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Key Points

•We describe a compre-
hensive computational
biology modeling and
digital drug simulation
platform.

• Somatic gene muta-
tions and gene copy
number variations
found in individual
patients were used for
predictions of treat-
ment responses.

Patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) are

generally older and havemore comorbidities. Therefore, identifying personalized treatment

options for each patient early and accurately is essential. To address this, we developed

a computational biology modeling (CBM) and digital drug simulation platform that relies on

somatic gene mutations and gene CNVs found in malignant cells of individual patients. Drug

treatment simulations based on unique patient-specific disease networks were used to

generate treatment predictions. To evaluate the accuracy of the genomics-informed

computational platform, we conducted a pilot prospective clinical study (NCT02435550)

enrolling confirmedMDS and AML patients. Blinded to the empirically prescribed treatment

regimen for each patient, genomic data from 50 evaluable patients were analyzed by CBM to

predict patient-specific treatment responses. CBM accurately predicted treatment responses

in 55 of 61 (90%) simulations, with 33 of 61 true positives, 22 of 61 true negatives, 3 of 61 false

positives, and 3 of 61 false negatives, resulting in a sensitivity of 94%, a specificity of 88%,

and an accuracy of 90%. Laboratory validation further confirmed the accuracy of CBM-

predicted activated protein networks in 17 of 19 (89%) samples from 11 patients. Somatic

mutations in the TET2, IDH1/2, ASXL1, and EZH2 genes were discovered to be highly

informative of MDS response to hypomethylating agents. In sum, analyses of patient cancer

genomics using the CBM platform can be used to predict precision treatment responses in

MDS and AML patients.

Introduction

In recent years, next-generation sequencing has revealed a remarkable level of heterogeneity in the
genetic landscape in patients with myelodysplastic syndromes (MDS) and acute myeloid leukemia
(AML).1,2 Despite advances in understanding MDS and AML biology, cytotoxic chemotherapy remains
the cornerstone of standard treatment. Because tolerance to such intensive treatments, especially in
older adults, is often poor, the decision to administer or receive chemotherapy is complicated and is
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often accompanied by apprehension in physicians and patients
alike.3,4 Thus, it is not surprising that only 30% to 50% of AML
patients receive induction chemotherapy.5

Ideally, the choice to administer induction treatment should be
informed by the patient’s MDS or AML disease biology, wherein
specific molecular biomarkers would predict treatment responses
or resistance with high probability. In this regard, studies have
suggested that a TET2 gene mutation is associated with improved
clinical outcomes in MDS patients following treatment with
hypomethylating agents (HMAs).6,7 In retrospective analyses in
AML, we and other investigators have shown that cytarabine-
induced recurrent gene-expression patterns correlate with clinical
outcomes.8,9 Although these findings have identified putative
biomarkers predicting treatment response, validation in MDS and
AML patients remains elusive.

In lieu of predictive biomarkers to assess treatment options for MDS
and AML patients, the development of an algorithm with the ability
to prospectively predict treatment responses in patients would
prove helpful in differentiating cases prioritized for standard
chemotherapy from those better suited for clinical trial referral.
Such a predictive platform would assist in preventing patients from
undergoing unnecessary chemotherapy regimens, thereby avoiding
toxic side effects. By improving the accuracy of the choice of
treatment selection, a predictive model would, in the long run, also
help to reduce the high health care costs incurred by AML and MDS
patients, thereby increasing health care system efficiency.10,11

Toward these goals, we developed a computational biology
modeling (CBM) and digital drug simulation platform that relies on
somatic gene mutations and gene copy number variations (CNVs)
found in individual MDS or AML patients. Genomic abnormalities
are converted by the computational system into patient-specific
protein networks to generate a virtual disease model. The patient-
specific disease models are then interrogated using a drug library
via simulations based on mathematical modeling to predict
inhibition of MDS or AML cell proliferation and survival. Leading
up to this pilot prospective study, we conducted a retrospective
analysis and found a high degree of accuracy using the CBM
method in matching treatment responses in patients diagnosed with
MDS with their actual clinical outcomes.12 Encouraged by these
findings, we aimed to prospectively define the predictive value of
our computational platform in patients with AML and MDS. In this
article, we present the results of our pilot prospective clinical study.

Methods

Study design

iCare for Cancer Patients (iCare 1) is a prospective nonrandomized
single-arm prediction-masked open-label clinical trial (NCT02435550).
All procedures relating to study conduct, evaluation, and documenta-
tion were in accordance with Good Clinical Practice and complied
with ethical principles outlined in the Declaration of Helsinki. The
study protocol was approved by the University of Florida Institutional
Review Board (IRB201500073). All patients provided written informed
consent before participating in the study and received treatment
according to standard-of-care options at the discretion of the attending
physician. To be eligible for efficacy assessment, patients were
required to have received one of the following treatment regimens:
a minimum of 4 cycles of an HMA, 2 cycles of lenalidomide, 2 cycles of
targeted therapy, or 1 cycle of high-intensity chemotherapy. A restaging

bone marrow (BM) biopsy and complete blood count were also
required for evaluation of treatment response.

Patients

Patients aged $18 years with a diagnosis of MDS, or de novo or
secondary AML, regardless of risk category, were enrolled in the
study between June 2015 and July 2017 at the University of Florida.
All individuals were required to have measurable disease defined
as $5% myeloblasts in the BM, $5% myeloblasts in peripheral
blood (PB), or $5% large unstained cells in PB.

BM and PB sampling

Consistent with standard clinical care, patients underwent BM
aspirates and/or PB draws for disease assessment at diagno-
sis (baseline) and following treatment initiation for response
assessment (follow-up). Samples from consenting patients were
collected and stored in a malignant hematology biorepository
(UF IRB201501063) for subsequent molecular validation studies
(UF IRB201600284).

Genomic interrogation

Patient samples, BM or PB obtained during standard clinical
care, were processed in the UF Health Shands Hospital Pathology
Laboratory for morphology assessment, flow cytometry, cytoge-
netic karyotyping, and fluorescence in situ hybridization (FISH)
testing using standard protocols.

The remaining sample (,1 mL) was subjected to genomic DNA
isolation (QIAamp DNA Blood Mini Kit; QIAGEN, Hilden, Germany)
for exome sequencing (ES) and CNV analysis (MOgene, St. Louis,
MO; Otogenetics Corporation, Atlanta, GA). Illumina libraries were
made from qualified fragmented genomic DNA using a SPRIworks
HT Reagent Kit (catalog no. B06938; Beckman Coulter, Indian-
apolis, IN), and the resulting libraries were subjected to exome
enrichment using SureSelect All Exon kits (OneSeq, Clinical
Research Exome or V5; Agilent Technologies, Wilmington, DE),
following the manufacturer’s instructions. Enriched libraries were
tested for enrichment by quantitative polymerase chain reaction and
for size distribution and concentration using an Agilent Bioanalyzer
2100. The samples were then sequenced on an Illumina HiSeq
2500, which generated paired-end reads of 125 nucleotides. Data
were analyzed for data quality using FASTQC (Babraham Institute,
Cambridge, United Kingdom). Variant calling was performed by
Farsight Genome Systems. Variant annotation was accomplished
through scripts that assembled annotations from 1000 Genomes,
ClinVar, ESP, gnomAD, and ExAC, as well as protein predictions
from LRT, MetaLR, MetaSVM, Mutation Assessor, PROVEAN,
fathmm, MutationTaster, SIFT, and PolyPhen. All variants with
deleterious or unknown impact on protein function were reported.
Common polymorphisms that were nondeleterious to protein
function were excluded.

CBM for MDS and AML

CBM used in this study is a comprehensive network of signal-
ing, metabolic, epigenetic, and transcriptional regulatory pathways
underlying cancer physiology.12-15 The network is created through
a rigorous workflow of manually curating and aggregating published
experimental data and representing the functionality of the genes,
proteins, and interactions mathematically, using ordinary differential
equations. The CBM includes 112 pathways, .85000 reactions,
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and 3300 cancer specific-genes, including comprehensive cover-
age of the kinome, transcriptome, proteome, and metabolome. This
integrated network that makes up the CBM can be used to predict
a patient’s response to a single drug or a combination of drugs.
Both prospective and retrospective validations have been shown
in multiple indications, including studies in glioblastoma multiform,
multiple myeloma, and myeloproliferative neoplasms.12-16

In this study, ES- and CNV-derived genomic data, together with
karyotypic (cytogenetics, FISH) data, were prospectively collected
from individual patients. Comprehensive genomic data collected
were entered into the CBM platform (Cellworks Group) to generate
a patient-specific protein network map of the disease (Appendix).

Computational protein network maps, showing activated and
deactivated networks and their intersections, were generated for
each patient based on their MDS or AML genomic data. Using
these computational maps, mathematical modeling of MDS or AML
cell proliferation or inhibition was simulated for each patient. The cell
proliferation index is an average function of the active CDK-cyclin
complexes that define cell cycle checkpoints and was quantified by
calculating permutations of the biomarkers CDK4-CCND1, CDK2-
CCNE, CDK2-CCNA, and CDK1-CCNB1. A cell viability index
based on cell survival and apoptosis was also generated for each
patient. The biomarkers constituting the survival index included
AKT1, BCL2, MCL1, BIRC5, BIRC2, and XIAP, whereas the
apoptosis index included BAX, CASP3, NOXA, and CASP8. The
overall viability index of a cell was calculated as the ratio of survival
index/apoptosis index. The weight of each biomarker was adjusted
to mitigate against over- or underweighting.

Members of the CBM modeling team were masked to clinical
outcomes. All patients received treatment according to standard-of-
care options at the discretion of the treating physician.

Digital drug simulations using the CBM platform

The CBM model was initially mathematically simulated until the
system reached a homeostatic steady-state and was considered
to be a nondisease or control state. Then, for each patient, the
control state was triggered into a disease state by introducing the
patient’s MDS or AML somatic gene mutations and gene CNVs.
The mathematical model was further simulated to achieve
a disease steady-state. Each mutation’s weight in the patient’s
computational model was adjusted so that all mutations contrib-
uted to the disease steady-state. Thus, for each patient, disease
end points of MDS or AML cell proliferation and viability were
assessed.

All digital drug treatments were performed on disease steady-state
conditions to quantify the extent that the drugs returned diseased
cell indices (proliferation, viability) back to the control state. For
each case, a disease inhibition score was calculated using the
following formula:

Disease Inhibition Score ¼ Proliferation1Viability

¼ Proliferation1
Survival
Apoptosis

If a specific drug normalized diseased cell indices (proliferation, viability)
in a dose-dependent manner to a disease inhibition ,20%, then the

Patient diagnosed
with AML or MDS

1. Predicted Protein Networks
2. Predicted Response to Drugs

Cytogenetics
FISH
NGS
WES
CNV

Comparative analysis
EMPIRIC vs CBM

•         Sensitivity
•         Specificity
•         Positive Predictive Value
•         Negative Predictive Value
•         Accuracy
•         Protein Network Validation

Empiric treatment
given to patient

Outcomes:-
Clinical Response to Drugs

Figure 1. Study schema of the iCare 1 clinical study. NGS, next-generation sequencing; WES, whole-exome sequencing.

Patients enrolled
N=134

DNA sequencing
data available

N=99

DNA sequencing
data unavailable

N=35

Patients ineligible for
response evaluation

N=49

Patients eligible for:
a) response evaluation

N=50
b) CMB predictions

    N=61Figure 2. Flowchart of the iCare 1 patient

population.
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patient’s disease was predicted to be a responder to drug treatment.
If, on the other hand, the drug in the patient’s model did not normalize
cell proliferation or viability below the threshold disease inhibition score,
the disease was predicted to be a nonresponder to drug treatment.

A digital drug library of 67 US Food and Drug Administration–
approved drugs was generated by programming the mechanisms of
action of each individual drug established from the published
literature.

Protein network analysis

To validate the CBM-predicted protein network aberrations, a Wes
capillary system (12-230 kD Wes Separation Module kit; SM-
W004; Protein Simple) was used to isolate proteins from 11 patient
samples, as per the manufacturer’s protocol. Samples were stored
at 280°C for use at a later time.

Western blot analysis was next performed on the protein samples
using standard protocols. The following antibodies were used: anti-
rabbit PIK3CA (4255), anti-rabbit phospho-Erk1/2 Thr202/Tyr204
(4377), and rabbit Erk1/2 (9102; all from Cell signaling Technol-
ogy), as well as GAPDH (sc-25778; Santa Cruz Biotechnology)
as a control. Correlation between western blot assays (actual
responses) and CBM predictions of biomarker impact was
assessed and recorded.

Clinical outcome measures

The treating physicians and patients were masked to the pre-
dictions of the CBM platform and vice versa. The efficacy outcome
of the overall response rate to treatment was defined in AML as
the achievement of complete remission, complete remission with
incomplete count recovery, or partial remission, according to National
Comprehensive Cancer Network Clinical Practice Guidelines in
Oncology AML 2017 criteria.17 For MDS, overall response rate was
defined as the achievement of complete remission, partial remission,
and/or hematological improvement, according to International
Working Group 2006 criteria.18 Responses to treatment regimens
listed above were recorded. The performance of the CBM platform
was evaluated via confusion matrix and receiver operating character-
istics (ROC) curve. The confusion matrix calculations included the
following definitions:

Table 1. Baseline and clinical characteristics of 50 evaluable

participants in the iCARE1 clinical study

Characteristics Data

Age, median (range), y 66.5 (42-90)

Sex

Female 25 (50)

Male 25 (50)

Disease and origin

MDS 15 (30)

AML 33 (66)

De novo 21 (64)

Secondary 12 (36)

CMML-2 1 (2)

Myelofibrosis 1 (2)

Diagnosis

Newly diagnosed 34 (68)

Relapsed/refractory 16 (32)

Prior therapy

No 20 (40)

Yes 30 (60)

Cytogenetics

Uninformative 17 (34)

Complex 31 (62)

Other 2 (4)

Unless otherwise noted, all data are n (%).
CMML-2, chronic myelomonocytic leukemia-2.

0

NRAS
BCOR
NPM1

CEBPA
EZH2
TP53

KIT
KMT2A

IDH2
IDH1

GATA2
SF3B1

FLT3
JAK2

RUNX1
TET2

DNMT3A
ASXL1

5 10

Frequency of Deleterious Gene Mutations

15 20

%, percent of study participants
25 30 35 40 45 Figure 3. Frequency of common deleterious

myeloid gene mutations detected in 50 clinically

evaluable patients with MDS or AML.
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PPV ðPositive predictive valueÞ ¼ TP=ðTP1FPÞ
NPV ðNegative predictive valueÞ ¼ TN=ðTN1FNÞ
SPECIFICITY ¼ TN=ðTN1FPÞ
SENSITIVITY ¼ TP=ðTP1FNÞ
ACCURACY ¼ TP1TN=ðTP1TN1FN1FPÞ

where TP (true positive) is a clinical responder predicted as
a responder, TN (true negative) is a clinical nonresponder predicted
as a nonresponder, FP (false positive) is a clinical nonresponder
predicted as a responder, and FN (false negative) is a clinical
responder predicted as a nonresponder.

Statistical analyses

The effectiveness of the CBM platform was evaluated by comparing
the predicted drug responses of the MDS and AML patients with
the actual clinical outcomes of treated patients. Using the results
presented in Figure 4, we performed hypothesis tests to determine
whether CBM-based predictions were significantly more accurate
than the accuracy of empiric drug administration. Fisher’s exact test
was used based on the sample sizes in Figure 4. P # .05 was
considered significant.

The statistical analyses also involved the calculation of effective
sample size for testing the CBM predictive power to demonstrate its
reliability/robustness based on the results from this prospective trial
(for level of significance 5 5%).

Results

Overview of the study, patient details, and

baseline characteristics

This study was designed to assess the biological and clinical
predictive values of the genomics-informed CBM platform in
patients with MDS and AML by comparing CBM-generated
predictions of treatment responses with actual treatment responses
(Figure 1).

Between June 2015 and December 2017, 134 patients were
enrolled in the iCare 1 prospective clinical study at the University of
Florida. Of these, ES, CNV, and karyotype data were available for 99
of 134 (74%) patients. Thirty-five of the 134 patients (26%) were
ineligible for the study as a result of sample inadequacy and were
excluded. CBM analysis was conducted for the remaining 99
patients. Fifty (50%) of the 99 patients met eligibility criteria for
clinical response evaluation at the time of data cutoff, whereas 49

Physician Choice
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Na Correct
prediction

Positive
response
prediction
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response
prediction

HMA b
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Ruxolitinib

Imatinib
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Cytarabine +
fludarabine

Vorasidenib
(AG-881)

7+3

Overall

a Number of patients for whom CBM-based predictions for any given drug were 
  generated. Each patient could have more than 1 drug prediction.
b Azacitidine or decitabine.
c 2-3 g/m2.
  P values < .05 were statistically significant
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Figure 4. Prediction values of CBM predictions compared with actual clinical outcomes in terms of actual clinical improvement (TP response) and no clinical

improvement (TN response). The 95% confidence interval (CI) was calculated using the Clopper-Pearson test.
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did not (Figure 2; supplemental Table 1). Baseline demographics
and clinical characteristics of the 50 eligible patients are
summarized in Table 1 and supplemental Table 1. These patients
had a median age of 66.5 years (range, 42-90 years); 15 (30%)
patients had MDS, 33 (66%) patients had AML (including 21
[42%] patients with de novo AML and 12 [24%] patients with
secondary AML), 1 (2%) patient had chronic myelomonocytic
leukemia-2, and 1 (2%) patient was diagnosed with myelofibrosis.
Cytogenetics were complex in 31 (62%) patients and uninforma-
tive in 17 (34%) patients. Common myeloid gene mutations
occurring at a frequency $20% are detailed in supplemental
Table 1 and are summarized for the 50 evaluable patients in
Figure 3. The average number of genomic abnormalities (gene
mutations and gene CNVs) per patient for the 50 participants was
269 (range, 22-983) (supplemental Table 1). Specimens for
proteomic analysis were available for only 11 of 50 (22%) of
clinically evaluable participants, because 39 patients did not have
adequate samples for our study.

CBM predictions and correlation with

clinical responses

Sixty-one CBM-based drug predictions were generated prospec-
tively for the 50 clinically evaluable patients (supplemental Table 1);
these 50 patients had been prescribed 61 drug regimens by the
treating physicians who were blinded to the CBM predictions.
Treatment included 7 days of infusional cytarabine and 3 days of
anthracycline (713), high-dose cytarabine (HiDAC), cytarabine plus
fludarabine, lenalidomide, azacitidine, decitabine, bortezomib, ruxoli-
tinib, imatinib mesylate, or vorasidenib.

CBM accurately predicted clinical drug responses in 55 of 61
treatments with an overall accuracy of 90%. The confusion matrix
highlights the performance of CBM (Figure 4). Compared with the
empiric drug prescriptions prescribed by the treating physicians,
CBM-based predictions resulted in a significantly higher accuracy
overall in terms of the responder and nonresponder treatment
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Figure 5. Statistical analysis of CBM prediction.

(A) ROC curve used the DIS, an output from CBM, to

generate area under the receiver operating character-

istics 5 0.9. (B) A Kaplan-Meier–like estimate of digital

simulation on the 18 patients treated with HMA. The

x-axis measures the predicted DIS, and the y-axis

denotes the percentage of patients predicted to achieve

the simulated DIS based on disease biology. The blue

line represents all patients in the cohort, regardless of

genomic aberrations (N 5 18); the red line denotes pa-

tient profiles that had the genetic signature of WT

ASXL1, TET2, or IDH1/2 mutation, and mutant EZH2

(n 5 11).
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outcomes (P 5 6.416E205). Of the 55 correct predictions, 33
were TP clinical response predictions, and 22 were TN. Of the 6
incorrect predictions, 3 were FP and 3 were FN response
predictions. Based on these findings, the CBM prediction sensitivity
was calculated to be 91.67%, and specificity was 88%, with a PPV
of 91.67% and an NPV of 88% (see “Methods” for definitions).

Considering the use of first-line standard-of-care therapy for
patients with AML (713), CBM correctly predicted patient
response to therapy in 14 of 18 (78%) cases, 17 of 17 (100%)
HiDAC cases, and 16 of 18 (89%) HMA cases (ie, azacitidine,
decitabine). Considering all other drugs prescribed together, CBM
correctly predicted responses in all 8 (100%) cases. Of note, CBM
performed accurately in treatment-naive patients and those with
relapsed/refractory disease (supplemental Table 1).

The performance of the CBM platform was further evaluated using
an ROC curve that used the disease-inhibition score (DIS), an
output from CBM. The area under the ROC was 0.9, which
highlights the very good predictive capability of CBM (Figure 5A).

The effective sample size required to demonstrate the reliability/
robustness of the CBM prediction, with an accuracy of 90% and
a statistical power of 90%, was calculated to be 22 (N) for an effect
size of 40%. The calculated effective sample size (N5 22) is much less
than the number of evaluated patients (N5 50) in this prospective trial,
which signifies that the number of predictions made by CBM are
sufficient to demonstrate its predictive power (supplemental Table 4).

Confirmation of protein network biomarker

predictions by western blot analysis

Nineteen samples derived from 11 patients were available for
laboratory validation of CBM-predicted activated protein networks
and biomarkers therein. We selected 4 biomarkers frequently
activated in cancer cells (AKT2, AKT3, PIK3CA, and ERK1/2).

These biomarkers were interrogated by western blot analysis for
activation, as measured by changes in their phosphorylation status.
When matching CBM predictions of activated proteins to actual
activated proteins, the CBM method accurately matched 17 of 19
(89%) (Figure 6). An example of CBM-predicted increased PIK3CA
activity, as measured by increased phosphorylation of PIK3CA in
a western blot, is shown in Figure 7 for 3 patient samples compared
with a healthy BM control. Two of the 3 patient samples
demonstrated increased phospho-PIK3CA protein levels.

CBM prediction accurately pinpoints treatment

responses in an MDS patient

As an example, illustrating the efficacy of the CBM platform in
predicting drug responses, we describe the genomic analysis of an
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Figure 6. Comparison of iCare predictions matched with actual expression of selected malignancy-associated proteins. N/A, not applicable.
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predicted for response to the CpG-methylating effects of azacitidine via DNMT1 inhibition. Additionally, loss-of-function mutations in TET2 and L3MBTL1 further increased
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MDS patient treated with azacitidine. As shown in Figure 8A,
a CBM-derived protein network map of the patient (ID: UFH-00012-
001) was generated with gain-of-function mutations affecting
EZH2, KRAS, IDH1/2, MYC, and CTNNB1 and loss-of-function
mutations affecting ASXL1, CEBPA, TP53, DNMT3A, L3MBTL1,
APC, and TET2. The CBM network prediction functions on the
premise that all deleterious mutations with previously identified
functional calls have an impact on the generated disease network.
Based on this edict, gain-of-function mutations in IDH1/2 and
EZH2 were predicted to contribute to increased cytosine guanine
dinucleotide (CpG) methylation in this patient. Additionally, loss-of-
function mutations in TET2 (involved in DNA demethylation) and
L3MBTL1 (histone methyl-lysine binding protein) were further
predicted to increase CpG methylation (Figure 8A, gray box).
Consequently, azacitidine, which inhibits CpG methylation via
DNMT1 (DNA methyltransferase 1), was predicted to target the
enhanced CpG methylation status in our virtual drug simulation
CBM analysis. Therefore, this patient was predicted to be
a responder to azacitidine, a potent HMA. In fact, azacitidine had
been empirically prescribed to the patient by the attending
physician and had resulted in a complete response (Figure 1;
supplemental Table 1), thereby validating the predictive usefulness
and accuracy of the CBM platform.

Identification of a new genomic signature for HMA

treatment response

An additional feature of the CBM platform is its ability to derive novel
inferences related to specific networks contributing to drug
responses. For instance, when analyzing 18 patients who had
received HMA treatment (supplemental Table 1), we noted 2 of 7
MDS patients whose disease was clinically unresponsive to
HMA treatment, despite the presence of a TET2 mutation. This
observation was in contrast to recent publications reporting a higher
response of TET2-mutant MDS patients to HMA treatment.6,17 To
address this, we used the CBM platform to virtually dissect
intracellular pathways to explain this apparent paradoxical drug
response. We noted a distinct genetic pattern in the HMA-
unresponsive patients, with the presence of an ASXL1 mutation
along with TET2 or IDH1/2mutations but with a normal EZH2 gene.
As observed in Figure 8B, patient UFH-00012-002 had gain-of-
function mutations affecting the IDH1/2 and CTNNB1 genes,
coupled with loss-of-function mutations affecting ASXL1, TP53,
DNMT3A, NF1, APC, and TET2 genes (supplemental Table 1). Our
CBM-based simulation predicted that loss-of-function mutations in
ASXL1 and DNMT3A contributed to decreased CpG methylation.
Furthermore, loss of TET2 function and gain of IDH1/2 function did
not appear to compensate for the predicted decrease in CpG
methylation, leading to diminished CpG target levels on which
azacitidine could act (reviewed in El Fakih et al19) (Figure 8B).
Hence, this patient was predicted to be a nonresponder to
azacitidine. The patient had indeed failed to achieve clinical
improvement following empirically prescribed treatment with
azacitidine, lending further credence to the predictive effectiveness
of the CBM platform.

To test the hypothesis that ASXL1 and EZH2 mutation status
impacts HMA treatment response, our CBM platform was used to
perform an in silico trial comparison using genomic data from
patients in the study. MDS and AML patients whose disease
harbored ASXL1 mutations, TET2 or IDH1/2 mutations, and EZH2
wild-type (WT; n 5 7) were compared with patients harboring WT
ASXL1, TET2, or IDH1/2 mutations, and mutant EZH2 (n 5 11).
These 2 genomic signatures were compared because of their
higher representation in our clinical cohort (Figure 3).

In traditional clinical trials, the goal is usually to determine whether 2
distinguishable cohorts of patients can be segregated based on
their responses to a particular drug. The survival period following
drug administration is usually plotted as a Kaplan-Meir curve, and it
is commonly used as a measure of the drug’s effectiveness. Here,
we used DIS, a measure of the extent of disease inhibition simulated
by the CBM platform, as a surrogate for survival. A higher DIS is
more likely to be associated with better patient responses. To
determine the mutational status of a patient’s predicted response to
an HMA drug (azacitidine), DIS values were plotted against the
percentage of responders in each cohort (Figure 5B). At a threshold
of 50, the DIS plot showed that 38% of the patients segregated
based on their specific genetic profile (ASXL wt_EZH2mut),
whereas 21% segregated with other patients in the cohort,
including ones harboring the ASXL mut_EZH2 WT genetic profile
(blue line). This virtual analysis suggests that fewer patients with
ASXL1 mutation/EZH2 WT (blue line) are predicted to respond to
HMA treatment compared with patients with ASXL1 WT/EZH2
mutant (red line). Thus, we submit that ASXL1 and EZH2 mutation
status deserves prospective validation in predicting HMA treatment
response in MDS and AML patients.

Discussion

In this article, we demonstrate high accuracy of a genomics-
informed CBM platform to prospectively predict treatment out-
comes in patients with MDS and AML. Our computational method
differs from other precision oncology methods in that it has the
ability to highlight intracellular networks responsible for treatment
sensitivity or resistance. Of particular interest is the ability of the
CBM platform to predict multiple genetic factors contributing to
drug response. Whereas a previous report identified TET2
mutations as a biomarker for a positive response to the HMA
azacitidine or decitabine,6 the CBM platform was able to identify
concurrent mutations found in TET2-mutant azacitidine nonres-
ponders, specifically in the ASXL1 and EZH2 genes that likely alter
the azacitidine drug response, thus providing a rationale for the
failure of azacitidine in ASXL1-mutant EZH2-WT patients. This
feature of the CBM platform has enormous potential in identifying
genetic signatures corresponding to drug responses and informing
precision enrollment in clinical trials and in clinical practice.

The CBM method used in this study contrasts with in vitro
chemosensitivity,20 in vivo patient-derived xenograft assays21 which
are limited to examining cellular responses in a finite number of
drugs or drug combinations. Such studies tend to lack mechanistic

Figure 8. (continued) CpG methylation. The patient achieved a clinical response to azacitidine. Green boxes represent gain of function; blue boxes represent loss of function.

(B) An example of a nonresponder to HMA who harbored gain-of-function mutations in IDH1/2 and loss-of-function mutations in ASXL1 and TET2, among others. Green boxes

represent gain of function, light blue boxes represent loss of function, and dark blue boxes represent knockdown.
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insights into patient-specific cancer biology, which are featured in
the computer-generated network map. Compared with these
in vitro/in vivo assays, the computational method can also test
a larger number of drugs and drug combinations within seconds
after disease model creation. Moreover, the model can serve as
the patient’s own immortal digital cell line that can be revived
instantaneously to test drug or drug combinations at the behest
of treating physicians. However, it may be prudent to use
a combination approach involving computational modeling with
in vitro chemosensitivity and in vivo patient-derived xenograft
assays to improve the predictive power of drug efficacy, as we
have recently demonstrated in a proof-of-concept case.22

Although the computational power of the CBM platform is
informative and could advise physicians of the best choice of
drug for a given patient, the inability to identify appropriate drug
dosages remains a major limitation. Further refinement of this
platform with data inputs from clinical trials, as well as other
sources, could potentially limit this current caveat in the near
future.

In sum, the results from this study provide promising data on
drug-treatment responses in a prospectively recruited cohort of
MDS and AML patients. This pilot study will serve as the basis of
an upcoming randomized clinical trial in which CBM-based drug
selection will be compared with conventional-care regimens in
patients with MDS.
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Appendix: creation of patient profiles

In this study, ES- and CNV-derived genomic data, together with
karyotypic (cytogenetics, FISH) data, were prospectively col-
lected from individual patients. Genomic aberrations were
interpreted for phenotypic implications (ie, gain of function vs
loss of function). The cytogenetic segments related to deletions,
gains, translocations, or derivatives were interpreted as amplifi-
cations and deletions of the genes residing in those segments.
The genes found on the loci of these affected regions of the
chromosome are extracted from the human reference genome at
ENSEMBL. The complete list of genes is matched with the CBM
to identify those that are to be represented in the model. All genes
that have coverage in the model are included in the input file that is
used to create the patient cancer avatar. Genes reported to have
a gain in copy number due to chromosomal amplifications are
interpreted as being overexpressed at the gene expression level,
whereas those genes in the deleted segments are considered
a loss of copy number and are interpreted as having a knockdown
in the model.

Formutation signatures, the gene variantswith known functional
impact and therapeutic implication are searched in the public
domain and are recorded in a mutation library. Mutational
signatures are processed through our internal variant calling
workflow that utilizes DbNFSP, a database that uses multiple
prediction algorithms including SIFT, FATHMM, Mutation Asses-
sor, LRT, Mutation Taster, PROVEAN, MetaSVM, and others, to
determine whether the gene mutation will have a functional impact
on the protein, which will be classified as deleterious or non-
deleterious based on a concordance of .5 algorithms.23-27 A
deleterious mutation in an oncogene is assumed to be a gain-of-
function mutation at the protein activity level or a loss of function if
present in a tumor-suppressor gene. Frameshift and missense
mutations are assumed to cause a loss of protein function except
in those cases where there is experimental evidence that the
mutation causes a gain of function.

Finally, this input file is overlaid on the control model (non-
tumorigenic baseline) by indicating the gene mutations, amplifica-
tions, deletions, and translocations, and theprofile is simulated asper
the rules outlined above to create a dynamic disease state. Protein
network maps are created for each patient profile based on their
input data and disease-specific biomarkers that are unique to each
profile.
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3. Estey E, Döhner H. Acute myeloid leukaemia. Lancet. 2006;368(9550):1894-1907.

4. Fenaux P, Mufti GJ, Hellstrom-Lindberg E, et al; International Vidaza High-Risk MDS Survival Study Group. Efficacy of azacitidine compared with that of
conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol. 2009;
10(3):223-232.

5. Medeiros BC, Satram-Hoang S, Hurst D, Hoang KQ, Momin F, Reyes C. Big data analysis of treatment patterns and outcomes among elderly acute
myeloid leukemia patients in the United States. Ann Hematol. 2015;94(7):1127-1138.

6. Bejar R, Lord A, Stevenson K, et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood. 2014;
124(17):2705-2712.

7. Nakajima H, Kunimoto H. TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci. 2014;105(9):1093-1099.

8. Lamba JK, Crews KR, Pounds SB, et al. Identification of predictive markers of cytarabine response in AML by integrative analysis of gene-expression
profiles with multiple phenotypes. Pharmacogenomics. 2011;12(3):327-339.

9. Lamba JK, Pounds S, Cao X, et al. Clinical significance of in vivo cytarabine-induced gene expression signature in AML. Leuk Lymphoma. 2016;57(4):
909-920.

10. Fedele PL, Avery S, Patil S, Spencer A, Haas M, Wei A. Health economic impact of high-dose versus standard-dose cytarabine induction chemotherapy
for acute myeloid leukaemia. Intern Med J. 2014;44(8):757-763.

11. Cogle CR, Ortendahl JD, Bentley TGK, et al. Cost-effectiveness of treatments for high-risk myelodysplastic syndromes after failure of first-line
hypomethylating agent therapy. Expert Rev Pharmacoecon Outcomes Res. 2016;16(2):275-284.

12. Drusbosky L, Medina C, Martuscello R, et al. Computational drug treatment simulations on projections of dysregulated protein networks derived from the
myelodysplastic mutanome match clinical response in patients. Leuk Res. 2017;52(1):1-7.

13. Pingle SC, Sultana Z, Pastorino S, et al. In silico modeling predicts drug sensitivity of patient-derived cancer cells. J Transl Med. 2014;12(1):128.

14. Cogle CR, Tohyama K, Vali S, et al. A novel simulation method for mapping dysregulated pathways and predicting effective therapeutics in the
myelodysplastic syndromes. Blood. 2014;124(21):5595.

15. Doudican NA, Kumar A, Singh NK, et al. Personalization of cancer treatment using predictive simulation. J Transl Med. 2015;13(1):43.

16. Kobayashi SS, Vali S, Kumar A, Singh N, Abbasi T, Sayeski PP. Identification of myeloproliferative neoplasm drug agents via predictive simulation
modeling: assessing responsiveness with micro-environment derived cytokines. Oncotarget. 2016;7(24):35989-36001.

17. O’Donnell MR, Tallman MS, Abboud CN, et al. Acute myeloid leukemia, version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr
Canc Netw. 2017;15(7):926-957.

18. Cheson BD, Greenberg PL, Bennett JM, et al. Clinical application and proposal for modification of the International Working Group (IWG) response
criteria in myelodysplasia. Blood. 2006;108(2):419-425.

19. El Fakih R, Komrokji R, Shaheen M, Almohareb F, Rasheed W, Hassanein M. Azacitidine use for myeloid neoplasms. Clin Lymphoma Myeloma Leuk.
2018;18(4):e147-e155.
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