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ABSTRACT The Clinical and Laboratory Standards Institute and European Commit-
tee on Antimicrobial Susceptibility Testing agree that carbapenemase testing is not
necessary for clinical care, provided that the laboratory is up to date with current
breakpoints. Nonetheless, publication on the development and modification of car-
bapenemase tests continues, as is the case in this issue of the Journal of Clinical
Microbiology (R. W. Beresford and M. Maley, J Clin Microbiol 57:e01852-18, 2019,
https://doi.org/10.1128/JCM.01852-18). This commentary explores modifications to the
carbapenem inactivation method— but is this the right focus for clinical laboratories?

Among the myriad complex challenges faced by clinical microbiology laboratories,
how to best detect carbapenem resistance is one of the foremost. There is no

question that carbapenem resistance among Gram-negative bacteria poses a tremen-
dous threat to public health worldwide (1). Carbapenem drugs are the last line of
defense against antimicrobial-resistant Gram-negative infections. They are used rou-
tinely to treat extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and
Klebsiella spp. infections, a practice reinforced by the results of the MERINO trial, which
demonstrated significant mortality benefit for the use of meropenem over piperacillin-
tazobactam for bacteremia caused by ESBL producers (2). Carbapenems are also a
common escalation agent for the treatment of infections caused by nonfermenters,
including carbapenem-susceptible isolates of Pseudomonas aeruginosa and Acinetobac-
ter spp. Infections caused by carbapenem-resistant isolates are associated with mor-
tality rates upwards of 50%, largely due to the lack of treatment alternatives for these
isolates (3). The dynamics of the spread of carbapenem resistance involve both trans-
mission of carbapenem-resistant organisms between patients or colonized individuals
and transmission of carbapenem resistance determinants on mobile genetic elements
between isolates within a single patient (1). Therefore, understanding as soon as
possible whether a patient’s infection is caused a by carbapenem-resistant isolate is
paramount at both the patient and public health levels.

Resistance to the carbapenems is, however, frustratingly complex, and difficult to
detect. High-level carbapenem resistance (i.e., a carbapenem MIC above the resistance
breakpoint) is only sometimes due to the presence of a carbapenemase. In non-
carbapenemase-producing isolates, resistance is due to expression of ESBLs or AmpCs
and membrane permeability defects (1); in many institutions, this remains the most
common form of carbapenem resistance (3). To further muddy the waters, carbapen-
emases of clinical significance belong to three distinct molecular classes, including
Ambler classes A (e.g., KPC and SME), B (e.g., NDM, IMP, and VIM), and D (OXA-48-like),
each of which displays a unique regional epidemiology (1) and challenges to the
laboratory (4). New variants within these classes are being described with alarming
frequency (5–7).

Recommendations by laboratory standards development organizations (SDOs) like
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the Clinical and Laboratory Standards Institute (CLSI) and the European Committee on
Antimicrobial Susceptibility Testing (EUCAST) are continually evolving to meet these
challenges. Since 2009, when the modified Hodge test (MHT) was first introduced by
CLSI to address the spread of KPC-expressing Klebsiella pneumoniae, CLSI carbapen-
emase testing recommendations have been a shifting target (Table 1). Against this
backdrop is the continued debate over the ultimate purpose(s) for testing clinical
isolates for carbapenemases: clinical decision making, infection control practices,
and/or epidemiological studies. Experts remains divided on this point (8), but CLSI and
EUCAST agree that carbapenemase testing is not necessary if the laboratory is up to
date with current breakpoints.

The complexity of these important challenges is reflected in the interest of the
clinical microbiology community regarding carbapenemase testing. A review of the
Journal of Clinical Microbiology finds 16 articles posted on this topic since 2018 alone.
Many of these studies report “improvements” over previously reported methods. As an
example, 10 variations of the carbapenem inactivation method (CIM), first described in
2015 (9), have been published, and are listed in Table 2. The CIM is an attractive option
for carbapenemase testing by clinical laboratories, as the method can be performed
using reagents readily at hand in most laboratories and testing does not require special
equipment. The CLSI specifically endorsed a modification to the CIM (mCIM), which
included use of an alternative incubation medium (tryptic soy broth versus water) and
extension of the incubation time to 4 h, both of which were found to improve
sensitivity for certain carbapenemases (10). CLSI followed this with a modification for
use with P. aeruginosa isolates (11) and, most recently, with recommendations to add
EDTA to the mCIM (eCIM), which allows differentiation of class B from class A and D
carbapenemases (Table 2) (12). The eCIM must be used in conjunction with the mCIM,
as both carbapenem inactivation and inhibition of the inactivation by EDTA for a class
B enzyme must be demonstrated. It should be noted that isolates that express both a
class A and/or D and class B carbapenemase, which are increasingly common, may give
false-negative results by the eCIM for a class B carbapenemase (12). In this issue of the
Journal of Clinical Microbiology, Beresford and Maley (13) further describe a modification

TABLE 1 Evolution of CLSI carbapenemase testing recommendations

Time period
or year CLSI recommendations in M100

Pre-2000 No specific recommendations regarding carbapenem resistance testing

2000s Recognition of the threat of KPC-expressing K. pneumoniae
Recognition that carbapenem breakpoints were unlikely to predict

clinical outcomes for isolates with elevated carbapenem MICs

2009 Introduction of modified Hodge test (MHT) for isolates of
Enterobacteriaceae with elevated carbapenem MICs

If MHT is positive, laboratories instructed to edit all carbapenem
results to “R”

2010 Enterobacteriaceae carbapenem breakpoints revised
Change of recommendation for MHT to “optional” for infection

control/epidemiology

2012 Pseudomonas aeruginosa carbapenem breakpoints revised
Carba NP test introduced for Enterobacteriaceae, Pseudomonas

aeruginosa, and Acinetobacter spp.

2014 Acinetobacter spp. carbapenem breakpoints revised
2017 mCIM for Enterobacteriaceae introduced

2018 MHT eliminated
eCIM introduced for Enterobacteriaceae
Carba NP for Acinetobacter spp. removed
mCIM for P. aeruginosa introduced
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of the mCIM, through the use of digital microbiology to automate test reading and
shorten the incubation time.

What is interesting about the studies listed in Table 2 is that each reported excellent
(�95%) sensitivity and specificity for carbapenemase detection, with the exception of
test methods for Acinetobacter spp. Why, then, are we compelled to continue to gild the
lily? The answer seems to stem from not only the complex spectrum of enzymes
associated with carbapenem resistance but the differing spectrum of these encoun-

TABLE 2 Variations of the CIM reported in the literature

Method Descriptiona Organism(s) Reference

CIM Harvest 10-ul loop of isolate from Mueller-Hinton or BAP Enterobacteriaceae 9
Suspend isolate in 400 �l water
Add 10-�g meropenem disk to suspension
Incubate 2 h at 35°C
Remove disk, use for standard disk diffusion of E. coli 25922
Incubate plate for 6 h or overnight
Evaluate zone of inhibition around disk:

No zone � carbapenemase present
Zone of inhibition � no carbapenemase

Modified CIM (mCIM) Increased sensitivity for OXA-48-like producers Enterobacteriaceae 10
Suspend 1 �l of isolate in TSB
Incubate 4 h at 35°C
Incubate disk diffusion plate a full 18 h

mCIM for P. aeruginosa Increased sensitivity for P. aeruginosa P. aeruginosa 11
Increased inoculum (10 �l) vs mCIM

CIMPlus Addition of inhibitors (EDTA, phenylboronic acid) to water to
differentiate carbapenemase Ambler Classes

Enterobacteriaceae 22

Simplified CIM (sCIM) Improved simplicity Enterobacteriaceae,
P. aeruginosa

23
Use of 10-�g imipenem disk
Isolate smeared directly onto disk from BAP
No incubation of disk and test isolate prior to use in disk diffusion test

Triton X CIM (TCIM) Improved performance for Acinetobacter spp. A. baumannii 24
Cell permeabilized by adding 0.1% (vol/vol) Triton X-100 to TSB
Use of 10 �l of test isolate

CIMTris Improved detection in Acinetobacter and Pseudomonas spp. A. baumannii, P. aeruginosa 25
Use of Tris-HCl buffer to extract carbapenemase from cell

CIMTrisII Improved detection in A. baumannii and P. aeruginosa A. baumannii, P. aeruginosa,
Enterobacteriaceae

26
5-�g meropenem disk
5-�l loop of bacteria
Use of Tris-HCl buffer to extract carbapenemase
Incubation time, 1 h

Rapid CIM (rCIM) More rapid detection (�2.5 h) of carbapenemase: Enterobacteriaceae 27
Use of 20 �l of overnight culture
Homogenize in 1 ml sterile water
Add 2 10-�g meropenem disks
Incubate 30 min at 37C
Harvest cells by centrifugation
Add and mix 500 �l of supernatant with 2.5 ml of a 1 McFarland

suspension of E. coli ATCC 25922 in TSB
Incubate at 37°C for 1.5–2 h
Evaluate growth of E. coli using a nephelometer

EDTA CIM (eCIM) Differentiation of class B carbapenemases Enterobacteriaceae 12
Addition of EDTA to TSB for mCIM

Automated CIM Plates are imaged on a BD Kiestra Work Cell incubator and zone
diameters evaluated using the ReadA program

Enterobacteriaceae 13

aBAP, blood agar plate.
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tered in laboratories globally and the varied practices to which the results of carbap-
enemase testing are applied. Thus, each laboratory may need to adapt the method to
ensure that (i) carbapenemases prevalent in the laboratory’s region are detected; (ii)
results are easy to interpret, with a low prevalence of false-positives; (iii) different
carbapenemase classes are differentiated, if needed for clinical care/infection control;
and (iv) results are reported in a time frame that best supports implementation of
contact precautions and/or treatment changes. Each of these requirements highlights
the necessity for the laboratory to carefully verify carbapenemase tests prior to imple-
mentation. Beresford and Maley carefully vetted their modified mCIM using a collection
of IMP-producing isolates, a resistance mechanism rare to most parts of the world but
endemic to Australia (13). The authors found that a minimum of 12 h of incubation time
was needed to ensure detection of these weak carbapenem hydrolyzers. The authors
are careful to point out that these modifications work for isolates that display signifi-
cant elevations to carbapenem MICs but may not detect those that harbor blaIMP and
are carbapenem susceptible. As the authors further discuss, low specificity and/or high
frequency of indeterminate results are equally important when evaluating carbapen-
emase testing options. Labeling a patient as positive for a carbapenemase-producing
organism may lead to long-term infection control repercussions, such as life-long,
preemptive contact isolation, and/or use of suboptimal therapeutic options, such as
colistin, in regions where newer antimicrobials with activity against class A and D
carbapenemase producers are not available.

Given this complex and changing picture of carbapenemase testing, it is perhaps no
surprise to find that laboratory carbapenemase testing practices in both the United
States (as documented in California) and Europe vary considerably (14, 15). Surveys
demonstrate a shocking number of laboratories that continue to apply the MHT (57%
in Europe and84% in California [14, 15]), a method that is fraught with both false-
positive and false-negative results (4) and that is no longer recommended by CLSI or
EUCAST. This demonstrates that many laboratories are not able to adapt to the
changing landscape of carbapenemase epidemiology, which may occur over a very
short time frame within a single institution (16). Given this context, laboratories are best
served to ensure that the cornerstone for carbapenem resistance testing is use of
up-to-date breakpoints, as these detect clinically significant resistance. Unfortunately,
roughly 30% of California laboratories continued to apply 2009 carbapenem break-
points (15). Carbapenem resistance does not silo in individual hospitals (17, 18), and
computer model estimates demonstrate that interrupting the spread of carbapenem
resistance requires a coordinated regional response (19, 20). This challenge requires
active participation of diagnostic manufacturers, the U.S. Food and Drug Administra-
tion, clinical laboratories, public health authorities, laboratory accreditation organiza-
tions, and hospital administrators. Pilot programs implemented by the CDC’s Antimi-
crobial Resistance Laboratory Network and independent activity by local public health
jurisdictions to address these challenges demonstrate that change is possible (21). If we
can learn anything from (SIM) city planning, focusing all development efforts on dense
commercial activities while neglecting residential needs never wins the game.
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