developing world regions, where age schedules of mortality are different from what has been 

observed in the developed world. Additionally, the application to South Africa suggests that 

SVD-Comp may provide a stable framework to begin building mortality models that include 
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epidemiological (e.g., HIV prevalence and antiretroviral therapy coverage) and other 

predictors. Earlier work using modeled data (Sharrow et al. 2014) is a start. However, 

because building models using modeled data is of limited value, reasonably large, high-

quality empirical mortality data sets must be assembled from the places where models such 

as Log-Quad and SVD-Comp are most useful.

Software and Reproducibility Materials

A GitHub repository contains all the code necessary to reproduce the results presented in 

this manuscript (https://github.com/sinafala/svd-comp). Both the appendices and a PDF 

rendered from the R Markdown file (on GitHub) that produces the results are available 

online

An R package (R Foundation for Statistical Computing 2016) implementing the HMD child 

or child/adult mortality-calibrated version of SVD-Comp presented above is available as 

fully open source and free software to download directly from the GitHub repository using 

the devtools R package and command: install github(repo = “sinafala/svdComp5q0”)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example data and predictions. 1qx for very high mortality early in Sweden’s time series and 

low mortality for a more recent year in Austria. Predicted values are produced using 5q0 

alone as an input. Data are presented as symbols, and predicted values are presented as lines.
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Fig. 2. 
Scaled left singular vectors (LSVs). The first four LSVs are scaled by their corresponding 

singular values from the SVD of the 4,610 mortality schedules in the HMD. The more 

variable lines are raw components, and the less variable lines are smoothed with a kernel 

smoother. The raw values are used throughout this work.
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Fig. 3. 
Single-year age group SVD-Comp prediction errors for in-sample and out-of-sample 

mortality schedules for fifty 50 % samples. Errors are summarized over all in-sample and 

out-of-sample mortality schedules for the 50 samples. Whiskers extend to 10 % and 90 % 

quantiles.
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Fig. 4. 
Median prediction error by sample fraction, with 50 samples for each sample fraction. For 

each sample, the median is calculated across all ages and all mortality schedules in each 

sample category (in sample and out of sample). Whiskers extend to 10 % and 90 % 

quantiles.
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Fig. 5. 
Five-year age group prediction errors for SVD-Comp and Log-Quad models using only 

child mortality 5q0 as input. Whiskers extend to 10 % and 90 % quantiles.
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Fig. 6. 
Application to Mexico and South Africa. The figure shows data and predicted values in 

standard five-year age groups produced by Log-Quad and SVD-Comp models using both 

child and adult mortality as predictors.
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Table 1

Countries or regions with no information on either child or adult mortality

Child Mortality Adult Mortality

Regions Population (millions) Percentage of Population Regions Population (millions) Percentage of Population

World 1 1 0.0 50 973 13.2

Africa 1 1 0.0 33 666 56.1

Note: U.N. countries and regions that do not have information on either child or adult mortality for the 2015 update of the World Population 
Prospects. The table shows the population and fraction of the total population for which information is missing.

Source: United Nations, Department of Economic and Social Affairs, Population Division (2015c: tables I.1b and I.1c).
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Table 2

Countries and regions where mortality models are necessary to estimate life expectancy at birth (e0) or age-

specific mortality rates

e0 ASMR

Countries/Regions Count % Count %

World 233 90 38.6 76 32.6

Africa 58 50 86.2 50 86.2

Note: Counts of the number of U.N. countries and areas where mortality models were used to generate estimates of e0 or age-specific mortality 

rates for the 2015 update of the World Population Prospects.

Source: United Nations, Department of Economic and Social Affairs, Population Division (2015a).
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Table 3

Life tables

Country/Population Abbreviation Years Covered Total Life Tables

Australia AUS 1921–2014 94

Austria AUT 1947–2017 71

Belgium BEL 1841–1913 73

Belgium BEL 1919–2015 97

Bulgaria BGR 1947–2010 64

Belarus BLR 1959–2016 58

Canada CAN 1921–2011 91

Switzerland CHE 1876–2016 141

Chile CHL 1992–2008 17

Czechia CZE 1950–2016 67

East Germany DEUTE 1956–2015 60

Germany DEUTNP 1990–2015 26

West Germany DEUTW 1956–2015 60

Denmark DNK 1835–2016 182

Spain ESP 1908–2016 109

Estonia EST 1959–2017 59

Finland FIN 1878–2015 138

France, Civilian Population FRACNP 1816–2016 201

France, Total Population FRATNP 1816–2016 201

England and Wales, Civilian National Population GBRCENW 1841–2016 176

England and Wales, Total Population GBRTENW 1841–2016 176

Northern Ireland GBR NIR 1922–2016 95

United Kingdom GBRNP 1922–2016 95

Scotland GBR SCO 1855–2016 162

Greece GRC 1981–2013 33

Croatia HRV 2002–2016 15

Hungary HUN 1950–2017 68

Ireland IRL 1950–2014 65

Iceland ISL 1838–1851 14

Iceland ISL 1853–2016 164

Israel ISR 1983–2014 32

Italy ITA 1872–2014 143

Japan JPN 1947–2016 70

Korea KOR 2003–2016 14

Lithuania LTU 1959–2017 59

Luxembourg LUX 1960–2014 55

Latvia LVA 1959–2017 59

Netherlands NLD 1850–2016 167

Norway NOR 1846–2014 169
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Country/Population Abbreviation Years Covered Total Life Tables

New Zealand, Maori NZLMA 1948–1948 1

New Zealand, Maori NZLMA 1950–1955 6

New Zealand, Maori NZLMA 1957–1958 2

New Zealand, Maori NZLMA 1960–2008 49

New Zealand, Non-Maori NZL NM 1901–2008 108

New Zealand NZL NP 1948–2013 66

Poland POL 1958–2016 59

Portugal PRT 1940–2015 76

Russia RUS 1959–2014 56

Slovakia SVK 1950–2014 65

Slovenia SYN 1983–2014 32

Sweden SWE 1751–2016 266

Taiwan TWN 1970–2014 45

Ukraine UKR 1959–2013 55

United States USA 1933–2016 84

Note: 4,610 consistent 1 × 1 (single-year in both calendar and age) life tables downloaded from the Human Mortality Database on November 2, 
2018.
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Table 4

Summary of prediction errors for SVD-Como and Lou-Ouad

Total Absolute Error Predicted by:

Model/Summary C1 5q0 C2 (5q0, 45q15) C3 C2 – C1

Female

 R1 SVD-Comp 1.446 1,298 −148

 R2 Log-Quad 1,502 1,399 −102

 R3 R2-R1 56 102 46

 R4 R3/R1 (%) 3.9 7.8 −30.9

Male

 R1 SVD-Comp 1,674 1,378 −296

 R2 Log-Quad 1,777 1,472 −305

 R3 R2-R1 103 94 −9

 R4 R3/R1 (%) 6.1 6.8 3.0

Notes: Total absolute error and comparisons of total absolute error. Both SVD-Comp models calibrated using all HMD life tables
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