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ABSTRACT: Nanomotors in nanotechnology are as important as
engines in daily life. Many ATPases are nanoscale biomotors classified
into three categories based on the motion mechanisms in trans-
porting substrates: linear, rotating, and the recently discovered
revolving motion. Most biomotors adopt a multisubunit ring-shaped
structure that hydrolyzes ATP to generate force. How these
biomotors control the motion direction and regulate the sequential
action of their multiple subunits is intriguing. Many ATPases are
hexameric with each monomer containing a conserved arginine
finger. This review focuses on recent findings on how the arginine
finger controls motion direction and coordinates adjacent subunit
interactions in both revolving and rotating biomotors. Mechanisms of
intersubunit interactions and sequential movements of individual subunits are evidenced by the asymmetrical appearance
of one dimer and four monomers in high-resolution structural complexes. The arginine finger is situated at the interface
of two subunits and extends into the ATP binding pocket of the downstream subunit. An arginine finger mutation results
in deficiency in ATP binding/hydrolysis, substrate binding, and transport, highlighting the importance of the arginine
finger in regulating energy transduction and motor function. Additionally, the roles of channel chirality and channel size
are discussed as related to controlling one-way trafficking and differentiating the revolving and rotating mechanisms.
Finally, the review concludes by discussing the conformational changes and entropy conversion triggered by ATP
binding/hydrolysis, offering a view different from the traditional concept of ATP-mediated mechanochemical energy
coupling. The elucidation of the motion mechanism and direction control in ATPases could facilitate nanomotor
fabrication in nanotechnology.
KEYWORDS: ATPase, biomotor mechanism, arginine finger, Walker A motif, Walker B motif, channel size, channel chirality,
entropy driven

Biomotors, also known as biological motors, are
nanoscale machines ubiquitous in many biological
processes,1−3 such as cell mitosis, bacterial binary

fission,4,5 DNA replication,6−8 DNA repair,9−12 homologous
recombination,13−15 RNA transcription,16 macromolecule
trafficking,17 and viral genome packaging.18−41 Biomotors are
essential protein devices that convert an energy source into
different kinds of mechanical motions essential to cellular
functions.42 Many of them display a hexameric ring
structure.41,43−55 With the recent discovery of a revolving
biomotor,56,57 biological motors can be classified into three
categories1−3 based on the movement mode of transporting
their substrates: linear, rotating, and revolving.1,5,8,58,59

Specifically, in a rotating motor, the substrate rotates around
its own axis, while in a revolving motor, the substrate revolves

around the second object (Figure 1). The way that revolving
motors work is distinct from rotating motors in that among the
multiple parts, only the substrate is circumnavigating. Rotating
refers to the action similar to the Earth turning around its own
axis every 24 h, while revolving is akin to how the Earth
circumnavigates around the Sun every 365 days but without
self-rotation. Revolving rather than rotating avoids the coiling
and tangling of long polymer chains, such as genomic dsDNAs
during translocation. The well-studied rotating motors include
F1/F0 ATPase,43−47 DNA helicase,48,49 Rho transcription
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termination factor,50−53 TrwB,60−65 MCM,66,67 and RepA or
RuvB,68−73 all of which have a channel diameter of 1−2 nm.74

Revolving motors include the DNA translocases Ftsk in Gram-
negative bacteria,54 SpoIIIE or SftA (YtpS) in Gram-positive
bacteria,75 A32 ATPase of poxvirus,76−80 DNA packaging
enzyme of adenovirus,81−83 the genome segregation enzymes
of mimivirus,2,84−87 as well as the DNA packaging motors of
herpesvirus,88−103 SPP1,27 T7,104 HK97,105 P22,106 and
Phi29.107 The three classes of biomotors differ in structure
and function, but utilize similar mechanisms for force
generation to perform mechanical work. More information
about the linear, rotating, and revolving motors can be found
in recent reviews.1−3

The common feature of a multisubunit ring-shaped structure
of ATPase motors108,109 has raised an intriguing question on
how these biomotors control the direction of their motion and
how the sequential action of their individual subunits is
regulated. The key driving force in a viral DNA packaging
motor is a DNA-dependent ATPase. Although this was first
reported more than 30 years ago,18 literature on mechanisms
of directional control of ATPase motors has just begun to

emerge.31,110−115 The common ATP binding domain116,117

contains highly conserved motifs that form an ATPase activity
pocket.117 Previous modeling work on the phi29 gp16
ATPase118 suggested that a conserved arginine residue plays
a critical allosteric role in coordinating the sequential
hydrolysis on the multisubunit ring, as found in both RNA
and DNA packaging motors.110,119−124 This arginine residue
was defined as the arginine finger. In this review, we summarize
the most recent discoveries on the arginine finger, focusing on
its role in motion direction control, sequential intersubunit
coordination, and asymmetrical multimer assembly. We also
discuss the chirality and size of the DNA transport channel,
conformational changes, and entropy conversion of the motors
involved in the revolving mechanism. Finally, we present a
different perception on ATP chemical energy conversion into
physical motion in the hexameric biomotors. The under-
standing of motor structure, motion mechanism, and direction
control of oligomeric ATPases will provide a prototype model
for future manufacturing of nanomotors in nanotechnol-
ogy.110,125,126

Figure 1. Illustration of two different types of motors. (A) Rotating motors are like a wheel and like the Earth rotating on its own axis round
per day. Reprinted with permission from ref 3, Copyright 2016, American Society for Microbiology, and adapted with permission from ref
74. Copyright 2014 Springer Nature. (B) Revolving motors resemble the Earth revolving around the Sun one round per year without self-
rotation. Reprinted with permission from ref 220. Copyright 2014 Elsevier.

Figure 2. Structures of some ATPase domains in their dimer form. The Walker A and Walker B motifs, which form the active site, are
colored in orange and red, respectively. The arginine finger is colored in purple. A solvent-exposed basic patch composed of positively
charged residues is colored in blue. Adapted with permission from ref 29. Copyright 2015 National Academy of Sciences.
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DEFINITION AND LOCATION OF THE ARGININE
FINGER IN ATP REGULATING COMPLEXES

Characteristics of ATP-Activity Pocket. The ATP
activity pocket in an ATPase complex typically comprises the
following components: arginine finger, Walker A motif, Walker
B motif, P-loop, and lid subdomain (Figure 2).127 Hexameric
ATPases each contain a conserved core domain, which consists
of two conserved sequence motifs termed Walker A and

Walker B45,128,129 with a sequence of GXXGXGKS/T and
hhhhDE (Figure 3),18 respectively. The Walker A and Walker
B motifs have been identified to be responsible for the ATP
binding and ATP hydrolysis.18,109,116 Given the conservation
of the Walker motifs, it is not surprising that most residues
interacting with ATP are intolerant of amino acid alterations.
The invariant lysines in the Walker A motif have been
intensively studied, revealing their roles in coordinating the
ATP β and γ phosphates and structuring the P-loop in related

Figure 3. Sequence alignment reveals conserved motifs18,110 (Walker A motif, Walker B motif,116,117 and Arg finger110,125) across different
types of ATPases. Highly conserved residues are highlighted as follows: Orange for Walker A with darkness representing the rate of
homology; red for Walker B; and purple for Arg finger. The letter h above the column denotes conserved hydrophobic residues.
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NTPases.43,130 Mutation of lysine to a polar amino acid
generally will eliminate the wild-type ATPase function.96 As for
the Walker B motif, the conserved negatively charged residues
such as glutamate and aspartate act to polarize a water
molecule to nucleophilically attack the γ phosphate group of
ATP. Most commonly studied mutations are substitutions of
glutamate and aspartate by glutamine or alanine.56,110,125,131,132

Upon these mutations, ATP hydrolysis is prevented, but ATP
binding is retained.
For some ATPases, the sensor 1 and 2 motifs have also been

reported to play important roles in the ATPase function;
however, sensor 1 is not strictly conserved in ATPase proteins,
thus whether these two sensors are common features of all
ATPases or just an alternate description of the arginine finger
requires future verification.29,133−138 Sensor 1 motif is located
in the loop connecting the β4 strand to α4 helix. It is often a
polar residue thought to interact with the γ-phosphate of ATP.
Due to this interaction, it is believed that the sensor 1 motif
senses the binding of ATP and orients a water molecule for a
nucleophilic attack on the γ-phosphate of the bound ATP
molecule. It has been shown in p97 D2 that the shift of the
sensor 1 residues, upon nucleotide binding, induces displace-
ments at the distal end of the ATP binding domain.3 Sensor 2,
located near the beginning of α7, is conserved in many ATPase
proteins. It contains a conserved arginine residue, which,
together with the Walker B motif, engages the bound ATP and
mediates conformational changes that sequester the catalytic
site from water.33,133 Mutations of the sensor 2 residues led to
a loss or decrease of ATP binding and/or ATP hydrol-
ysis.110,125,135−138

Besides the Walker A, Walker B, and sensors 1 and 2,
another common component in the ATP-regulating complexes
is the lid domain (Figure 2). The lid subdomain (residues
221−251 in the TerL ATPase) is a short peptide with
negatively charged amino acids that might interact with the
positively charged arginine residues. Crystal structure revealed

that the lid is displayed adjacent to the ATP binding site on the
surface of the ATPase protein.29 Despite its relevance to
ATPase activity, the study on the lid domain has been limited,
probably due to its low degree of conservation among
ATPases.
ATP binding and hydrolysis in ATPases are attributed to

residues occupying two or more of the four key sites near the
ATP molecule. These residues are located in the ATP-binding
pocket or at the adjacent intersubunit interface. Among them,
arginine possesses an extended and flexible side chain with a
planar and positively charged guanidine group at its extremity.
The positive charge is distributed over the three side-chain
nitrogens, which is advantageous for hydrogen-bond and
electrostatic interactions with groups of opposite charge and
polarity, for example, ATP phosphate groups. The multi-
dentate character of arginine allows for strong inter- and
intraprotein interactions, as seen in phosphorylation-driven
signal transduction pathways.139

Definition and Location of the Arginine Finger.
“Arginine finger” means a particular arginine residue
coordinated to the β- or γ-phosphate of ATP in the ATPase
catalytic reaction center.140 The location of representative
arginine fingers in a certain monomer (Figure 2 left), dimer
(Figure 2 right), and hexamer (Figure 4) is illustrated.
Although there are multiple arginine residues present
throughout the ATPase protein, the arginine finger can be
identified using knockout experiments.141 For example, an
arginine finger knockout study was used to determine the role
and necessity of the arginine finger in F1-ATPase.43 It was
found that the substitution of the arginine residue in the
arginine finger motif by a lysine analogue called Lyk resulted in
reduced catalytic function. In another case, the identification of
the arginine finger was achieved via the mutation of the basic
arginine residue to a neutral residue, alanine, in phi29 motor
ATPase gp16. Mutated gp16 was found to lose the capability

Figure 4. Adjacent location of arginine fingers and Walker A motifs within gp16 and FtsK ATPases. (A) Comparison of the crystal structure
of FtsK and the computed gp16 monomers, which represent a single subunit of a hexameric ATPase, revealing the alignment of the two
ATPase subunits even though they are from different species. The arginine finger (red sphere) and the Walker A (blue sphere) overlap when
the gp16 and FtsK ATPases are superimposed. (B) Comparison of gp16 and FtsK hexamer models. The green sphere represents Walker
domains. The red sphere represents the arginine finger. Based on the proximity of the green and red spheres, the figure reveals that the
arginine finger interacts with the adjacent ATPase subunit. Reprinted with permission from ref 110. Copyright 2016 American Society of
Microbiology.
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to incorporate into the hexameric ring, to bind dsDNA, or to
package DNA.110,125

The arginine residue is a recurrent characteristic of the active
sites and subunit interfaces of many ATPase proteins.139

Sequence alignment of different ATPases shows that the
arginine finger motif is conserved across the ATPase families,
but its location varies. Depending on the family it belongs to,
the ATPase protomers can orient differently in the oligomeric
assembly, leading to a different location of the arginine finger.
In most ATPase proteins, the arginine finger contains one or
more arginine residues and is often found at the end of the α4
helix.135 In order to identify the location of the arginine finger
in TerL ATPase, investigators screened mutants of surface-
exposed arginine residues for ATPase activity.29 This experi-
ment identified residue Arg139 as the arginine finger that
interacts with the γ-phosphate of the ATP molecule binding in
the adjacent subunit and helps catalyze ATP hydrolysis. The
arginine finger in the gp16 ATPase was identified to be
Arg146, located after α4, as is the case in other ATPases in the
same family with consensus sequence and confirmed structural
information (Figures 2 and 3).110,142 This motif interacts with
ATP in a highly specific fashion, binding to the γ-phosphate of
ATP that is also coordinated by the neighboring subunit. The
arginine finger is essential for ATP hydrolysis, as even
conservative mutations led to the abolition of ATPase
activity.143,144

GENERAL FUNCTION OF THE ARGININE FINGER

The conserved arginine finger plays essential functional roles in
many ATPases.145−156 Positive residues in the active site are
necessary for ATP hydrolysis, which are involved in stabilizing
the transition state during the reaction.157 The arginine finger
provides some of this necessary charge. Substitution mutations
that replace the arginine residue with neutral residues result in
the loss of ATPase function.29,110,125

Although more detailed structural, biophysical, and bio-
chemical characterization of the arginine finger in motor
ATPases is needed, significant evidence has led to the
speculation that the arginine residue is part of the Walker A
and Walker B domains. The characteristic Walker A and B
motifs in ATPases are involved in coordinating the β and γ
phosphates of ATP and a water-activating magnesium ion
during ATP hydrolysis. The ATP hydrolysis is also aided by
sensor 1 and 2 motifs. Crystal structures of the biomotor
ATPase domains reveal a highly conserved arginine residue in
the proximity of the sensor 2 motif (Figure 2). In these
structures, an ATP molecule comes into contact with the
Walker A and B motifs of one subunit, while the arginine finger
coordinates the ATP from the adjacent subunit (Figure 4).158

PERCEPTION ON TRANS ACTION BUT NOT CIS
ACTION OF THE ARGININE FINGERS IN ATPASES OR
MOTOR COMPLEXES

It is believed that the arginine finger facilitates the ATP
hydrolysis in a trans manner.159 The term trans originates from
the Latin root “trans” meaning “across from”, which is relative
to “cis”, meaning “the same side as”. Specifically, a trans-acting
arginine finger refers to an arginine residue from one ATPase
subunit that regulates the ATP hydrolysis in the adjacent
subunit. A cis-acting arginine finger, on the other hand, refers
to an arginine residue that regulates the ATP hydrolysis in the
same subunit. The classification of the trans-acting arginine

finger is important for both understanding the ATPase
mechanism and defining the structure of the active ring
assembly.29 To investigate this, the crystal structures of the
ATPase activity domains of biomotors have been employed for
comparison and analysis. The overall structural features of the
core domains are conserved in all ATPases of the superfamily
with a conserved arginine residue near the sensor 2 motif;
however, the helicase superfamily III proteins lack the sensor 2
arginine due to an atypically formed α-helical domain. A
majority of ATPases are arranged in such a way that the
nucleotide binding pocket is positioned at the interface
between two protomers.110,160 This structural arrangement
supports the notion that, in an active ATPase complex, the
arginine finger of one subunit should be positioned near the
nucleotide bound in the neighboring subunit. A structure of
the hexameric ring of phi29 gp16 ATPase was modeled by
aligning with the hexameric FtsK DNA translocase of
Escherichia coli.110 The arginine finger of one subunit was
shown to outstretch to the active site of the adjacent subunit,
in agreement with other ATPases, such as TerL and ClpX, in
which the arginine finger is positioned in the ATP binding
pocket for cooperative behavior among subunits.29,161 This
structural feature is evident in various ATPase hexamers
(Figure 2). Mutants that showed no ATPase activity were
tested to determine if proper function could be restored by
adding ATPase monomers with an intact arginine finger.
Biochemical complementation assays thus revealed that the
mutant whose arginine is disabled in cis (within the same
subunit) does not restore activity, but that disabled in trans
(not in the same subunit) does restore activity.
Nonetheless, the literature on the arginine finger is still

inconsistent. Some reports suggest that the arginine finger is a
cis-acting component that functions within a single subunit of
the ATPase ring,43 while others report that the arginine finger
is a trans-acting factor that bridges two adjacent sub-
units.29,110,125,159,162−164 Some studies even suggest that
there are two arginine fingers in each ATPase subunit.109,139

It has also been reported that the reduction in ATPase activity
upon arginine finger mutation is due to an effect on catalysis
but not ATP binding.143 The complexity and the controversy
may be due to the fact that some ATPases are a circular-
shaped, multiple component ring,47,165−169 but some ATPases
are present as a single subunit.170,171

COMPARISON OF THE ARGININE FINGERS ACROSS
VARIOUS ATPASE TYPES
Arginine fingers are mostly conserved in ATPase proteins
(Figure 3). Oligomeric ATPases contain one arginine finger
per monomer subunit. It has been shown that ATPases from
SF1 and SF2 contain a tandem fold and bind the nucleotide at
the interface between two domains. Similar to many
ATPases,172,173 the N-terminal provides the Walker A and
Walker B motifs, and the C-terminal provides other elements,
some of which are for binding of the substrate, such as dsDNA.
Mutations of these arginine residues are lethal and lead to loss
of in vivo and/or in vitro activity, suggesting that these residues
are imperative in ATP metabolism.110,139,159,162,174

Although the arginine finger is, in general, involved in the
proper functioning of ATPases, its function may vary slightly
across different ATPase types. The arginine residue is able to
interact with the γ-phosphate of ATP and is required for ATP
binding, hydrolysis, and intersubunit communication. It is
positioned near the γ-phosphate of ATP and plays a catalytic
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role in properly positioning the ATP molecule within the ATP
binding site.175 It is believed that the arginine finger may also
play a role in stabilizing the transition state during
hydrolysis.176 Mutational studies concluded that the main
role of the arginine finger in the F1-ATPase is to catalyze ATP
hydrolysis and mediate efficient energy conversion.43,44

Mutations of Walker A and arginine finger yield a similar
phenotype, indicating that the arginine finger is also involved
in nucleotide binding.110,159

Additionally, the arginine finger may also aid in stabilizing
the ATPase hexamers135 due to its role in dimer formation and
intersubunit interaction.110,125,177 Arginine finger mutations178

in HslU, p97 VCP, ClpB D1, ClpC D1, and Hsp104 D1
prevent oligomer formation even in the presence of ATP,
supporting the proposal that the arginine finger is involved in
formation of a dimer in the hexameric ring.110 Nevertheless,
arginine finger mutations have led to different results from
those in Ras/RasGAP proteins, where complex formation was
not affected upon arginine subsititution. This mystery suggests
that the identification of the arginine finger in Ras/RasGAP
requires rescrutiny.
Another ATPase, which differs in its role in the cell but

contains similar structural motifs and ATP hydrolysis
mechanisms, is RuvB ATPase.137 RuvB and motor ATPases
are both hexameric proteins. In E. coli, the cross-shaped Ruv
family proteins function in genetic recombination through
processing Holliday junctions. RuvB contains an arginine
residue (Arg174) that is located between sensor 1 and 2
motifs. Mutagenesis experiments reveal that this arginine
residue is essential for ATP hydrolysis and proper ATPase
function.70−73 The arginine finger in RuvB is also responsible
for intersubunit interaction during the ATP hydrolytic cycle,
similar to that of the arginine finger in the phi29 biomotor.

AN ASYMMETRIC ATPASE HEXAMER MADE UP OF
ONE “DIMER” AND FOUR MONOMERS

In many hexameric ring-shaped ATPases, the arginine finger
serves as the bridge between two of the ATPase subunits; the
two adjacent subunits thus form a more compact dimer
configuration that may appear as a monomer in low-resolution
cryo-EM images. This caused the hexameric ring to appear
asymmetrical, as shown for the phi29 motor ATPase by the
Guo group.56,57 This asymmetric hexameric structure has been
observed in X-ray diffraction and cryo-EM imaging of many
ATPases in addition to the phi29 motor ATPase gp16 (Figure
5).110,179−187 This hypothesis of one interchanging dimer and
four monomers is supported by the profile of gp16 in
ultracentrifugation, showing the presence of both monomers
and dimers in the mixture. However, ATPase motors have for a
long time been reported as a pentameric configuration by cryo-
EM, probably due to the interchanging dimers that display
close contact between two adjacent ATPase subunits. Tradi-
tional cryo-EM is an ensemble measurement by averaging over
many configurations, thus the dimer with close contact might
show as one instead of two subunits. Moreover, the low and
featureless EM density maps of gp16 in recent cryo-EM
imaging of the entire motor complex115 have precluded the
possibility of obtaining an unambiguous fit for five or six copies
of gp16, adding another layer of ambiguity to the ongoing
debate.
Each subunit of the ATPase hexamer has the capability of

binding an ATP molecule; however, saturation of the ATPase
with ATP reveals that at least two of the subunits are not
bound with ATP. Even when not all subunits are able to bind
ATP, the ATPase function is retained.188 These observations
suggest that the functional ATPase hexamer is asymmetrical
and the subunits in the ATPase vary in conformation during
ATP hydrolysis. To investigate the role of the arginine finger in
the dimer formation within the hexameric ATPases, arginine
knockout experiments were performed. It was found that
mutation of the arginine finger in phi29 gp16 resulted in loss of

Figure 5. Asymmetrical crystal or Cryo-EM structures of various ATPase hexamers: (A) MCM helicase. Reprinted in part with permission
from ref 179. Copyright 2012 National Academy of Science. (B) V1-ATPase. Reprinted by permission from ref 180. Copyright 2013
Springer Nature. (C) Vps4 ATPase. Illustration adapted from ref 181. (D) Phi29 DNA packaging motor gp16 ATPase. Reprinted in part
with permission from ref 110. Copyright 2016 American Society for Microbiology. (E) Human 26S Proteasome ATPase. Reprinted with
permission from ref 182. Copyright 2019 Springer Nature. (F) F1-ATPase. Reprinted with permission from ref 183. Copyright 2001
Elsevier. (G) ClpX. Illustration adapted from ref 110. (H) Protease YME1. Reprinted with permission from ref 185. Copyright 2017
American Association for the Advancement of Science. (I) Vps4E233Q Hexamer. Reprinted in part with permission from ref 186. Copyright
2017 Springer Nature. (J) Katanin hexamer. Reprinted with permission from ref 187. Copyright 2017 Springer Nature.
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dimer assembly and DNA packaging ability; however, dimer
formation was rescued with the addition of either a wild-type
gp16, a Walker A mutant, or a Walker B mutant, which all
contain a functional arginine finger. An inhibition assay in
which the arginine finger function is knocked out revealed that
a single arginine mutant subunit led to inactivation of the
entire ATPase ring. These results suggest that the arginine
finger is a necessary component for coordinating the formation
of the ATP binding pocket and intersubunit communication in
the revolving motor ATPases.110,139

Further evidence that the arginine finger motif drives the
formation of dimers is provided by glycerol gradient
centrifugation and electromobility shift assays (EMSA)
experiments, where both monomeric and dimeric subunits
are present in the ATPase population.110,125 In order to
determine the ratio of monomer to dimer during DNA
packaging, investigators tested the packaging activity of the
different fractions recovered from the sucrose gradient. It was
observed that the fraction containing the dimer alone did not
have DNA packaging activity, while DNA packaging activity
was retained in the fractions that also contained monomers.
This finding is also supported by a previous report that the
addition of fresh gp16 monomer and ATP is necessary for re-
initiating the activity of DNA packaging intermediates, which
contained gp16 dimers, into an infection virus.189

OUTSTRETCHING TO ADJACENT ATP POCKETS AND
FORMATION OF DIMERIC SUBCOMPLEXES TO
REGULATE SEQUENTIAL ACTION OF ATPASES

Recently, the way the arginine finger regulates the motion
direction of the ATPase within the phi29 DNA packaging
motor has been proposed.110 The model assumes that ATP/
DNA binding and ATP hydrolysis are coupled with conforma-
tional changes of the gp16 ATPase. These changes occur in a
sequential manner and are coordinated by the arginine finger.
The arginine finger acts as a bridge between two adjacent
subunits, leading to the formation of a transient dimer. The
conformational changes of the ATPase subunit will in turn lead
to the displacement of the dsDNA to the adjacent monomer.

During this process, the formation of the dimer results in an
asymmetric hexamer, which explains why many previous
studies showed asymmetric structures of various ATPase
hexamer models (Figure 5).110,179−187 The arginine finger
functions in intersubunit interaction by extending from one
subunit to the adjacent one, which facilitates the formation of a
dimer.
The demonstration of a sequential mechanism raises the

question of how the different subunits of the ATPase can sense
the ATP/DNA binding state of the adjacent subunits.
Investigators addressed this question by studying the behavior
of gp16 mutants in which the arginine fingers were mutated.
Mutated gp16 eliminated its capability to assemble into dimers,
and the mutant was unable to hydrolyze ATP, bind DNA, or
package DNA in an ATP-dependent manner.110,125 Thus, the
arginine finger was implicated to regulate conformational
changes, dimer formation, DNA binding, and ATP hydrolysis
and thus eventually to orchestrate force generation for DNA
translocation in the phi29 motor.110,125,190,191 This finding was
further confirmed recently, reported as a switch-like
regulator.192

In the sequential mechanism of gp16 action (Figure 6), it
was proposed that the hydrolysis of ATP causes a conforma-
tional change to the ATPase subunit, which destabilizes the
“active” ATPase dimer and may simultaneously trigger a
conformational change (strike) of the arginine finger. This
outstretch of the arginine finger to the adjacent ATP binding
pocket facilitates the formation of the next in-line “active”
dimer. Mutagenesis studies were conducted with phi29
ATPase, HslU, p97 VCP, and others in which both ATP
hydrolysis and oligomer formation were impaired due to
mutation of the arginine finger. This leads to the conclusion
that these arginine fingers function in motor subunit
communication as well as ATP hydrolysis.109,110,125,138 The
mutation of the arginine finger in gp16 led to impaired
function in DNA binding in the presence of γ-S-ATP. Hence,
the arginine finger appears to regulate the sequential action of
the gp16 ATPases by carrying the ATP/DNA binding/
hydrolysis information from one subunit to another, adding

Figure 6. Arginine finger (red arrow) regulates dimer formation and sequential action during ATP hydrolysis. Green: The five inactive
Walker domains for ATP-binding (the P-loop, Walker A and B motifs). Pink: The one active ATP-binding center after activation by arginine
finger. The trans-acting arginine finger acts as a bridge between two ATPase subunits when ATP is bound. As hydrolysis continues, ATP
binds to the subsequent subunit and dimer formation occurs in a sequential manner. Reprinted with permission from ref 110. Copyright
2016 American Society for Microbiology.
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an extra level of cooperativity in gp16 as seen in other mutants,
such as in Walker B mutations.56,57,110

Interestingly, it was reported that hydrophobic residues in
the catalytic site of an ATPase may play a role in controlling
the motor speed.193 These hydrophobic residues are thought
to be responsible for controlling the number of water
molecules within the catalytic space and altering the network
of water interactions. Natural evolution has selected the
optimal speed variants that ultimately improve the fitness of
organisms or phages, which may be the reason why these
hydrophobic residues are considered nonconserved motifs.

ENTROPY-DRIVEN PROHEAD- AND DNA-DEPENDENT
CONFORMATIONAL CHANGES OF ATPASES TO
TRIGGER ATP HYDROLYSIS AND MOTION IN
RELEVANCE TO ALLOSTERIC EFFECTS OF THE
ARGININE FINGER

Besides providing necessary positive charges for ATP binding
and hydrolysis, the arginine finger plays an indispensable role
in regulating the conformational changes and coordinating the
sequential motions in the ATPase complexes.194,195 In 1986,
Guo et al. reported18 that viral DNA packaging enzymes,
including gp16 of phi29, gp19 of T7, gp17 of T4 and gpA of λ,
all contain a conserved A-type sequence of “basic-hydrophobic
region-G-X2-G-X-G-K-S-X7-hydrophobic” (X represents any
amino acid) for ATP binding. After the construction of the first
defined in vitro DNA packaging system with all purified
components40 and the discovery of the pRNA as the motor-
gearing component,38 they were able to elucidate that the two
enzymes involved in DNA packaging have distinct functions;
the enzyme with larger molecular weight is a prohead and
DNA-dependent ATPase, while the other with smaller
molecular weight is responsible for DNA binding. In the
same paper, it was reported that the gp16 of bacteriophage
phi29 DNA packaging motor is a prohead and DNA-
dependent ATPase.18 The mechanism of “prohead and
DNA-dependent ATPase” has been scrutinized for 30 years
and is now clear. It suggests that the interaction of the gp16
ATPase with other motor components leads to a change in
conformation (entropy) of the ATPase subunit, resulting in a
higher affinity for dsDNA. The subsequent DNA binding leads
to a second conformational change of the ATPase subunit that
is activated to hydrolyze the bound ATP. Hydrolysis of ATP
leads to another conformational change of the ATPase (higher
entropy) that resumes a low affinity for dsDNA, thus pushing
the DNA to the adjacent ATP-bound subunit of a high affinity
for dsDNA. Such alternative high and low affinities for DNA
are the forces that drive the motion of the dsDNA substrate in
the DNA packaging motor.
In the ATPase catalytic cycle, ATP binding causes the first

round of conformational (entropy) changes of the ATPase
subunits, a positive allosteric effect that results in a higher
affinity for dsDNA. The interaction of ATP and ATPase has
been studied using a variety of assays. EMSA demonstrated
that nonhydrolyzable γ-S-ATP qualitatively stalls and fastens
the formation of ATPase/dsDNA complex, indicating that
ATPase undergoes conformational (entropy) changes upon
ATP binding and leads to a higher affinity for dsDNA.56,57,110

Similar results were observed from Förster resonance energy
transfer (FRET) analysis, showing increased energy transfer
from eGFP-ATPase to Cy3-dsDNA upon addition of γ-S-
ATP.56 Sedimentation studies also revealed a high prevalence

of the gp16-dsDNA complex with γ-S-ATP. As expected, such
conformational changes are abolished by the site-directed
mutation of the Walker A motif,165 which has been identified18

and confirmed18,56,172 to be responsible for ATP binding.133

ATP is hydrolyzed only after dsDNA binding, which then
causes a conformational (entropy) setback of the ATPase
subunit, a negative allosteric effect on the ATPase subunit that
leads to a lower affinity toward dsDNA, pushing the dsDNA
toward the next adjacent ATPase subunit that has already
bound with an ATP. The dsDNA advances by dsDNA by 0.54
nm or 0.27 nm for each of the 12 steps in the connector
channel. That is, each ATP molecule packages 1.75 bp of
dsDNA. The process repeats six times as the DNA moves by a
helical pitch, that is six ATP molecules are consumed for one
DNA revolving cycle, corresponding to the packaging of 10.6
bp.56 The translocation from one subunit to another subunit is
regulated by the action of the arginine finger. The hydrolysis of
ATP was confirmed by adding ATP to the purified ATPase/
dsDNA/γ-S-ATP complex. ATP replaced the γ-S-ATP, leading
to the release of dsDNA from the complex. ADP had a lesser
effect on dsDNA release, whereas AMP was incapable of
releasing dsDNA from ATPase.56 The release of inorganic
phosphate from the P-loop stimulates an entropy gain in
ATPase, which is accompanied by a conformational shift that
forces the substrate DNA away from the interior pocket of the
ATPase, resulting in the movement of the genomic DNA
toward the next ATPase subunit. Given that Walker B mutants
bind ATP but do not hydrolyze ATP,165 introduction of a
mutation to the Walker B motif eliminates the catalytic step
and thus halts DNA translocation.

THE LEFT- AND RIGHT-HANDED CHIRALITY
BETWEEN THE REVOLVING AND ROTATING MOTORS
OFFERS ADDITIONAL DIRECTION CONTROL
COUPLED WITH THE ARGININE FINGER

Sequential action of the arginine finger is critical for controlling
the motion direction in the phi29 DNA package motor;
however, an additional component, the 12-subunit connector,
also plays a significant role in controlling the motion direction.
For example, the chirality is the way to ensure “the push
through a one-way valve”.193,196 Revolving motors show left-
handed chirality, which is distinct from the right-handed
chirality of rotating motors. Genomic dsDNA generally is B-
type right-handed. The revolving of the dsDNA along the
channel wall without self-rotating requires the surrounding
track to have an opposite chirality to match contours of the
DNA and the channel (Figure 8).1,74 Hence, the left-handed
channel wall is a necessary factor for a revolving motor, as it
facilitates the threading motion of one strand of the dsDNA.
This antichiral arrangement between the DNA helix and the
channel is also seen in SPP1, T7, HK97, and P22
motors.27,104−107 The connector channels in these motors
are made up of 12 subunits that are oriented in a 30° tilt,
leading to the opposite chiral arrangement to reach a
configuration match during DNA translocation. Since the
phage genome moves along the channel wall via only one
strand in the 5′-3′ direction, as seen in Phi29,2,37 the 30° tilt to
the left ensures the continuous engagement and contact of this
strand when the DNA shifts to the next subunit of the
dodecamer. Three hundred sixty degrees in one turn during
the 12-step motion results in 30° per step (360°/12 = 30°)
(Figure 7).1,74 This configuration avoids coiling and torsional
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forces as seen in rotating motors. Taken together, the left-
handed antichiral arrangement of the motor channels of the
revolving motor leads to a controlled threading motion of the
substrate, supporting a revolving motor model (Figure 8
bottom).74

Although bacteriophage portal proteins from various families
do not show significant sequence alignment nor similar size,
they assemble to a similar overall structure. For example,
bacteriophage Phi29, SPP1, and T7104 have protein sizes of 36
kDa (Phi29 gp10),107 57 kDa (SPP1 gp6),27 and 59 kDa (T7
gp8),104 respectively. Bacteriophage P22 has a protein
component, gp1, which is 94 kDa.106 These portal proteins
are all arranged in a propeller-like, 12-subunit structure with a
central channel acting as a valve for DNA translocation. In
addition to sharing similar three-dimensional structures, these
bacteriophage motor proteins have analogous conserved

regions that function in viral genome packaging. In nearly all
portal proteins, the sequence stretch of α-β-α-β-β-α exists with
a similar pattern of strands and helices and with similar spacing
and length.
Analysis of the quaternary structures of various bacter-

iophages has revealed that the 30° tilted helix exists in all portal
proteins. Evidence that the antichiral arrangement is integral in
dsDNA packaging is seen in mapping studies, revealing that
the 30° tilt occurs in the same conserved sequences in the last
α helix of the α-β-α-β-β-α stretch. This highlights the
importance of this 30° antichiral arrangement, as it has been
conserved by evolution.1 According to a parallel threading
mechanism of bolt and nut,1,74 rotating motors need to have
right-handed channels in order to accommodate right-handed
dsDNAs (Figure 8, top). Verification of the right-handed
rotating motor is provided by crystal structures of helicase-

Figure 7. Structure of phi29 DNA packaging motor. (A) Structure of hexameric pRNA and the connector showing a 30° tilt. (B, C) dsDNA
showing the shift of 30° angle between two adjacent connector subunits. Reprinted with permission from ref 56. Copyright 2013 Elsevier.
(D) AFM images of hexameric pRNA with 7-nucleotide loops. Adapted with permission from ref 219. Copyright 2013 RNA Society.

Figure 8. Different chiralities of rotating and revolving motors. Rotating biomotors exhibit right-handed chirality to drive the right-handed
dsDNA similar to the nut driving the bolt or the screw driver turning the screw, whereas revolving biomotors exhibit left-handed chirality
within the channel. Crystal structure analysis of viral DNA packaging motors reveals that this class of biomotors package DNA using the
revolving mechanism. Reprinted with permission from ref 5. Copyright 2014 Springer Nature. Reprinted in part with permission from ref
74. Copyright 2014 Springer Nature.
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DNA complexes that have a right-handed spiral configu-
ration.48 This is seen in RecA filament and DnaB, which
function in a nonplanar hexameric conformation.48 In this
rotating-like mechanism, for example, RecA monomers
assemble into an open washer shape in a concatemeric
arrangement.197 ATPases, however, remain as a symmetrical
closed ring in the absence of dsDNA.110 E1 helicase also
adopts a right-handed staircase conformation when bound with
dsDNA.198 Crystallographic studies provide evidence that
right-handed motor complexes use the rotating mechanism.197

The mechanism for the packaging of viral double-stranded
genome into the protein shell with the aid of an elegant motor
is an intriguing subject.1−3,20,199−204 Significant progress on the
study of the mechanisms of viral DNA packaging motors has
been achieved in the poxvirus,76−80 adenovirus,81−83 herpesvi-
rus,88−103 and minivirus.2,84−87 Studies have revealed that the
revolving mechanism is a common feature shared by all the
dsDNA packaging motors, including SPP1, P22, T7, the HK97
family phage, and poxvirus evidenced by the results from both
structural and biochemical studies. Analysis of crystal
structures of the motor channels (the connectors) of SPP1,27

T7,104 HK97,105 P22,106 and Phi29107 revealed that all of the
motor channels displayed an antichiral arrangement between
the channel and the DNA helices. The primary amino acid
sequences are not conserved; however, the 3D structures of the
swivels are both conserved and aligned.1,74 Structural analysis
of the SPP1 and Phi29 channels reveals unidirectional flow
loops that function in the one-way trafficking of dsDNA.
Layers of positively charged lysine residues,193 representative
of all phage channels, interact with the electronegative
phosphate backbone of a single DNA strand. The effectiveness
of the viral DNA packaging motor is due in part to the
coordination of these complementary forces.
Revolving ATPase motors move along one strand of the

dsDNA in the 5′ → 3′ direction.3,37,74,110,205 RecA ATPases
also move along in the 5′ → 3′ direction. Unlike the revolving
motors and RecA ATPases, some rotating ATPases move in
the 3′ → 5′ direction.206 Whether the DNA strand polarity is

relevant to the revolving or rotating mechanism remains to be
elucidated.

REVOLVING AND ROTATING MOTORS CAN BE
DISTINGUISHED BY THEIR CHANNEL SIZE

The arginine finger is critical for controlling the motion
direction; however, how could the similar arginine finger
control the two kinds of motors (rotating and revolving) that
are very different in motion mechanism? The two differential
motion mechanisms are also dictated by an additional motor
structure factor: the channel size, which can be used to
distinguish revolving motors from rotating ones. Channel size
also plays an important role in controlling the one way motion
and the motion direction. For rotating motors, their channel
diameter should be no larger than 2 nm (the diameter of a
dsDNA) to allow for close contact between a DNA and the
channel wall for threading, since a ssDNA within the channel
displays an A form helical structure and is smaller than 2 nm in
diameter.48 Examples include rotating motors of DnaB,48 Rho
factor,50−52 TrwB,60−65 MCM,66 and RepA or RuvB,68−73 all
of which have a channel diameter of 1−2 nm.74

For revolving motors, such as a Phi29 DNA packaging
motor, their channel diameter is generally larger than 3 nm.
The larger channel size of the revolving motors allows a
dsDNA to revolve around the channel wall, while precluding
the possibility of a bolt and nut tracing mechanism,
characteristic of rotating motors. Cryo-EM images of a tilted
T7 dsDNA core relative to its axis reveal that in revolving
motors, dsDNA advances by touching the channel wall rather
than passing through the center of the channel.207,208

The difference in channel size has been confirmed by crystal
structure analysis, cryo-EM measurement, and single-channel
conductance assays. The diameter of dsDNA is 2 nm, while the
diameters of the narrowest region of the connector channels of
Phi29,107 SPP1,27 HK97,105 the ATPase ring of T4,33,205 as
well as the dsDNA translocase FtsK54 of bacteria, are all larger
than 3 nm (Figure 9). To prove the revolving mechanism, the
connector of bacteriophage Phi29 DNA packaging motor was
used as the channel for the single pore translocation of folded,

Figure 9. Channel size to differentiate rotating and revolving mechanism. Rotating motors have channel sizes all ≤2.0 nm in diameter to
ensure full contact between DNA and channel wall similar to the nut driving the bolt, while revolving motors have channel sizes ≥3 nm to
have room to accommodate the revolving motion. Reprinted in part with permission from ref 5. Copyright 2014 Springer Nature.
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double-stranded, or tetra-stranded DNA. A current blockage of
32% was observed for translocation of dsDNA through the
connector channel,209 consistent with the ratio of the cross-
sectional areas of dsDNA; A = πr2, dsDNA ((2/2)2 × 3.14 =
3.14 nm2), and channel ((3.6/2)2 × 3.14 = 10.2 nm2, 10.2
nm2/3.14 nm2 = 32%). While for tetra-stranded DNA, passage
through the connector channel of Phi29 yields a blockage of
∼64%. This blockage data show that the cross-sectional area at
the narrowest region of the Phi29 funnel is 3-fold the area of
the dsDNA. The much larger width of the nut, in comparison
to the bolt, precludes the possibility of a bolt and nut threading
mechanism, but rather suggests that, at any translocation step,
the dsDNA can be in contact with only one (or two) ATPase
subunit.74

In contrast, the channels of rotating motors, such as
r e p l i c a t i v e DNA h e l i c a s e s T r w B , E 1 , a n d
DnaB,48,64,167,210−212 are smaller than 2 nm in diameter
(Figure 9). For these motors, the channel is expected to have a
width similar to that of ssDNA. Nonetheless, for certain
rotating motors, local unwinding fluctuations of the dsDNA
lead to separation of the double helix, and thus only one strand
enters the channel, while the other remains outside.168,213−218

Given that the ssDNA within the channel displays an A form
helical structure,48 the channel diameter should be no larger
than 2 nm so that the ssDNA can make full contact with the
channel. Overall, the above data indicate that the revolving
motor can be distinguished from the rotating motor by the size
of their motor channels.

CONCLUSION
The arginine finger is an indispensable part of the ATP-activity
pocket of the ring-shaped ATPase motors with revolving or
rotating mechanisms. It is believed to be involved in initiating
and coordinating the sequential action within the motor, which
eventually leads to the pulling and pushing motions of the
substrate during translocation. The arginine finger is also
implicated to play a role in controlling the motion direction of
the motor. All of these are achieved through a trans-action
mechanism in promoting dimer formation, direct involvement
in regulating ATP binding and hydrolysis, and allosteric effects
associated with protein conformational changes.
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ABBREVIATIONS
ATPase, a class of enzymes that catalyze the hydrolysis of ATP
to provide the driving force for different kinds of mechanical
motions essential to cellular functions; biomotor mechanism,
concerns how biomotor proteins harness energy to drive the
mechanical motions of their substrates; arginine finger, a
particular arginine residue coordinated to the β- or γ-
phosphate of ATP or interacting with some components/
motifs in the ATPase catalytic reaction center;Walker A motif
and Walker B motif, two conserved sequence motifs in
ATPases responsible for ATP binding and ATP hydrolysis;
channel size, refers to the diameter of the substrate
translocation pore in biomotors, which can be used to
distinguish revolving motors from rotating ones; channel
chirality, the orientation of the pore-lining secondary
structures tilted to either the left or the right, which is an
attribute of asymmetry in many channel structures; entropy
driven, the biological processes are driven by the increase or
the decrease of entropy. High entropy refers to the product
state that is conformationally more dynamic or disordered.
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