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Purpose. To elucidate the microRNAs existent in exosomes derived from stored red blood cell (RBC) unit and their potential
function. Materials and Methods. Exosomes were isolated from the supernatant derived from stored RBC units by sequential
centrifugation. Isolated exosomes were characterized by TEM (transmission electron microscopy), western blotting, and DLS
(dynamic light scattering). MicroRNA (miRNA) microarray was performed to detect the expression of miRNAs in 3 exosome
samples. Results revealed miRNAs that were simultaneously expressed in the 3 exosome samples and were previously reported to
exist in mature RBCs. Functions and potential pathways of some detected miRNAs were illustrated by bioinformatic analysis.
Validation of the top 3 abundant miRNAs was carried out by qRT-PCR (quantitative reverse transcription-polymerase chain
reaction). Results. TEM and DLS revealed the mean size of the exosomes (RBC-derived) as 64.08 nm. These exosomes exhibited
higher abundance of short RNA than the long RNA. 78 miRNAs were simultaneously detected in 3 exosome samples and mature
RBCs. Several biological processes might be impacted by these miRNAs, through their target gene(s) enriched in a particular
signalling pathway. The top 3 (abundant) miRNAs detected were as follows: miR-125b-5p, miR-4454, and miR-451a. qRT-PCR
revealed higher abundance of miR-451a than others. Only miR-4454 and miR-451a abundance tended to increase with increasing
storage time. Conclusion. Exosomes derived from stored RBC units possessed multiple miRNAs and, hence, could serve various
functions. The function of exosomes (RBC-derived) might be implemented partly by the predominantly enriched miR-451a.

1. Introduction

Clinically, allogeneic red blood cell (RBC) transfusion is an
important therapeutic approach. However, several studies
revealed that RBC transfusion was associated with poor
prognosis in some cancer types and critically ill patients or
that it affected the immune system of patients who needed
chronic transfusions [1–6].

Transfusion experts suggested that transfusion-related
immunomodulation (TRIM) of blood recipients might shed
some light and help in understanding these phenomena
[7, 8]. The presence of “something” has been reported in

the blood suspension, during storage, which participated in
abnormal functioning of immune cells such as T-cells and
monocytes in vitro [7–11]. Samples drawn from the blood
recipients exhibited significant abnormality in the quantity
or function of cells of the immune system in vivo [3, 4, 6].
However, themechanisms underlying these phenomenawere
not elucidated and understood clearly.

Exosomes are membrane-derived vesicles, with a size
range of 20–200 nm.They are the products of exocytosis; they
contain DNA, coding or noncoding RNAs (ncRNAs), and
protein fragments that are secreted by their parental cell and
can be taken into the recipient cells. Exosomes are reported
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to carry out several physiological and pathophysiological
functions during carcinogenesis and immunomodulation in
both in vitro and in vivo conditions [12–15]. ncRNAs of the
exosomes have been proved to play an important role in
regulation of these procedures [14, 15].

Danesh et al. in their study have revealed that exosomes
derived from RBC units could potentiate T-cell survival and
mitogen-induced proliferation through antigen presenting
cells (APCs), eventually contributing to TRIM [9]. The
“things” that exosomes possessed and transferred to the
APCs still remain unidentified. Doss et al. demonstrated that
mature erythrocytes possess a diverse repertoire of miRNAs
which are relatively more abundant than the long RNAs [16].
Therefore, we performed a series of experiments in vitro to
illustrate the miRNAs (that exosomes derived from the RBC
units) and their implicated functions.

2. Materials and Methods

2.1. Study Samples. Ten bags of prestorage leukoreduced RBC
units with anticoagulant (ACD-A) and stabilizing mixture
(8.0 g/L citric acid monohydrate, 22.0 g/L sodium citrate
monohydrate, and 24.5 g/L glucose monohydrate) were
supplied by the Blood Center of Fujian Province, China. A
written consent was also obtained from the Fujian Provincial
Health Commission and the study protocols were approved
by the ethics committee of the Fujian Medical University
Union Hospital, China.

2.2. Isolation and Purification of Exosome. We extracted 15
mL of leukoreduced RBC suspension from each bag after 7,
14, 21, 28, and 35 days of storage. This accounted for a total
of 50 suspension samples. Supernatants were obtained by an
initial centrifugation at 3,000 g for 10 min, followed by a
brief centrifugation, performed with 0.22 𝜇m filters at 750
g for 2 min. Supernatants were stored at -80∘C. To extract
the exosomes, supernatants were first thawed and then were
subjected to sequential centrifugation at 13,000 g for 30 min
(at 4∘C), followed by centrifugation at 100,000 g for 60min (at
4∘C) (Himac CS150GXII, HITACHI, Japan). Exosome pellets
obtained were resuspended in 0.1 mL of PBS (phosphate
buffered saline) for TEM and particle size analysis, in 0.1 mL
RIPA buffer for protein quantification and western blotting,
and in 1 mL of TRIzol reagent (Thermo Fischer Scientific,
USA) for RNA quantification, microarray, and qRT-PCR.

2.3. Detection of Exosomes Derived from RBC Units. Exo-
somes were placed as a 20 𝜇L drop on a 2 𝜇mcopper grid.The
drop was dried for 5 min at room temperature and the excess
liquid from the grid edge was drained with the help of a filter
paper. The grid was subsequently placed onto a drop of 2%
phosphotungstic acid (pH7.0) for 30 sec, and the excess liquid
was drained off as above.The grid, after drying for 5 min, was
analysed using a TEM (Model H-7650, Hitachi, Japan).

Particle size distribution was analysed by Zetasizer Nano
ZS90 (Malvern Panalytical, UK). Samples were diluted in
PBS in the ratio 1:20, before loading them manually into the
sample chamber.Three videos of 60 sec eachwere recorded of

each sample. Data was analysed by using DTS v5.10 software
(Malvern Panalytical, UK). Results were displayed as particle
size distribution.

Purified exosomes and RBCs were treated with RIPA
buffer. Protein concentration was estimated by Nanodrop�
ND-1000 (Thermo Fischer Scientific, USA). Total protein
was separated on a 7.5–12% sodium dodecylsulphate poly-
acrylamide gel electrophoresis (SDS-PAGE) gel which was
later transferred onto PVDF membranes (Millipore, USA).
Membranes were blocked for 2 hr with 5% fat-free milk
dissolved in tris-buffered saline containing 0.05% Tween-
20 (TBST). This was followed by an overnight incubation
at 4∘C with primary antibodies against TSG101 (Abcam,
USA, 1:1000), CD63 (Abcam, 1:1000), and Calnexin (Abcam,
1:2000). Membranes were washed thrice with TBST, followed
by an incubation at room temperature for 1 hr with the
corresponding anti-mouse or anti-rabbit HRP- (horseradish
peroxidase-) conjugated secondary antibodies. Subsequently,
the membranes were washed and the signals were visual-
ized and captured with SuperSignal West Dura Substrate
(Pierce, USA) and ChemiDoc� XRS+ system (Bio-Rad,
USA), respectively.

2.4. RNA Isolation and miRNA Expression Profiling. Total
RNA was extracted using TRIzol reagent and purified
with RNeasy minikit (QIAGEN, German) according to the
manufacturer’s instructions. The quantification and quality
estimation of the total extracted RNA were carried out by
Nanodrop�ND-1000. Integrity of the total RNAwas analysed
by denaturing agarose gel electrophoresis.

miRNA profiling of 3 exosome samples (RBC-derived,
14 day storage) was performed by miRCURY LNATM
microRNA array kit (Exiqon, Denmark) following the stan-
dard protocols at the Aksomics biotech Co., Ltd. (Shang-
hai, China). After the quality control, miRCURY� LNATM
microRNA Array Hy3�/Hy5� Power labelling kit (Exiqon;
Vedbaek, Denmark) was used for miRNA labelling according
to the manufacturer’s guideline. The Hy3�-labelled samples
were hybridized on the miRCURYTM LNA miRNA Array
(v.19.0) (Exiqon) after stopping the labelling process, by
following the manual. Finally, the slides were scanned using
a GenePix� 4000B microarray scanner (Axon Instruments,
Foster City, CA) and the scanned images were imported into
GenePix� Pro 6.0 software (Axon Company, Beijing, China)
for grid alignment and data extraction.

2.5. Bioinformatic Analysis. Candidate miRNAs which
(1) existed in all the three samples detected by miRNA
microarray and (2) existed in RBC previously described
[16] were selected. FunRich software (version 3, http://www
.funrich.org) was used for enrichment analysis of the
candidate miRNAs and the top 10 abundant miRNAs
were selected for miRNA-mRNA interaction analysis.
miRNA target prediction was performed by TargetScan 7.2
(http://www.targetscan.org/vert 72/). Predicted gene(s) with
cumulative weighted “context++ score”>-0.5 was selected for
miRNA-mRNA analysis. Cytoscape software (https://cytos-
cape.org/) was used to obtain a network of miRNAs and

http://www.funrich.org
http://www.funrich.org
http://www.targetscan.org/vert_72/
https://cytoscape.org/
https://cytoscape.org/
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Table 1: List of reverse transcription primers used in first-strand cDNA synthesis.

Gene RT primer
U6 5’ CGCTTCACGAATTTGCGTGTCAT3’
miR-4454 5’ GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTGGTGC3’
miR-451a 5’ GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACAACTCA3’
miR-125b-5p 5’ GTCGTATCCAGTGCGTGTCGTGGAGTCGGCAATTGCACTGGATACGACTCACAA3’

Table 2: List of primers used in qRT-PCR.

Gene Primers Annealing
temperature(∘C)

Product length
(bp)

U6 F:5’GCTTCGGCAGCACATATACTAAAAT3’
R:5’CGCTTCACGAATTTGCGTGTCAT3’ 60 89

miR-4454 GSP:5’GGCACGATCCGAGTCACG3’
R:5’GTGCGTGTCGTGGAGTCG3’ 60 62

miR-451a GSP:5'GGGGGAAACCGTTACCATTAC3’
R:5’GTGCGTGTCGTGGAGTCG3’ 60 65

miR-125b-5p GSP:5’GCTCCCTGAGACCCTAAC3’
R:5’GTGCGTGTCGTGGAGTCG3’ 60 62

mRNAs which displayed the relationship between miRNAs
and its targets.

2.6. Validation of Candidate miRNAs by qRT-PCR. The top 3
abundant miRNAs that fulfilled the above listed criteria were
validated by qRT-PCR. Total RNA of 50 exosome samples
was extracted (described above). The first-strand cDNA was
synthesized by different reverse transcription primers using
M-MLV reverse transcriptase (Epicentre, USA), which was
then used for qRT-PCR analysis (Table 1). qRT-PCR was
performed for each sample in triplicate in a QuantStudio
5 Real-time PCR System (Applied Biosystems, USA) by
following the manufacturer’s instructions and using different
primers (Table 2).The primers were synthesized by BIOLIGO
Biotech (Shanghai, China). Relative expression of the top 3
miRNAs was assessed the 2−ΔCt method with U6 snRNA as a
housekeeping control.

2.7. Statistical Analysis. The results were expressed as
mean±sd (standard deviation), and the rest of the statistical
data was analysed and visualized by Prism 6.0 (GraphPad
Software, USA). The significance of RNA quantities and
qRT-PCR validation of miRNAs among exosomes (derived
from RBC units stored for different time periods) was
evaluated with one-way ANOVA, followed by paired t-tests.
p<0.05 was considered to be significant throughout.

3. Results

3.1. Characterization of Exosomes Derived from RBC Units.
Exosomes isolated from RBC units were analysed by TEM,
DLS, and western blotting for morphology, size distribution,
and specific immunological markers. TEM revealed the exo-
somes as cup-shaped morphologically (Figure 1(a)). Western
blotting revealedCD63 andTSG101 to be present (positive) in

exosomes and parental RBCs. However, Calnexin was nega-
tive in exosomes, but positive in parental RBCs (Figure 1(b)).
Size of the exosomes as per DLS was 64.08±7.56 nm in
diameter (Figure 1(c)).

3.2. RNA Content of Exosomes Derived from RBC Units. No
significant difference was observed in RNA quantities of exo-
somes obtained from RBC units stored for 7, 14, and 21 days
(992.7±20.25 ng/mL, 956.0 ± 27.24 ng/mL, and 909.1±31.51
ng/mL, respectively, p=0.16). However, a reduction in RNA
quantities of exosomes derived from RBC units stored for
28 and 35 days (716.4±24.04 ng/mL and 633.5±28.87 ng/mL,
p<0.0001) was observed (Figure 2(a)). Denaturing agarose
gel electrophoresis aided the visualization of all the bands
of RNA, with thick bands corresponding to short RNA
(Figure 2(b)).

3.3. miRNA Expression Profiling of the Exosomes Derived from
RBC Units. Microarray data of the 3 exosome samples (Nos.
47603, 49603, and 42420) derived from RBC units (stored for
14 days) were submitted and uploaded to GEO dataset (Series
GSE95512). Previous studies have reported 287 miRNAs in
mature RBCs [16]. However, our study revealed a total of 78
miRNAs in all 3 samples (Figure 3(a)), wherein some showed
higher abundance than the others (Figure 3(b)).

3.4. Bioinformatic Analysis. For enrichment analysis, all
exosomal miRNAs were selected. Ten most enriched cat-
egories in Cellular Component, Biological Process, and
Molecular Function with the top 10 important pathways
are shown in Figure 4. Target genes of the top 10 abun-
dant miRNAs were predicted by the software TargetScan
7.2 (http://www.targetscan.org/vert 72/). Figure 5 illustrates
the top 10 abundant miRNAs, their target genes, and net-
works.

http://www.targetscan.org/vert_72/
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Figure 1: Identification of the exosomes derived from RBC units. (a) Morphology of exosomes, as revealed by TEM. (b) Exosome-specific
markers (positive: CD63 and TSG101; negative: Calnexin) as detected by western blotting. (c) Particle size distribution by DLS.
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Figure 2: Quantification and integrity of RNA contents of exosomes derived from RBC units. (a) The quantification of the total RNA in 50
exosome samples (as detected by Nanodrop�ND-1000). (b) Estimation of total RNA integrity in 3 exosome samples (Nos. 47603, 49603, and
42420) by denaturing agarose gel electrophoresis.
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Table 3: Expression data of the 3 validated miRNAs in exosomes (RBC-derived, stored for different time periods).

miRNA Storage time (in days)
7 14 21 28 35

miR-125b-5p 0.22±0.06 0.26±0.04 0.18±0.03 0.32±0.07 0.39±0.06
miR-4454 24.14±5.43 15.63±1.62 22.19±2.19 28.70±2.54 57.27±8.66
miR-451a 1202±374.6 2970±480.5 3322±764.2 4968±478.4 9108±2437
miRNA expression is expressed as relative copy number (RCN) using the value 2−�Ct.
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Figure 3: miRNA expression profiling of exosomes (RBC-derived). (a) Venn diagram exhibiting the miRNAs that are simultaneously
expressed in all of 3 exosome samples and are also present in mature RBCs. (b) Heat map revealing the abundance of 78 miRNAs
(simultaneously expressed in all 3 exosome samples) as screened by three microarray assays.

3.5. Validation of miRNAs by qRT-PCR. Top 3 abundant
miRNAs out of 50 exosome samples were selected for
validation study using qRT-PCR (Table 3). The results
reflected no significant difference in miR-125b-5p expres-
sion among RBC units with different storage time periods
(p=0.14). However, a significant increase in the expression
of miR-125b-5p was noted after 21 days of storage. After
35 days of storage, miR-125b-5p expression attained the
peak level. Apart from this, a substantive difference was
recorded in miR-4454 and miR-451a expression among the

RBC units at different storage time (p=0.0004 and 0.0123,
respectively). After 14 days of storage, miR-4454 expres-
sion increased with the extension in storage time (r=0.55,
p<0.0001; Figure 6(a)). On the other hand, abundance of
miR-451a did not positively correlate with the storage time
(r=0.56, p<0.0001, Figure 6(b)). However, an increase in
expression of miR-451a was noted with the extension of
storage time. Expression levels of miR-4454 and miR-451a
were observed to be highest in RBCs after 35 days of
storage.
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Figure 4: Enrichment analysis of the top 10 abundant miRNAs. (a–c, e)The 10 most enriched categories and the enrichment scores (-log 10(p
value), p < 0.05) in Cellular Component, Biological Process, and Molecular Function were shown. (d) The top 10 important pathways.
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Figure 5: The top 10 abundant miRNAs, targeted genes, and networks.

4. Discussion

With the development of new medical technology, like
neoadjuvant chemoradiotherapy, the possibility of allogeneic
RBC transfusion is increasing [17]. Allogeneic RBC transfu-
sion can improve the outcome in recipients by establishing
blood volume, improving blood perfusion, and changing the
gut microbiome [2, 18–25]. However, allogeneic RBC trans-
fusion can also expose recipients to a chance of immunosup-
pression or poor survival.

Experts attribute these phenomena to suppression of
function of immune cells, including immune effector cells
and helper cells [3, 4, 7–11]. Up to date, several researchers
have reported that soluble biological mediators (cytokines,
growth factors) and subcellular components (extracellular

vesicles (EVs)) present in the supernatant of blood products
can affect the biological behaviour of immune cells and
tumour cells in vitro. This, in turn, leads to immunosuppres-
sion or poor survival of the recipient in vivo [3, 4, 7–11, 26].

Exosomes aremicrovesicleswith a lipid-bilayer, which are
secreted by almost all cell types and aid in mediating cell-to-
cell communication. Recently, exosomes (secreted by diverse
cell types) were reported to play various roles in physiological
processes—such as cell development or differentiation—and
pathophysiological processes, such as carcinogenesis, metas-
tasis, drug resistance, and immunomodulation by different
mechanisms [8, 12–15, 27, 28]. However, the role and mech-
anisms of exosomes (RBCs-derived) in transfusion-related
immunomodulation await clear elucidation.
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Figure 6: Analysis of correlation between expression of exosomal miR-451a (a), miR-4454 (b), and storage time.

Secretion and contents of exosomes are regulated by
different microenvironments [13, 27, 29, 30]. The contents of
exosomes (RBC-derived), stored in ACD-A solution, are still
unknown. We have, for the first time, reported the presence
of exosomes in the supernatant of RBC units. In recent
years, exosomal ncRNAs are documented as an important
mediator in regulating intercellular communication. In the
present study, we noted the RNA contents of exosomes and
found them to decrease after 21 days of storage. Exosome
degradation was proposed to contribute to this phenomenon.
Also, the results of gel electrophoresis revealed the abundance
of short RNA compared to the long RNA, which was similar
to that of mature RBC as reported by Doss et al. [16].
Three exosome samples were selected to estimate the miRNA
content by using miRNA microarray. Although previous
studies have reported the presence of 287 miRNAs in mature
RBCs, the present study revealed the presence of 78 miRNAs
in the 3 exosome samples and that only some of them had
relatively high abundance. It was proposed that selective
enrichment of miRNAs might lead to higher abundance of
some miRNA types in the exosome due to the presence of a
special EXOmotif of miRNAs and miRNA sorting proteins
such as hnRNPA2B1 in the parental RBCs [31].

To identify the potential function of the exosomal miR-
NAs, enrichment analysis of 78 miRNAs was performed.
Various biological processes including signal transduction
and nucleotide metabolism might be impacted by these
miRNAs, through their target gene(s), most of which were
enriched in several signalling pathways and were localized to
the nucleus, cytoplasm, and plasma membrane.

Subsequently, we estimated the expression levels of top 3
abundant miRNAs: miR-125b-5p, miR-451a, and miR-4454,
using a qRT-PCR. The results revealed the presence of these
3 miRNAs in all exosome samples (with different storage
periods). During storage, exosomal miR-125b-5p was the
least abundant among the top 3 miRNAs. Also, its expression
level did not change with increasing storage time; however,
it attained the peak level after storage of 35 days. A positive
correlation could not be deduced between the abundance
of exosomal miR-4454 and the storage time, although a

tendency of increase in expression could be noted with the
extending storage time. Similar results were obtained in case
of exosomal miR-451a. In the present study, we noted that
miR-451a was highly abundant among the top 3 miRNAs at
each storage time. However, none of the 3 miRNAs could
serve as a biomarker for predicting storage lesions and
monitoring the quality of RBC units. Although mature RBCs
can not generate new RNA molecules and exosomal RNA
molecules are possibly degraded with the extending storage
time,we canfind increasing of these 3miRNAsduring storage
and attribute this phenomenon to the changes in microenvi-
ronment of stored RBCswhichwere previously reported [32],
leading to the changes in contents of exosomes [13, 27, 29, 30].
However, high abundance of exosomal miR-451amaymark it
as an important regulatorymiRNA in the recipients. Till date,
several researches have demonstrated that miR-451a could
inhibit the proliferation and differentiation of benign and
malignant tumour cell and also affect the chemosensitivity of
the tumour cells. Moreover, miR-451a in extracellular vesicles
has been reported to influence the functions of immune cells,
such as macrophages and dendritic cells [28, 33–36]. Hence,
in the present study the predominantly enriched miR-451a in
exosomes may be speculated to act as an important mediator
in TRIM.

However, our study has some limitations. Since we
validated only the top 3 miRNAs, several additional miRNAs
still need to be validated. Moreover, the function elucidation
of exosomal miR-451a needs to be carried out in vitro and in
vivo.
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