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Social signals play powerful roles in shaping self-oriented reward valuation and decision making. These signals activate social and
valuation/decision areas, but the core computation for their integration into the self-oriented decision machinery remains unclear. Here,
we study how a fundamental social signal, social value (others’ reward value), is converted into self-oriented decision making in the
human brain. Using behavioral analysis, modeling, and neuroimaging, we show three-stage processing of social value conversion from
the offer to the effective value and then to the final decision value. First, a value of others’ bonus on offer, called offered value, was encoded
uniquely in the right temporoparietal junction (rTPJ) and also in the left dorsolateral prefrontal cortex (ldlPFC), which is commonly
activated by offered self-bonus value. The effective value, an intermediate value representing the effective influence of the offer on the
decision, was represented in the right anterior insula (rAI), and the final decision value was encoded in the medial prefrontal cortex
(mPFC). Second, using psychophysiological interaction and dynamic causal modeling analyses, we demonstrated three-stage feedfor-
ward processing from the rTPJ and ldPFC to the rAI and then from rAI to the mPFC. Further, we showed that these characteristics of social
conversion underlie distinct sociobehavioral phenotypes. We demonstrate that the variability in the conversion underlies the difference
between prosocial and selfish subjects, as seen from the differential strength of the rAI and ldlPFC coupling to the mPFC responses,
respectively. Together, these findings identified fundamental neural computation processes for social value conversion underlying
complex social decision making behaviors.
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Introduction
The reinforcement learning framework has provided a founda-
tion for understanding the computations and associated neural

mechanisms involved in self-regarding valuation (Schultz et al.,
1997; Daw and Doya, 2006; Dayan and Nakahara, 2018). It pro-
vides a simple, rigorous account of choice behavior that maxi-
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Significance Statement

In daily life, we make decisions based on self-interest, but also in consideration for others’ status. These social influences modulate
valuation and decision signals in the brain, suggesting a fundamental process called value conversion that translates social
information into self-referenced decisions. However, little is known about the conversion process and its underlying brain mech-
anisms. We investigated value conversion using human fMRI with computational modeling and found three essential stages in a
progressive brain circuit from social to empathic and decision areas. Interestingly, the brain mechanism of conversion differed
between prosocial and individualistic subjects. These findings reveal how the brain processes and merges social information into
the elemental flow of self-interested decision making.

The Journal of Neuroscience, June 26, 2019 • 39(26):5153–5172 • 5153



mizes one’s own reward. Considerable empirical evidence
supports the behavioral quantification and its underlying com-
putations and neural signals in the human brain (Rangel et al.,
2008; Rushworth et al., 2011).

Human decision-making behavior is also often influenced by
social factors (Montague et al., 2006; Rilling and Sanfey, 2011;
Glimcher and Fehr, 2014), including concerns for others’ welfare,
mentalizing, social norms, and social interactions (Stanley and
Adolphs, 2013; Ruff and Fehr, 2014; Lee and Seo, 2016). Previous
studies using value-based decision-making frameworks and
quantitative approaches such as economic games indicated that
social factors can modulate brain signals in valuation and
decision-related areas in addition to social areas such as the tem-
poroparietal junction (TPJ) (Hsu et al., 2008; Behrens et al., 2009;
Fehr and Krajbich, 2014; Hutcherson et al., 2015). Social value, or
reward to others, is the simplest of the various social factors, but
an important one. Previous studies have examined the neural
correlates of social value in various altruistic behaviors (Zaki and
Ochsner, 2012; Gospic et al., 2014; Kuss et al., 2015; Strombach et
al., 2015; Crockett et al., 2017). In the studies, subjects make
choices typically when rewards to the self and others are compa-
rable and antagonistic to each other. The studies showed that the
subject often makes decisions considering the balance of reward
allocation to the self and others, and have eloquently demon-
strated that brain regions related to reward, cognitive control,
and emotion are involved in the different components of decision
making under different reward allocation balances. Although va-
riety in reward allocation balance is important in human social
behavior, a more fundamental question, at a lower level than the
various balances, remains elusive: How are brain signals for the
social value of others’ reward converted into downstream brain
signals for decision making? We term such a neurocomputa-
tional process “social value conversion.” Examination of social
value conversion would require clearly and quantitatively sepa-
rating the computations and brain signals for social value in ref-
erence to those for self-regarding decision making and then
tracing the integration of social value into self-regarding decision
making.

In this study, we investigated social value conversion by con-
currently tracking the computational and neural stages by which
social value signals migrate into the self-regarding decision-
making process. In the behavioral task, the subject chose one of
two options, each with a probabilistic reward to the self (standard
reward) attached. We examined social value conversion as the
behavior-modifying effect on choice behavior of an additional
reward to others (other-bonus reward) versus an additional re-
ward to the self (self-bonus reward). We used computational
modeling and quantitative fMRI analysis to derive and track
three major stages of social value conversion. The first stage is
other-regarding detection involving the offered other-bonus
value. The second stage is an intermediate value, called the effec-
tive value, which links the offer and final decision and represents
the actual impact of the offer on choice. The third stage involves
the final decision value to make choices. Further, we predicted
that social value conversion is a primitive computation that may
be essential for different forms of social behavior including inter-

individual variation. We then examined individual differences in
social value conversion to probe the neural basis of social prefer-
ence (Bogaert et al., 2008; Haruno and Frith, 2010). Social pref-
erence collectively refers to social concerns regarding the
allocation of rewards between the self and others given an indi-
vidual’s predispositions such as inequity aversion (Frith and
Frith, 2012; Fehr and Krajbich, 2014). Here, we examined one
type of social preference called social value orientation (SVO)
(Van Lange et al., 1997) and found that distinct prosocial and
individualistic SVO phenotypes in subjects showed differences in
brain signals and processes of social value conversion.

Materials and Methods
Subjects
Forty-seven healthy, normal subjects (17 female; 46 right-handed; age,
20 –32 years; mean � SD, 22.0 � 2.41 years) participated in our main
experiment. All subjects were screened to exclude those with a previous
history of neurological or psychiatric illness. Subjects provided written
informed consent to participate in this study, which was approved by
RIKEN�S Third Research Ethics Committee. Because of large head mo-
tion during fMRI scans (�2 mm in any direction), 4 subjects were ex-
cluded from the analysis. The remaining 43 subjects were included in our
main behavioral analysis. In the behavioral model fitting, we found that
the choice behavior of seven subjects (despite the purpose of this study
and the control of the experimental procedure) was not positively mod-
ulated by other-bonus rewards (for details, see “Model selection”).
Therefore, the results of 36 subjects were included in the blood-oxygen-
level-dependent (BOLD) signal analyses.

To increase their sample size and to facilitate further analysis of the
individualistic group (for details, see “Analysis of a larger sample of in-
dividualistic subjects” section), we also conducted an additional round of
the experiment in which individualistic subjects were specifically re-
cruited (seven new subjects).

Experimental task
Each subject performed two tasks, called the control task and main task
(Fig. 1); the main and control task were composed of other-bonus trials
and standard trials and self-bonus trials and standard trials, respectively
(Fig. 1B). Standard trials provided the reference for the choice behavior,
in which one of the two options was selected, each associated with a
probabilistic reward outcome. The other-bonus trial was designed to
probe modification of the reference choice behavior. In addition to the
probabilistic reward outcome, one of the two options had an additional
reward designated as the other-bonus. When the subject chose the option
with bonus, it was endowed to a specific charity (for details, see “Others’
reward and charity organizations” section) regardless of the probabilistic
outcome. The self-bonus trial served as the reference for the modified
choice behavior in other-bonus trials and was designed to probe the
modification of the choice behavior when the bonus was for the subject
and not for others.

Each trial consisted of four phases (Fig. 1A). For trials in the fMRI
experiment, at the beginning of each trial, a pair of options with a fixation
point between them was presented to the subject for 1.5– 4.5 s (CUE
phase). The fixation point then changed to a question mark, and the
subject could make their choice by pressing a button with their right
hand within 1.5 s (RESPONSE phase). After the response phase, the
chosen option was indicated by a gray frame, initiating the CONFIRM
phase (0.5–1.5 s). Then, to show whether the subject’s chosen option was
rewarded was revealed by displaying a circle or cross, respectively, in the
center of the screen for 1.0 s (OUTCOME phase). This was followed by a
jittered intertrial interval (ITI; 1.5–5.5 s) before the next trial started. All
timing jitters for the CUE, CONFIRM, and ITI phases were randomly
generated by sampling from a uniform distribution. To maintain the
subjects’ motivation (Behrens et al., 2008), the accumulation of earned
points over the trials was shown by a horizontal bar at the bottom of the
monitor throughout the trials (except during ITI phases) in the control
task, and the earned points for both the self and others were shown in the
main task.
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Setting of rewards
The standard trial is a one-armed bandit task in which subjects were
instructed to choose the option that would maximize the number of
points earned among two options presented in the trial. Each option
consisted of reward magnitude indicated by a number and a reward
probability indicated by a filled yellow horizontal bar above the number,
respectively. In every trial, the reward probability ( p) for one option was
uniformly randomly sampled from 0.1, 0.2, . . . 0.9 and the probability
for the other option was set to (1 � p). The reward magnitude for one
option (m) was uniformly randomly sampled from 1, 2, . . . 99 points and
the reward for the other option was set to (100 � m). The probability and
magnitude were first sampled independently and then assigned ran-
domly to each option but with one constraint: larger probability and
larger magnitude were paired randomly with probability 0.2 (i.e., not
with probability 0.5, which would occur by completely random assign-
ment) to avoid too many “easy” trials. In the other-bonus and self-bonus
trials, additional reward (bonus) was randomly assigned to one of the
two options in each trial. It was indicated by a colored number below the
standard reward magnitude. For example, for some subjects, the number
was shown in red and green in the self-bonus and other-bonus trials,
respectively, and these colors were counterbalanced across the subjects.
In contrast to the probabilistic nature of the standard reward, the bonus
was deterministic, meaning that it was always given to the subject or a
charity if the option was chosen.

The magnitude of the bonus was drawn randomly from 0, 10, and 20.
Zero magnitude was included to exclude the possibility that the mere
display of a bonus value affected the choice behavior. This setting was
chosen based on the results of preliminary behavioral experiments using
approximately the same distribution of standard rewards as in the main
experiment (data not shown). This setting was decided based on the
following considerations for the other-bonus. First, for most subjects, a
detectable change in the choice behavior should be observed, but the
magnitude of the bonus should not be excessively large compared with
the standard reward because additional cognitive/behavioral factors such
as envy, which should be avoided in this study, might come into play.
Second, we aimed to include a smallest number of different magnitudes
to have a sufficient number of trials to estimate other-bonus values in behav-
ior given that each magnitude of trials should be examined with different

standard rewards. After determining the magnitudes of the other-bonus, we
chose to set the same magnitudes for the self-bonus to directly compare the
behavioral changes between the other- and self-bonus.

Others’ reward and charity organizations
The others’ reward was set to be given to the charity organization selected
by the subject before the behavioral experiments. We chose this set-
ting to make sure that the others’ reward would matter to the subject
in a positive way and that the relationship between the subject and
others would instead be neutral, neither too close (in-group) nor too
remote (out-group).

The subject chose one charity organization from a list of six. To ensure
that the subject correctly knew about the organizations’ activities, the
subject read descriptions of all the charity organizations before choosing.
All six of the listed organizations are well known in Japan: the Japanese
Red Cross Society, the UN Refugee Agency, Médecins Sans Frontières
(Doctors Without Borders), UNICEF, Central Community Chest of Ja-
pan (Akai Hana Kyo�do�bokin), and Ashinaga (a charity that focuses on
education and support for disadvantaged children).

After becoming familiarized with the tasks, the subject was instructed
to choose a charity. Two slightly different instructions were given across
subjects. One said to choose the organization to which their earnings
from the others’ reward would be given (16 subjects) and one said to
choose the organization to which they would most prefer it be given (27
subjects). We merged them together in the main analysis because there
was no significant difference between the two groups with respect to
behavior (behavioral weights: self-bonus, t(41) � 1.244, p � 0.220; other-
bonus, t(41) � 1.877, p � 0.068; proportion choosing options with the
other-bonus: t(41) � 0.855, p � 0.398; SVO classification: � 2 � 0.216,
p � 0.642). Also, by questionnaire, we asked the subjects whether they
already knew about each organization, to what extent (9-point scale) they
were willing to support the activities of each organization, and whether
they had ever directly participated in the organization’s activities beyond
donation. Prior participation in the organization’s activities was a crite-
rion for exclusion from the experimental analysis, but we found that no
subjects had done so. All of the subjects knew beforehand about the
organization that they chose, expressed a positive attitude toward it, and
had not directly participated in its activities.

+
30            70
20          

?

CUE 
RESPONSE 

CONFIRM  

OUTCOME

1.0 s

1.5  - 4.5 s
~1.5 s

0.5-1.5 s

30            70
20           

+

30            70
20           

+

30            70
20           

30            70
20          

+

ISI 

+

1.5 - 5.5 s

standard

other-bonus

30            70
20           

+

self-bonus

M
ain task

C
ontrol task

30            70
           

+

30            70
20           

+

A B

Figure 1. Experimental task. A, Example of an other-bonus trial in the fMRI experiment. The subject was asked to choose between two options to maximize their reward gains. Here, the left option
was chosen so the standard reward (i.e., the yellow number indicating the reward magnitude, 30 points) would be given with a probability indicated by the yellow bar at the top, and the other-bonus
(20 points), indicated by the magenta number at the bottom, would be given to a charity. The accumulated payments for self and others were indicated by the yellow and magenta horizontal bars
at the bottom for each trial, respectively. B, The main task was composed of other-bonus (magenta) and standard trials and the control task was composed of self-bonus (cyan) and standard trials.
For display purpose, the color of numbers indicating other-bonus and self-bonus are shown in magenta and cyan, respectively, in the above figure; the actual experiment used red and green,
respectively.
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Experiment procedure
All subjects participated in both the behavioral and fMRI experiments
(outside and inside the scanner, respectively). For all three types of trials
(standard, self-bonus, and other-bonus), the subject was instructed to
choose which of two options they preferred. Before the behavioral exper-
iment, the subject was familiarized with the tasks, performing 35 trials for
each trial type. The subject sat in front of a computer screen to do the
behavioral experiment (three control and three main blocks), which to-
gether took about 120 min. Each block in the behavioral experiment was
composed of 15 standard trials and 90 bonus trials (90 other-bonus or
self-bonus trials in the main or control task, with 30 trials for each of the
following bonus magnitudes: 0, 10, and 20). The order of trials was
permuted randomly within a block. We used slightly shorter CUE and
ITI phases in the behavioral experiment than in the fMRI experiment
(1.0 –3.0 s and 1.0 –3.0 s, respectively) to enable a larger number of trials.
The subject’s behavior (decision: choosing the left or right option) was
recorded by button pressing on the keyboard of the computer. For the
behavioral results, we combined the trials of the fMRI and behavioral
experiments because no difference in behavior was found between the
behavioral experiments and all experiments (fMRI � behavioral experi-
ments), as indicated by the behavior weight for the other-bonus (t(42) �
0.283, p � 0.779).

After the behavioral experiment, the subject was put into the scanner
for the fMRI experiment. Before the experiment, the subject performed a
short practice session (20 standard trials). Each of six blocks in the fMRI
experiment was composed of nine standard trials and 42 bonus trials (42
other-bonus or self-bonus trials, with 14 trials for each of the bonus
magnitudes). The fMRI experiment took about 120 min, including prep-
aration time, anatomic scanning, and functional scanning, during which
the subject’s behavior and brain responses were recorded.

At the beginning of the experiment, the subject was informed about
the monetary reward that they would receive, which was based on the
average of all the points they earned in the behavioral and fMRI experi-
ments (i.e., the points they gained from both standard and self-bonus
from 12 blocks in total). In brief, the total monetary compensation in yen
was approximately equal to 200 � (average points � 14) � 6000, where
6000 yen was the base participation fee. For the other-bonus, the mone-
tary conversion did not have the base fee: 200 � (average points of others’
reward � 14). Ultimately, the average monetary gain of the subjects was
9283 � 410 yen (mean � SD; range, 8200 –9800 Japanese yen) and that of
the others was 1031 � 262 yen (range, 1000 –2430 Japanese yen).

Postexperiment questionnaire on SVO
After the experiment, the subjects were asked to complete an SVO ques-
tionnaire composed of nine items, which was adopted from a question-
naire used in a previous study (Van Lange et al., 1997). The SVO
questionnaire was introduced to the subjects only after the main
experiment (except the additional sampling of seven new subjects for
whom SVO was used for screening before the main experiment).
Therefore, the subjects performed the main experiment without
knowing that they would also perform the SVO questionnaire. There-
fore, their behavior in the main task was not directly affected by their
answering the questionnaire.

The items were all forced choice questions with three options, each
indicating a point gain distribution between the self and another person.
The instructions were also adopted from the previous study (Van Lange
et al., 1997). Briefly, the subject was instructed to think of an anonymous
person to be paired with, whom the subject had never met and would
never meet. The subject was told to consider that their choices would
determine the points that they would earn and also that the other person
would earn. They were told to assume that the other person would do the
same. The subject was also informed that the point gains in this question-
naire would not be used for actual payment to themselves or others. Each
option contained two numbers, one indicating the points that the subject
would gain and one indicating the points that the other person would
gain (e.g., [50, 40]). The subject was asked to choose the option that they
most preferred. The three options in each question, with the distribution
of the subject’s and the others’ gains, corresponded to the designations of

prosocial, individualistic, and competitive (e.g., [45, 45], [50, 40], and
[45, 0], respectively).

Each subject was classified by their questionnaire responses into one of
the three SVO phenotypes (prosocial, individualistic, and competitive),
following the criterion of the original study: a subject who chose one
characteristic (e.g., prosocial) six times or more times was classified as
having that characteristic. When there was no such dominant SVO
characteristic in their responses, subjects were unclassified. Among
the 43 subjects in our main analysis, no one was classified as compet-
itive. Therefore, in this study, we focused on only prosocial and indi-
vidualistic subjects. Among the 36 subjects in the main experiment,
we found 21 subjects were prosocial, 12 were individualistic, and
three were unclassified.

Behavioral analysis and computational models
Choice behavior plot. We plotted the subjects’ choice behavior (Fig. 2A),
applying smoothing by Gaussian filter (variance � 10) to the standard
value difference (	VS) axis for the choice behavior (right option, 1; left
option, 0) of individual subject in each type of trial separately for each
condition (for a specific magnitude of either the self/other-bonus, at-
tached to the left or right option). Then, in each case, the mean and SE
were calculated across all subjects. Based on the sigmoidal choice curves,
we quantified the effects of the bonus on the choices, thus obtaining the
extent of behavioral change (Fig. 2B). For each bonus magnitude in the
self-bonus and other-bonus trials of each subject, we took the difference
in choice probability between each sigmoidal choice curve and that of the
corresponding trial with zero magnitude bonus at the point of indiffer-
ence (	VS � 0). Then, we used Page’s test (Page, 1963) (a nonparametric,
repeated-measure test for monotonic order) to examine our hypothesis
that the extent of behavioral change increases with increasing bonus
magnitude (other- and self-bonus in the corresponding trials), wherein
the null hypothesis was that there was no monotonic order between the
two factors.

Behavior modeling. Subjects’ choice behaviors were modeled as a logit
function of decision value (DV, the value difference between the two
options). The logit function is given by the following:

Logit
q� � log� q

1 � q�
where q indicates the choice probability. As shown later, this can be

rewritten as q � f ( Z), where f 
Z� �
1

1 � e�z, Z � � � DV, and � is a free

parameter often called inverse temperature. Without loss of generality,
we write q as the probability of choosing the option on the right side.
Note, however, that in many of the fMRI analyses that follow, we often
used this function in the alignment of the choice made; in other words,
we used the function of choice probability that would correspond to
Logit(q) and Logit(1 � q) in the equation above for the right and left
option chosen, respectively; it was used to fit the model to behavior by the
maximum likelihood approach, and to analyze behavior and the vari-
ables in BOLD signals.

DV is modeled in our analysis as follows:

DV � 	VS � wS	S � wO	O (1)

Where 	 indicates the difference between options (right minus left op-
tion), and VS, S, and O are variables relating to the standard, self-bonus,
and other-bonus, respectively. More precisely, 	VS � VSR � VSL indi-
cates the standard value difference, where VSR and VSL are the standard
reward values of the right and left options, respectively. VSR (or VSL) was
computed as the product of reward magnitude and probability, wherein
the probability was allowed to be distorted by risk (Platt and Huettel,
2008). We chose to use the Prelec-2-parameter model (Prelec, 1998),
given by p̃ � exp(��log� p), where the left side is the risk-distorted
reward probability, p is a given reward probability, and � and � are two
free parameters fitted by the logit function (see below). For 	S and 	O,
note that only one option had an additional deterministic reward in each
of the other-bonus and self-bonus trials, so the difference was the mag-
nitude but with a sign (direction), either SR or �SL (OR or �OL) when it
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was attached to the right or left option, respectively. Therefore, their
respective weights, wS and wO, indicated the extents of modifications in
the choice behavior by 	S and 	O, respectively.

Model fitting and selection. The maximum likelihood approach was
used to fit the models to the behavioral data. For individual subjects, we
minimized the sum of the negative log-likelihood of choice probabilities
(MATLAB command fminsearch; MATLAB R2012b, The MathWorks)
for the options chosen by each subject (i.e., the probabilities q and 1 � q
when the right and left options were chosen, respectively). Each minimi-
zation was repeated 50 times using randomly generated initial values.
Free parameters resulting in a minimal summed negative log-likelihood
were then selected, corresponding to the best fit of the model.

To select the best model at the group level while taking into account
the different number of free parameters between the models, a paired t
test was used to compare differences in the distribution of Akaike’s in-
formation criterion (AIC) values obtained for the different models (Su-
zuki et al., 2012). First, to use the expected reward as a probabilistic
outcome and include risk parameters (i.e., using rather than p), we ex-
amined the fit of our model (VS � mp̃) for standard trials in comparison
with that of four reference models in which VS was replaced with m, p, p̃,
or mp. Among the four reference models, the first three were used to test
whether the reward magnitude or probability contributed to the ex-
pected reward, whereas the last reference model, mp, was used to test the
inclusion of risk parameters. In the group-level comparison, the original
model was the best model with statistical significance (Table 1). There-
fore, we adopted VS � mp̃ in our analyses. Second, to further ensure our
main model (DV � 	VS � wS	S � wO	O), we compared the fit of
our main model to that of three reference models, each of which lacks one
of the three variables of the main model: 	VS, 	S, or 	O. By the group-
level comparison of AIC value distributions, we found that the main
model was superior to any of the three reference models. These results
were also confirmed by using the Bayesian information criterion (BIC)
for model selection (Table 1).

We also examined the models’ fit to the behavior of each individual
subject to ensure that each of the main variables in the behavior model
had a considerable effect on the individual behavior. First, for standard
trials, the AIC values of the main model (VS � mp̃) were always the
smallest compared with those of the m, p, p̃, and mp models for all
individuals, indicating that all individuals used both reward magnitude
and probability in their valuation. Second, we compared the fit of the
main model with that of the models omitting one of 	VS, 	S, or 	O for
all the trials of each subject. We found that the main model’s fit was better
for all individuals in comparison with the models omitting 	VS or 	S.
However, for the case of 	O, we found that, for seven subjects, 	O in the
main model had no significantly positive effect compared with the model
omitting 	O and these subjects were excluded in our main analysis of
BOLD signals.

We conducted several other verifications of the main model, including
interaction terms, offset term, and accumulated payment for other’s re-
ward, and also testing the effect of mere presence of a bonus. All of these
verifications supported using the main model in this study, and these
results are briefly summarized here. A model with an additional interac-
tion term on DV (wVSS	VS 	 	S � wVSO	VS 	 	O) was significantly

worse than the main model in fitting the behavior (t(42) � 5.276, p �
0.001 by AIC). A model with an additional constant (offset) was not
superior to the main model (t(42) � 1.321, p � 0.192 by AIC), but was
significantly worse than the main model (t(42) � 5.522, p � 0.001 by
BIC), suggesting that the main model was at least not inferior. A model
with a term of accumulated payment, � wAOAO 	 	O was significantly
worse (t(42) � 3.117, p � 0.003 by AIC, where AO indicates the accumu-
lated payments for other). We tested this because this term might affect
the behavior, decreasing the selection of the option with the other-bonus
as the payment accumulated. Investigating whether the mere presence of
bonus (i.e., zero magnitude of reward) affects the behavior revealed that,
in the trials with additional zero rewards, the main model was better (t(42)

� 4.664, p � 0.001, t(42) � 14.805, p � 0.001 by AIC, respectively) than
two models with the effect of the mere presence of bonus (adding either
the term w
0�	
0� or the term w
0�S

	
0�S � w
0�o
	
0�O to the DV), where

	[0] � 1 or 0 if the zero reward appeared on the right or left option and
the subscripts S and O indicate the self- and other-bonus, respectively.

Signed effective value. We use signed effective value to indicate the link
between an offered bonus value and a final decision for our BOLD anal-
yses. Even for the same offer, the effect of the offered value on the choice
(i.e., the amount of change in choice probability due to addition of the
offer) may vary depending on the standard value difference (	VS) in the
particular trial. This is because of the nonlinearity of the logit function
connecting a decision value to choice probability (q). For this reason, the
variable signed effective value was defined as a second-stage variable that
represents the effective impact of the offer (the first stage) on the choice
(the third stage).

First, given a trial with a particular standard value difference (	VS), we
assessed the effect of an offered value on choices. This was done using the
(choice) effectivity, which is defined as the derivative of the choice prob-
ability (q) with respect to 	VS and quantifies how the offered value affects
the choice as follows:

effectivity �

q
Z�


Z
�

Z�	VS

(2)

Then, the signed effective other-bonus value is formulated as the product
of the signed other-bonus value (signed with respect to choice, e.g.,
wO	O for the other-bonus) and the effectivity as follows:

signed effective other-bonus value � wO	O 	

q(Z)


Z
�

Z�	VS

(3)

Therefore, the signed effective other-bonus value corresponds to the
first-order Taylor expansion term for the variable 	O at Z � 	VS in the
logit function. Similar calculations have been used in previous model-
based fMRI studies (Bornstein and Daw, 2012, 2013), which also esti-
mated the dependent variables in nonlinear equations by using the
first-order Taylor expansion term. Analogous formulations and termi-
nology were also used for the self-bonus value, such as the signed effective
self-bonus value as follows:

wS	S 	

q
Z�


Z
�

Z�	VS

Further confirmations for similar behaviors in SVO groups. Even though
the two groups of subjects responded differently to the SVO question-
naires, they behaved similarly in our tasks, as indicated by our finding
(see Results) that the behavioral weight for the other-bonus was not
significantly different between the two groups. For further confirmation,
we conducted two additional analyses (Table 2). The first analysis exam-
ined the proportion choosing the option with the other-bonus in all
other-bonus trials to determine whether the behavior in our task was
different between the two groups. This examination was also conducted
for smaller subsets of the trials (subsets I and II). Subset I was trials with
a conflict between reward gain to the self and others: the trials in which
the standard value of the option attached with other-bonus was smaller
than that of the option without the other-bonus. Subset II contains the
trials in which the two options are similar in nature to those in the SVO

Table 1. Results of model selection

Comparison of the main model with models dropping one variable each
Drop 	VS Drop 	S Drop 	O Main

AIC 1.302 � 0.050 0.692 � 0.123 0.540 � 0.143 0.509 � 0.140
Comparison

with Main
t(42) � 36.149,*1 t(42) � 14.401,*1 t(42) � 5.746,*1 –

Selecting the best model for standard value
Vs � mp Vs � Vs � p̃ Vs � p Vs � m

AIC 0.819 � 0.202 0.810 � 0.181 0.829 � 0.167 1.343 � 0.066
Comparison

with Main
t(42) � 9.187, *1 t(42) � 12.899, *1 t(42) � 13.495, *1 t(42) � 34.672, *1

The Main model (DV � 	VS � wS	S � wO	O, where VS � p̃ and p̃ � exp
 � �log�p�) was
selected based on AIC value. The main model was chosen based on consideration of DV (dropping each term) for Vs

(Vs � mp, Vs � Vs � p̃, Vs � p, and Vs � m) and other models (see Materials and Methods). We found that the main
model was better than any of those models, which justified the use of the main model in this study. *1; p � 0.001.
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questionnaire. These trials were selected as follows: (1) all other-bonus
trials in our task and all pairs of options (prosocial vs individualistic
option) in the SVO questionnaire were projected onto a 2D map with the
self-regarding difference on the x-axis and the other-regarding difference
on the y-axis; (2) in this map, a wider range was covered by our task than
by the SVO questionnaire, so (3) we selected the other-bonus trials in the
range of the SVO questionnaire on both the x- and y-axes.

In the second analysis, we investigated whether the two groups of
subjects behaved differently in the responses to the SVO questionnaire
using models based on the behavior weights estimated from our task. For
this, we set two models that would approximately correspond to two
original SVO classifications: an “SVO prosocial” model that used the
weights of both wS and wO, and an “SVO individualistic” model that used
only wS (setting wO � 0). Using logistical function analysis, the negative
log likelihoods of the fit by each model to the behavior in the prosocial
and individualistic group are shown in Table 2.

fMRI
Data acquisition and preprocessing. The fMRI images were collected using
a 4 T whole-body MRI system (Agilent Technologies) with a transverse
electromagnetic volume coil as the transmitter (Takashima Seisakusho)
and a 16-array head-shaped coil as the receiver (Nova Medical). For
subjects positioned in the scanner, visual input was provided via a fiber-
optic goggle system (Avotec) that subtended 25° � 19° of visual angle,
and the subject used a button box to make their responses. The BOLD
signal was measured using a two-shot T2*-weighted echo planar imaging
(EPI) sequence (230 volumes for each block, TR � 2202 ms, TE � 20.5
ms, FA � 64°). Twenty-five axial slices (thickness � 3.0 mm, gap � 1
mm, FOV � 192 � 192 mm, matrix � 64 � 64, thus resulting in voxel
size � 3 � 3 � 3 mm) parallel to the AC-PC plane (AC: anterior com-
missure; PC: posterior commissure) were acquired per volume. The start
of an experimental task was synchronized with the first EPI acquisition
timing. Before, after, and between the functional runs, a set of high-
resolution (1 mm3) and a set of low-resolution (1.72 mm3) whole-brain
anatomical images were acquired using a T1-weighted 3D MPRAGE
pulse sequence (TI � 500 ms, FA � 15°, TR � 9.5 ms, TE � 3.7 ms for the
high-resolution scans or 2.5 ms for the low-resolution scans, TR � 7.3
ms). The low-resolution anatomical imaging slices were parallel to the
functional imaging slices and were used to aid in coregistering the func-
tional data to the high-resolution anatomical data. A pressure sensor was
used to monitor and measure the respiration signal, and a pulse oximeter
was used to measure the cardiac signal. The respiratory and cardiac sig-
nals were used in postprocessing to remove physiological fluctuations
from functional images (Hu et al., 1995).

Functional and anatomical images were mainly analyzed using Brain
Voyager QX 2.8 (Brain Innovation; RRID:SCR_013057). Functional im-
ages for each subject were preprocessed, which included slice time cor-
rection, 3D motion correction, spatial smoothing with a Gaussian kernel
(FWHM � 8 mm), and high-pass temporal filtering (three cycles per run
length). Anatomical images of each subject were transformed into the
standard Talairach space (Talairach and Tournoux, 1988). Functional
images were then normalized and resized according to the transformed

structural images and thus transformed into the standard Talairach
space. Then, images from all scanning sessions were connected.

Generalized linear model analysis. We used a so-called model-based
analysis (O’Doherty et al., 2007) to analyze the BOLD signals in both
control and main tasks, using generalized linear model (GLM) regression
with two levels of analysis as follows. At the first level, we submitted the
BOLD signals of an individual subject into the GLM. When generating
the GLM regressors, we used the behavioral weights of our model, which
were estimated by fitting to the trials in fMRI experiment of each indi-
vidual subjects and the estimated behavioral weights were also used as a
covariate at the second-level analysis.

Using model-based analysis, we examined computations of social
value conversion in three essential stages. The first and third stage corre-
spond to the input and output stages of social value conversion, respec-
tively, whereas the second stage links the two stages. A variable in the first
stage, called offered value (e.g., wO�	O�, offered other-bonus value) in-
dicates the value of the possible outcome (�	O�) to others before one’s
choice that would affect the others’ outcome. The variable in the second
stage is called signed effective value (see “Signed effective value” section).
The variable in the third stage is the DV (Eq. 1), which is assumed to
determine the choice (or choice probability) given by the value of the
chosen option minus the value of the unchosen option.

Therefore, we created subject-specific design matrices containing the
following regressors for the GLM. There were 12 regressors for the vari-
ables of no interest. Six regressors encoded the average BOLD responses
for the onset and period of the DECISION, ISI, and OUTCOME phases,
where the DECISION phase was defined as the period from the onset of
CUE until the subject responded in the RESPONSE period and the other
two phases were defined as shown Figure 1A. Six motion correction
parameters to account for motion effects, and the outcome for the stan-
dard reward in each trial (1 when rewarded and 0 when not, in the
OUTCOME phase) were also included. There were five regressors for the
variables of interest, (1) the decision value (DV, on the axis of the chosen
minus unchosen option); (2) offered other-bonus value, wO

i O, and (3)
signed effective other-bonus value, wO

i 

q � 
	VS�	O (Eq. 3), only for
other-bonus trials; (4) offered self-bonus value, wS

i S, and (5) signed ef-
fective self-bonus value, only for self-bonus trials. All regressors for the
variables of interest were modeled in the DECISION phase. All regressors
of interest were mean-corrected, normalized, and convolved with a ca-
nonical hemodynamic response function before being entered into GLM
analysis.

The estimated effect sizes or their contrasts from the first-level GLM
were entered into a whole-brain random-effects analysis to extract sig-
nificant brain activations for each regressor in group-level statistics (i.e.,
groupwise one-sample t test). In the random-effects analysis, we also
included a covariate for examining relationships with individual variabil-
ity in the behavioral weights. Specifically, we included wO

i for offered and
signed effective other-bonus values and wS

i for offered and signed effec-
tive self-bonus values. The significance of these covariates was tested by t
test (against a null hypothesis of zero estimated effect size). The brain
regions with significant effect sizes for each regressor were reported based

Table 2. Prosocial and individualistic groups behaved similarly within our task

Prosocial subjects Individualistic subjects Prosocial versus individualistic

Proportion choosing the option with the other-bonus reward
All trials 0.550 � 0.049 0.553 � 0.028 t(31) � 1.572, p � 0.126
Subset I 0.388 � 0.053 0.379 � 0.032 t(31) � 0.333, p � 0.741
Subset II 0.722 � 0.1666 0.707 � 0.176 t(31) � 1.341, p � 0.190

Negative log-likelihood of the responses of the SVO questionnaire
SVO prosocial model 0.637 � 0.104 0.707 � 0.090 Better fitted to prosocial subjects (t(20) � 8.879, p � 0.001)
SVO individualistic model 0.812 � 0.112 0.604 � 0.060 Better fitted to individualistic subjects (t(11) � 3.036, p � 0.039)

Two additional tests that confirmed similar behaviors in our task between the prosocial and individualistic subjects, but distinct behavior in SVO questionnaire responses (for details, see Materials and Methods). In the first test for the behavior
in our task, there was no difference between the two groups of subjects in the proportion choosing the option with other-bonus in all (other-bonus) trials, and even two types of subset trials (subsets I and II). In the second test for distinct
behavior in the questionnaire responses, we employed a logistic regression analysis to the responses in the SVO questionnaire, devising corresponding SVO prosocial or individualistic model (see Materials and Methods). We found that the
SVO choices by the prosocial and individualistic subjects were better fitted by the corresponding SVO model than by the other model. Therefore, whereas this confirms that their SVO choice behavior matched with the corresponding SVO
model, it clearly indicates that the individualistic subjects behaved differently regarding other-bonus between our task and the questionnaire. Although they appreciated other-bonus in our task (as shown by their w0 being significantly
larger than zero), they instead ignored them in their SVO choices.
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on corrected p-values ( p � 0.05), using familywise error (FWE) correc-
tion for multiple comparisons; we first thresholded contrast maps at p �
0.005 (i.e., uncorrected) and then estimated corrected p-values by per-
mutation test (5000 permutations) using PALM software (FMRIB, Uni-
versity of Oxford, https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PALM) (Winkler
et al., 2014). The coordinates reported in Tables 3 and 4 for a given cluster
were those of the highest activated voxel within it. To report the coordi-
nates for a given anatomic brain region, such as the rTPJ and ldlPFC, we
further used a higher-values-first watershed searching algorithm by
BVQX tools (version 0.8d) of Brain Voyager to identify the local maxima
peak in the respective brain region (thus, the peaks reported in the text
were not necessarily the same as reported in the tables).

Trial-by-trial GLM analysis. Trial-by-trial GLM analysis (whole-
brain) was performed to examine the BOLD signal changes on a trial-by-
trial basis for each subject (Fig. 3B) (Gläscher, 2009). This GLM analysis
focused on the DECISION phase in each trial; thus, the regressor of
interest encodes 1 for the DECISION phase of the trial, whereas any other
periods or trials were encoded by 0. To conduct the trial-by-trial GLM
analysis for the results shown in main Figure 3B, we used the leave-one-
out, cross-validated region of interest (ROI). For each subject, we ob-
tained the cross-validated ROI and then extracted the BOLD signal
changes in each trial. For each subject, we used z transformation to nor-
malize the BOLD signal changes across all trials (subtracting the mean and
dividing by the SD) and binned them separately for each trial type as low,
medium, or high (corresponding to the 33rd, 66th, and 100th percentiles,
respectively) to obtain the individual’s binwise mean BOLD signal changes.
Then, the mean and SEM of the normalized BOLD signal changes in each bin
were computed across subjects. We investigated whether the BOLD signal
changes increased with the order of the bins by Page’s test.

Extraction of ROIs. The ROIs were extracted as 8-mm-diameter
spheres with centers at the local maxima peaks within the clusters of GLM
activations. The local maxima peaks were obtained by a higher-values-
first watershed searching algorithm in BVQX tools. To extract cross-
validated BOLD signals, we used a previously reported leave-one-out
procedure (Gläscher et al., 2009) to provide an independent criterion for
ROI selection and thus ensure statistical validity (Kriegeskorte et al.,
2009). We reestimated our second-level analysis n times (where n equals

the number of subjects), leaving out a different subject each time. Start-
ing at the peak voxels for the focal signal, we selected the nearest activated
voxels ( p � 0.005, uncorrected) in these cross-validation second-level
analyses. The selected voxel was defined as a cross-validated ROI.

Analysis of rTPJ and ldlPFC responses while controlling the behavioral
effects. For this reanalysis of the BOLD signals, we controlled the behav-
ioral effect to be comparable between the other-bonus and self-bonus
values by selecting a subgroup of subjects and using a subset of the trials.
For this purpose, we down-sampled both the pool of self-bonus trials and
the pool of subjects to analyze the BOLD signals of self-bonus trials in
which the behavioral effect was reasonably comparable to that of other-
bonus trials.

First, we took the ratio of behavior weights of the other-bonus relative
to that of the self-bonus (i.e., wO/wS), and noted that the range of this
ratio for all the fMRI subjects (n � 36) was �0.5, specifically, from 0.012
to 0.965, mean � 0.426, SD � 0.241. Therefore, we decided to exclude
the trials with a self-bonus magnitude equal to 20, which allowed us to
control the maximum of the self-bonus and other-bonus as 10 and 20,
respectively, and to have their ratio be 0.5. Second, we sorted the subjects
in order of their ratio and excluded subjects one by one from the low end
of the ratio and monitored the mean of the ratio of the remaining sub-
jects. We stopped excluding subjects when the mean of the ratio first
became close to 0.5 (mean � 0.509, SD � 0.205, from 0.224 to 0.965).
The number of remaining subjects was 28. Therefore, with the subsam-
pling of the self-bonus trials and the remaining 28 subjects, we performed
BOLD signal reanalysis for trials in which the behavioral effect was com-
parable between the other- and self-bonus.

In the reanalysis, our GLM was in the same form as the original GLM
in our main analysis except that the regressors for the self-bonus value
were modified to treat the trials having a self-bonus of only 10 or 0 points.
Analyzing the corresponding effect sizes in ROIs (generated by the acti-
vations in Table 3), we found that activations in the rTPJ remain signif-
icant (t(27) � 3.088, p � 0.005) for the other-bonus value, but not for the
self-bonus value (t(27) � �0.686, p � 0.498), with a significant difference
between the values (t(27) � 3.139, p � 0.004). We also found activation in
the left dlPFC remained significant for both the self-bonus and other-
bonus values (t(27) � 3.587, p � 0.001, t(27) � 3.047, p � 0.005, respec-
tively) and with no significant difference (t(27) � 0.147, p � 0.884).

Table 3. Areas exhibiting significant changes in BOLD signals by GLM analyses

Activated clusters LR x y z BA k corrected p

DV
mPFC/medial frontal gyrus — 0 59 4 10 450 0.035
Middle temporal gyrus R �60 �4 �2 21 411 0.034

Self-bonus
Precuneus/inferior parietal lobes R 9 �70 37 7 7035 0.000
rdlPFC/dmPFC/medial frontal gyrus R 9 26 37 6 2041 0.000
Cingulate gyrus LR 6 �31 28 23 1459 0.000
ldlPFC/middle frontal gyrus L �27 50 16 10 231 0.036

Other-bonus
Precuneus/TPJ/middle temporal gyrus/

inferior parietal lobes
R 33 �64 28 39 1473 0.016

ldlPFC/middle frontal gyrus L �39 44 10 10 954 0.022
dmPFC/medial frontal gyrus R 9 17 49 6 564 0.035

Signed effective other value
Insula/inferior frontal gyrus * R 36 �4 �11 21 59 0.037

Conjunction of self and other-bonus value
Precuneus/inferior parietal lobes R 28 �65 30 7 1418
ldlPFC/middle frontal gyrus L �39 44 16 10 270
dmPFC/medial frontal gyrus R 11 16 45 6 535

Contrast of self and other- bonus value
TPJ R 60 �58 31 10 179

Activated clusters of the variable were observed by voxelwise GLM analysis of BOLD signals, p�0.05, FWE-corrected
by permutation test (cluster-defining threshold: p � 0.005) (Winkler et al., 2014). For the brain regions marked
with asterisks, activated clusters were observed by the corresponding covariate of the variable in the second-level
analysis. Activations in a whole-brain voxelwise conjunction (Nichols et al., 2005) was extracted by taking logical
AND over the two activations (obtained by thresholding at uncorrected p � 0.005) with the same statistical crite-
rion. Activation by a whole-brain voxelwise contrast for offered other-bonus � self-bonus was also obtained using
the same statistical criterion. The stereotaxic coordinates are in Talairach space (for details, see “GLM analysis”
section). BA, Brodmann’s area; BOLD, blood-oxygen-level dependent.

Table 4. Areas exhibiting significant changes in BOLD signals by voxelwise PPI
analyses

Brain region BA Hemi x y z Cluster size Corrected p

ALL subjects
rAI � signed effectivity of other-bonus value on mPFC responses

10 - 1 57 4 23 0.018
rTPJ � effectivity of other-bonus value on rAI responses

10 R 30 �10 �8 27 0.002
ldlPFC � effectivity of other-bonus value on rAI responses

13 R 48 5 �11 31 0.008
ldlPFC � offered self-bonus value on mPFC responses

10 R 9 47 �5 17 0.009
dmPFC � offered self-bonus value on mPFC responses

10 R 9 62 4 32 0.008
Prosocial subjects

ldlPFC � offered other-bonus value on mPFC responses
10 R 3 56 1 56 0.042

ldlPFC � offered self-bonus value on mPFC responses
10 L �12 41 10 73 0.002

Individualistic subjects
rAI � signed effectivity of other-bonus value on mPFC responses

10 L �3 65 10 12 0.009
ldlPFC � offered self-bonus value on mPFC responses

9 R 12 41 10 23 0.003

Activated clusters significant at the p � 0.05 level (FWE-corrected), using voxelwise PPI with SVC at the cluster level
by permutation test within the corresponding target ROIs (e.g., indicated as “on XX responses,” XX � ROI; for
details, see Materials and Methods). The rest of table format is the same as for Tables 3. BOLD, Blood-oxygen-level
dependent. Side remarks: no cluster survived for the case of, 
rTPJ � offered other-bonus value� in all subjects or
each group, 
ldlPFC � offered other-bonus value� in all subjects or the individualistic group, or for the case of

rAI � signed effectivity of other-bonus value� in the prosocial group (none of them was shown in the table above).
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Analysis of the effect size covariate with the individuals’ behavioral vari-
ability. For the results shown in Figure 3F, we first used the leave-one-
out, cross-validated ROI of the right anterior insula (rAI) and extracted
the BOLD signal by averaging the signal from all voxels in the ROI from
the left-out subject. The effect size was estimated by regressing this BOLD
signal in the original GLM. Second, to investigate the group-level vari-
ability of the effect sizes in relation to behavior weights (e.g., wO

i ), we
calculated Pearson’s correlation coefficient between the corresponding
variables and tested the corresponding statistical significance by t test.

Psychophysiological interaction (PPI) analysis. We conducted two types
of PPI analyses: ROI PPI and voxelwise PPI (Friston et al., 1997; O’Reilly
et al., 2012). In the former, the target brain region was determined based
on the activations from the earlier GLM analyses (Table 4). We chose to
use both PPIs for clarity because they complement each other. ROI PPI
probed the significantly activated regions by using the interaction term to
specifically target the relationship of the two activated brain regions ob-
tained from our GLM results with a hypothesized psychological seed.
Voxelwise PPI probed the activated regions by using the interaction term
for each voxel, allowing us to examine the activation including the re-
gions surrounding the target brain area. We could thus examine the
overlap of the significant activations from the voxelwise PPI analysis with
the activations from the original GLM.

The PPI regressors were constructed as follows. First, we determined
each ROI with respect to a variable of interest based on the group-level
activation maps generated from the GLM analysis. We then extracted the
averaged BOLD time courses within a given ROI for each subject based
on their preprocessed BOLD signals. These extracted signals were used as
the signals of the physiological seed. We estimated the signals by decon-
volving the time course signals with a canonical hemodynamic response
function. Together with a given psychological seed of the variable of
interest, we generated the interaction term (i.e., the variable of main
interest). We first normalized each of the physiological and psychological
terms to [0, 1] and then multiplied them together, further orthogonaliz-
ing the product to each of the two first-order terms. Third, the three
terms (the interaction and the two first-order terms) were mean-
corrected and convolved with a canonical hemodynamic response func-
tion. In both PPI analyses, to guard against possible confounding effects,
we included not only the first-order terms of the interaction term as
usual, but also other regressors, such as the signed effective other-bonus
value.

For voxelwise PPI, the maps were analyzed as random effects by t test.
The significant activations were determined and reported as p � 0.05,
using small volume correction (SVC; the target ROI of the corresponding
PPI defined the SVC ROI) and using FWE correction for multiple com-
parisons by permutation test. For ROI PPI, we determined the target ROI
based on the significant brain activations found by the original GLM
analysis and then conducted the PPI analysis. The mean and SEM of the
effect size in the target ROI was computed across subjects and the statis-
tical significance was tested using a one-sample t test against a null hy-
pothesis of zero mean. The second-level covariates in the original GLM
were also included in the both types of PPI analysis.

Dynamic causal modeling analysis. Dynamic causal modeling (DCM;
by SPM12, http://www.fil.ion.ucl.ac.uk/spm/, RRID:SCR_007037)
(Friston et al., 2003) was used to analyze the coupling directions and
structures over the rTPJ, ldlPFC, rAI, and medial prefrontal cortex
(mPFC) signals in relation the three-stage processing revealed by our PPI
results. For each subject, we extracted average activation time courses
from an 8-mm-radius sphere around the peak of each ROI. By way of
example, using cases of Figures 4C and 5, we constructed eight models
including a main model based on the three-stage processing and seven
models with possible revised directions of connectivity (Fig. 5A). In this
DCM analysis (and also all other DCM analyses), we set offered other-
bonus value for the rTPJ and ldlPFC signals as driving inputs because we
were interested in how the other-bonus value is propagated in social
value conversion. Following our PPI results, we set as modulatory inputs
the effectivity of other-bonus value for the rTPJ-rAI and ldlPFC-rAI
connectivity and the signed effectivity of other-bonus value for the rAI-
mPFC connectivity. Second, we performed random-effects Bayesian
model comparison to identify which of the eight models best fit our

dataset (Stephan et al., 2009). We calculated the exceedance probability
for each model relative to the seven other models (Fig. 5B). Third, a
model family comparison analysis (also used in Fig. 8) was also con-
ducted similarly using a random-effects Bayesian model selection proce-
dure (Stephan et al., 2009). Further, we also used Bayesian model
averaging to examine the estimate of the connection parameters (Penny
et al., 2010). The parameters over all models in the model space were
averaged using weights corresponding to the posterior model
probabilities.

Comparison between prosocial and individualistic subjects. To explore
possible between-group differences, we added the SVO classification
variable as another covariate for the brain activations. The effect sizes and
statistical tests of the covariate and constant terms are reported for the
rAI responses in the prosocial and individualistic groups (Fig. 6B).

To analyze coupling, we examined each of the PPI effects in each SVO
group by both voxelwise and ROI analyses (Figs. 7 A, B, respectively).
Repeated-measures ANOVA was used to identify the between-group dif-
ference in SVO, with the seed regions as a within-group factor. Further,
to control for the effects of the self-bonus value, we performed a control
PPI using [rAI � signed effective self-bonus value] on the mPFC re-
sponses (separately for each group) and then explored the effect sizes of
the ROI PPI results in the rAI and ldlPFC cases for both other-bonus and
self-bonus values on a 2D map (Fig. 7C; details in the following section).
DCM analyses were also conducted to examine each SVO group sepa-
rately (Figs. 7 D, E, 8C–E).

Circular statistical analysis for SVO PPI results. To examine the nature
or the relative difference between the other-bonus and self-bonus values
between SVO groups in Figure 7C, we defined a vector for each subject,
starting from the self-bonus and ending at other-bonus point. We then
obtained the mean vector for each group. Using the projection from each
vector onto the group mean vector, we assessed the major component
(the value of the projection) of each subject’s vector and examined the
group effect across the subjects in each group, using the t test. The dif-
ference between the self-bonus and other-bonus values was significant in
the individualistic subjects (t(11) � 2.254, p � 0.046, p � 0.027 by boot-
strap test), but not in the prosocial subjects (t(20) � 0.913, p � 0.372, p �
0.352 by bootstrap test) and the difference in differences between the two
groups was significant (t(31) � 2.145, p � 0.039, p � 0.017 by bootstrap
test). In addition, we traversed the vectors within each group to the origin
and examined their vectorial changes; the distribution over the vector
directions was examined by the Rayleigh test within each group and
compared between the two groups by the Watson–Williams two-sample
test. The vector difference in the effect sizes was significantly nonuni-
formly distributed across the individualistic subjects (z � 3.054 p � 0.044
by Rayleigh test), but not across the prosocial subjects (z � 0.079, p �
0.926). Focusing on angular changes, we also observed that the difference
between the two groups was significant (F � 4.255, p � 0.026 by Wat-
son–Williams two-sample test).

Analysis of a larger sample of individualistic subjects. The number of the
individualistic subjects was relatively small (n � 12) in the main experi-
ment, so we conducted two additional analyses and obtained essentially
the same results with a larger sample size, both when adding four new
individualistic subjects (n � 16, additional sample I, first approach) and
when further including the seven originally excluded subjects (n � 23,
additional sample II, second approach).

In the first approach, we added four new individualistic subjects for
analysis. We scanned seven new, individualistic subjects (four female; all
right-handed; age, 20 –22 years; range, 21.0 � 1.00 years) by the same
experimental procedure as in the main experiment except that, before the
experiment, they were prescreened using the SVO questionnaire to en-
sure that they were individualistic. Two of them were excluded because
we found that the signal-to-noise ratio (SNR) of their fMRI data was
significantly lower than the SNR of the data reported in the main exper-
iment (by one-sample t test, p � 0.001). Among the remaining five
subjects, one subject’s choice behavior was found to be insensitive to the
others’ reward and therefore this subject was excluded, as was done in the
main experiment. Therefore, the remaining four individualistic subjects
(three female; age, 20 –22 years; 21.3 � 0.96 years) were added to the
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original 12 individualistic subjects and we then performed our analyses
(additional sample I in Table 5).

In the second approach, we reanalyzed the data by adding some of the
originally excluded subjects to the 16 subjects in the first approach (re-
sulting in n � 23, additional sample II). We originally excluded seven
subjects in the main experiment and one subject in the additional exper-
iment because their choice behavior was not significantly positively in-
fluenced by the other-bonus, despite the intention of this study and our
experimental design (our preexperimental procedure). More precisely,
among the eight subjects, we found one subject’s choice behavior was
significantly negatively influenced by the other-bonus, so that subject
was excluded in the following. All of the remaining seven subjects were
individualistic according to the SVO classification and their behavior was
not found to be influenced by the other-bonus in our task. Nevertheless,
their social value conversion process may still occur and thus may possi-
bly be detected in BOLD signals. We therefore added the seven subjects to
the 16 individualistic subjects in the first approach and conducted our
analyses (additional sample II in Table 5).

Bootstrap test. We used a bootstrap test to further support our statisti-
cal examinations, for instance, to guard against potential confounds such
as outlier samples, in the analysis of both behavior and brain signals
because the bootstrap procedure is distribution independent and thus
expected to be less susceptible to different distribution shapes (DiCiccio
and Efron, 1996). We primarily used bootstrap tests to estimate the dis-
tributions of group means (Efron and Tibshirani, 1993; Adèr et al., 2008).
We used the following procedure: resample the original data (with re-
placement), repeat the resampling to obtain a set of bootstrapped sam-
ples of the same size as the original sample, repeat this resampling
procedure 10,000 times to obtain 10,000 bootstrapped sets, and then
compute their means to obtain the bootstrapped estimated distribution
of the means. We used the estimated distribution to perform bootstrap
hypothesis testing, finding the probability that the mass differs from zero
(in a two-tailed manner). This approach is similarly applied to the case
examining the difference between two original samples. For the correla-
tion analysis, similar estimations were applied to the distribution of cor-
relation coefficients.

Results
Our experiment comprised a main task and a control task (Fig. 1;
for details, see Materials and Methods). The main task consisted
of standard trials interleaved with other-bonus trials, whereas the
control task consisted of standard and self-bonus trials (Fig. 1B).
The subject repeatedly chose between two options in every trial to
indicate his or her preference. In the standard trial, each of two
options was associated with the subject’s own probabilistic out-
comes (Fig. 1B). An additional number was displayed below only
one of the two options to indicate a bonus to others in other-
bonus trials and a bonus to the self in self-bonus trials (see Ma-
terials and Methods). These bonuses would always be given when
the option was chosen regardless of whether the probabilistic
standard reward was given. The bonus magnitude was controlled
to be moderate relative to the standard reward, so that concerns
about reward allocation balance were minimized in this task.

These settings allowed us to measure the conversion with respect
to proximal self-regarding decision making to avoid interpreta-
tive complications introduced from higher-order processes such
as the balancing of reward allocation between the self and others.

Behavior
We used choice behavior in the standard trial as the reference
condition and assessed modification by other-bonus and self-
bonus to define their bonus values. Choice behavior was signifi-
cantly modified by both the other-bonus and self-bonus, but to a
lesser extent by the other-bonus (Fig. 2). Compared with stan-
dard trials that had a similarly sized value difference between the
two options, the subject chose the option with a bonus more
often than the other option in both other-bonus and self-bonus
trials and this tendency became stronger as the magnitude of the
bonus became larger (Fig. 2A). Given the same face amount,
however, the choices were less strongly modified by the other-
bonus than by the self-bonus. These observations were con-
firmed by an increasing trend in the extent of behavioral change
at the point of indifference to bonus magnitude (Fig. 2B).

We quantified these observations by modeling the choice
behaviors based on the differences in value between standard,
self-bonus, and other-bonus reward, respectively (Eq. 1, DV �
	VS � wS	S � wO	O in Materials and Methods; Table 1 for
model selection and comparisons with other models). The term
for the standard reward was modeled as the standard value dif-
ference between the two options, with its probabilistic nature
incorporated as risk dependency. Both the self- and other-bonus
terms were inserted to the corresponding option with corre-
sponding weights, wS and wO, respectively, where the subscripts
“S” and “O” indicate self and other, respectively. By fitting to the
individuals’ behavior, we found that the estimated weights of
both bonuses were significantly larger than zero (Fig. 2C; statis-
tics are given in the legend). The weight of the other-bonus was
significantly smaller than the weight of the self-bonus (Fig. 2C).
In addition, we confirmed that the choice behavior was not af-
fected by the mere presence of a bonus and that it was not influ-
enced by accumulated payment of the others’ reward (see “Model
fitting and selection” section). In the following BOLD analyses,
the weights estimated from the behavioral regression were used
to define various forms derived from the self- and other-bonus
values.

Neural activation for converting others’ reward to
decision signals
We then analyzed BOLD signals using a whole-brain GLM ap-
proach to examine the value conversion processes in three stages
for signals underlying the decision (i.e., decision value, DV) and
for signals relating to two forms of the other-bonus and self-
bonus value (their offered and effective values).

Table 5. Results in the samples with larger number of individualistic subjects (n � 16, and n � 23) replicate our main results (n � 12)

Main sample (n � 12) Additional sample I (n � 16) Additional sample II (n � 23)

Figure 6B
Effect of covariate t(10) � 0.086, p � 0.934 t(14) � �0.340, p � 0.738 t(21) � 0.435, p � 0.668
Effect of constant t(10) � �2.623, p � 0.026 t(14) � �2.594, p � 0.021 t(21) � �2.207, p � 0.039
Difference with prosocial subjects t(31) � 2.471, p � 0.019 t(35) � 2.470, p � 0.044 t(42) � 2.574, p � 0.017

Figure 7B

rAI � signed effectivity of the other-bonus value� t(11) � 2.325, p � 0.040 t(15) � 2.602, p � 0.020 t(22) � 3.811, p � 0.001

ldlPFC � other-bonus value� t(11) � �0.725, p � 0.484 t(15) � �0.111, p � 0.913 t(22) � 0.146, p � 0.885
2 � 2 repeated-measure ANOVA F � 6.278, p � 0.018 F � 5.670, p � 0.023 F � 8.248, p � 0.007

With the samples with relatively larger number of individualistic subjects (n � 16, adding 4 new individualistic subjects, and n � 23, further including the 7 originally excluded subjects; for details, see Materials and Methods), we confirmed
the findings from the original main samples (n � 12).
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First, we examined brain activations
according to the DV. We found signifi-
cant activation by the DV in the mPFC
and right middle temporal gyrus (rMTG)
(Fig. 3A, Table 3; [x, y, z] � [0, 59, 4] and
[60, �4, 2], respectively (coordinates are
in Talairach space and p � 0.05, FWE cor-
rected; for details, see Materials and
Methods). We confirmed that the mPFC
activation was enhanced with increasing
DV for all three trial types (Fig. 3B). These
two findings on the mPFC responses (cor-
responding to Fig. 3A,B) were also con-
firmed in a variant of the GLM, in which
we changed the regressor of interest from
the DV to the choice probability (center of
activation, [0, 56, 1] in Talairach space,
cluster size � 238, and the increased
mPFC activations with increasing choice
probability for all three trial types, by
Page’s test, standard trial, p � 0.001; self-
bonus trial, p � 0.009, other-bonus trial,
p � 0.024). These results indicate that the
mPFC responses contained the brain sig-
nals for making behavioral choices in our
task, which is generally consistent with
previous findings on activation in the
mPFC and also in the ventromedial PFC
(vmPFC) (Rushworth and Behrens,
2008). We refer to this as mPFC activation
rather than vmPFC activation to err on
the side of caution, partly because the
peak’s z-coordinates was 4, higher than
the AC–PC line; however, we note that the
activation might well be regarded as being
in the vmPFC activation because our acti-
vated were extended to the vmPFC region
(Fig. 3A). Indeed, the z-coordinate of peak
signals close to our activation have often
been called vmPFC responses (Phelps et
al., 2004; Tobler et al., 2007; De Martino et
al., 2013; Liljeholm et al., 2015).

For the offered values (e.g., wOO for other-bonus), we found
that the rTPJ uniquely encoded the other-bonus value, whereas
the ldlPFC was commonly activated by both the other- and self-
bonus value. First of all, the BOLD responses were significantly
correlated with the other-bonus value in the rTPJ and ldlPFC
([57, �61, 34] and [�39, 44, 10], respectively; Fig. 3C) and some
other brain regions (Table 3), including the dorsomedial pre-
frontal cortex (dmPFC, [9, 17, 49]). The BOLD responses that
significantly correlated with the self-bonus value were found in
the ldlPFC ([�27, 50, 16]), right dorsolateral prefrontal cortex
(rdlPFC) ([39, 56, 16]), dmPFC ([9, 26, 37]), and several other
brain regions (Table 3). No brain region showed significant acti-
vation correlated to the covariates of either the offered other- or
self-bonus value.

Using a contrast analysis of the other-bonus with the self-
bonus (other � self), we found that only the rTPJ activation was
unique to the other-bonus value ([58, 58, 30]; Table 3). No brain
region was activated by the contrast of the self-bonus with the
other-bonus (self � other). However, because there was a notable
difference in the above findings in the ldlPFC and rdlPFC activa-
tions, we further conducted contrast analysis in their respective

ROIs and confirmed that the ldlPFC region had significant acti-
vation by only the other-bonus value, whereas the rdlPFC region
had significant activation by both the other-bonus and the self-
bonus value. Using ROIs derived from the activation shown in
Figure 3D (Table 3), we found the effect sizes for offered other-
bonus value were significantly larger than zero (t(35) � 6.272, p �
0.001) in the ldlPFC but not in the rdlPFC (t(35) � 1.254, p �
0.218), with a significant difference between the two sides (t(35) �
3.068, p � 0.004). By contrast, the effect sizes for offered self-
bonus value were significantly larger than zero for both sides of
the dlPFC (left: t(35) � 3.798, p � 0.001; right: t(35) � 3.390, p �
0.002), with no significant difference between them (t(35) �
0.067, p � 0.947). Moreover, using a conjunction analysis (Table
3; Nichols et al., 2005), we found that the ldlPFC activation was
common to the offered other- and self-bonus values ([�44, 43, 21]),
and also activations of several other brain regions including the
dmPFC ([9, 17, 49]), precuneus ([9, �70, 37]), and inferior parietal
lobule (IPL; right, [36, �64, 40]; left, [�42, �49, 40]).

We then addressed the issue of whether these findings might
be due to the difference in the size of the behavioral effect rather
than the difference between rewards to others versus the self,
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Figure 2. Behavioral results. A, The probability of choosing the option on the right side as a function of the standard value
difference (	Vs, right minus left) in the main and control tasks (left and right panels, respectively); the groupwise mean (the
shaded region indicates the SE) is shown separately in each type of trial for different reward magnitudes (different line styles) and
when the bonus was attached to the right or left option (different colors). B, Extent of behavioral change (mean and SE) in the
other-bonus and self-bonus trials (magenta and cyan lines, respectively) versus reward magnitudes. The extent of change is
derived by taking the difference in choice probability between the corresponding sigmoidal choice curve and that of the trial with
zero additional reward at the indifference point (	Vs � 0). *Significant increasing trend by Page’s test: for, self-bonus trials, p �
0.001 and for other-bonus trials, p � 0.001. C, Behavioral weights from model fitting. *p � 0.001, significantly larger than zero
or significantly different by group-level t tests; self-bonus: ws � 1.225 � 0.471, t(42) � 17.041, p � 0.001; other-bonus: wo �
0.388 � 0.367, t(42) � 6.939, p � 0.001; difference, t(42) � 10.824, p � 0.001, paired t test. For the box-plots, red lines in the
boxes indicate the medians; the box limits indicate the top and bottom quartiles; the length of each whisker indicates 1.5 times the
interquartile range; and the red dot indicates an outlier.
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because the self-bonus has a larger effect than the other-bonus for
a given face amount. We addressed this issue for the rTPJ and
ldlPFC activations by reanalyzing the BOLD signals with the sub-
jects and trials selected to control for the size of the behavioral
effect (see “Analysis of rTPJ and ldlPFC responses while control-
ling the behavioral effects” section). Even after controlling for the
behavioral effect size, we confirmed that the activation in the rTPJ
was unique to the offered other-bonus value and the ldlPFC was
common to the offered other- and self-bonus values.

For the second stage, we defined a variable called signed effec-
tive value that links the offered value in the first stage to the final
choice in the third stage, representing the effective impact of the
offer on the choice. We note that even the same offer could have
different impacts on the choice, dependent on the standard value

difference, due to the nonlinearity of the
logit function connecting a final decision
value to choice probability (for details, see
“Signed effective value” section). This ef-
fect could be assessed using the (choice)
effectivity, which is defined as the deriva-
tive of the choice probability with respect
to the standard value difference (Eq 2).
The signed effective value was then for-
mulated as the product of the signed value
and effectivity (Eq. 3). The sign of the
signed effective value indicates the choice.
We found that rAI activation was related
to the signed effective other-bonus via the
weight of the other-bonus as a covariate in
the second-level analysis. Indeed, for both
the self-bonus and other-bonus, we did
not find any significant activation by the
signed effective value alone. However, we
observed a significant activation of the rAI
for only the other bonus via the behavioral
weight wo as a covariate (Fig. 3E: whole-
brain voxelwise activation, [39, �4, �11];
Fig. 3F: ROI analysis with leave-one-out
cross-validation; Table 3). Therefore, we
found that the rAI activations of the
signed effective value covary with the be-
havioral weights across subjects, for in-
stance, suggesting that a subject who
places greater weight on others’ value in
making choices (i.e., with the larger be-
havioral weight) would have a stronger
rAI activation by the signed effective
value. To confirm that the rAI activation
was due to the other-bonus only, we also
verified that there was no significant cor-
relation between the effect sizes of behav-
ioral weight (wS

i ) and the signed effective
self-bonus value in the ROI of the rAI (r �
�0.081, p � 0.638). These results suggest
that the activation of the rAI by the signed
effective other-bonus value reflects or
correlates with individual differences in
converting the others’ reward into
decisions.

In summary, we found brain signals
for three stages of social value conversion:
the offered other-bonus value especially
in the rTPJ and the ldlPFC, the signed ef-

fective other-bonus value covarying with the weight for the
other-bonus in the rAI, and the DV in the mPFC.

Coupling of rTPJ and ldlPFC to rAI responses and rAI to
mPFC responses
We next conducted PPI analyses to determine whether brain ac-
tivation patterns followed our hypothesized processing of the
three stages. We probed for corresponding interactions from the
offered value to the signed effective value, and from the signed
effective value to the DV. For a control, we probed for an inter-
action from the offered value directly to the DV. We report acti-
vation when both of the following two types of PPIs indicated
significant activation (unless explicitly stated otherwise): ROI
PPI, in which the target region is based on the activations from
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summary of GLM activations.
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our GLM results, and voxelwise PPI,
which visualizes the activated region and
provides additional confirmation of the
ROI PPI (in the following, all results by
voxelwise PPI are at the p � 0.05 level,
FWE-corrected unless stated otherwise).
Care must be taken regarding several
points in the PPI analysis. Importantly, we
should note that PPI analysis assesses cor-
relation rather than directionality or cau-
sality. Therefore, to complement our PPI
analyses, we also conducted DCM analysis
as a second, independent method of
analysis.

First, in the interaction of the offered
value to the signed effective value, we
found that both the rTPJ and ldlPFC re-
sponses had an impact on rAI responses,
modulated by the (unsigned) effectivity of
the other-bonus value. We chose the un-
signed effectivity as a psychological seed
because it quantifies possible impacts of a
same offer on different decisions and thus
helps in tracing social value conversion;
this is unsigned because both the rTPJ and
ldlPFC responses were unsigned (not
aligned on choices), and effectivity is used
because it is readily available given the ab-
solute standard value difference between
two options without a final decision (DV).
The impact of an offer may not be appre-
ciable when the standard value difference
is large (i.e., when the unsigned effectivity
is small) because the decision does not
change much in the first place, whereas
the impact may be appreciable when the
standard value difference is small. There-
fore, we performed a PPI analysis of
[rTPJ � effectivity of the other-bonus
value] and [ldlPFC � effectivity of the
other-bonus value] and found that the rAI
activations were significantly correlated
with both of the interaction terms (ROI
PPI: rTPJ seed, t(35) � 2.320, p � 0.026,
p � 0.005 by bootstrap test, [30, �10, �8]
in voxelwise PPI; ROI PPI: ldlPFC seed,
t(35) � 2.171, p � 0.037, p � 0.013 by
bootstrap test, [48, 5, �11] in voxelwise
PPI; Fig. 4A, Table 4). We also conducted
the same PPI analysis with other brain re-
gions that had the activations by the offered value, namely, the
dmPFC, IPL and precuneus, and found that none of them had a
significant impact on the rAI responses.

Second, for the signed effective value to the DV, we found that
rAI responses had an impact on mPFC responses, modulated by
the signed effectivity of the other-bonus value. We chose this as a
psychological seed because the rAI responses were already signed.
Therefore, using the interaction term [rAI � signed effectivity of
the other-bonus value], we found the mPFC activations to be
significant (ROI PPI: t(35) � 2.627, p � 0.013, p � 0.012 by
bootstrap test, [1, 57, 4] in voxelwise PPI; Fig. 4B, Table 4).

Third, we examined as a control whether the responses in the
ldlPFC, rTPJ, and other regions that had activations by the of-

fered value (dmPFC, IPL, and precuneus) directly affected the
mPFC responses. We used the interaction term derived from the
respective response time series (physiological seed) and the offered
other-bonus value (psychological seed). For these (seed region �
offered other-bonus value), we found no significant impact of the
ldlPFC, rTPJ, or any of the other regions’ responses on the mPFC
responses for the other-bonus value (Table 4). Indeed, when we
investigated whether the responses of all those regions directly af-
fected the responses in the rMTG, which was the other region that
had the significant activation by the DV, we found no significant
impact from any of those seed regions’ activations.

These results support our hypothesis of three stages of social
value conversion from the offered value to the effective value and
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other models that had reversed connections over the brain regions (also see Fig. 5). Our DCM analysis included driving and modulatory
inputs (derived from our findings for regional activations and connectivity, respectively), but for visibility, they were not shown in this and
following figures (see Materials and Methods).
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then to the DV; in neural terms, from the rTPJ and ldlPFC re-
sponses to the rAI responses and then to the mPFC responses. For
further verification, we used DCM analysis to examine the direc-
tionality of the interactions among the brain areas of the three
computational stages. The main model with feedforward connec-
tions (Fig. 4C) was selected as the best model compared with
other models involving opposite connections (called the reversed
family; Fig. 5), thus supporting the notion that the three-stage
processing is the dominant interaction among these areas in this
behavioral task.

Finally, to clarify the relationships of the above findings with
the processing of the self-bonus value, we examined additional
PPIs. Because we did not find any significant activations by the
signed effective value of the self-bonus, we examined the impact
of the offered value on the DV; in other words, we investigated
whether the responses to the offered value in the regions that had
the significant activations common to both the other- and self-
bonus values (namely, the ldlPFC, dmPFC, IPL, and precuneus)
directly altered the mPFC responses. We found significant im-
pacts by the ldlPFC and dmPFC responses, but by no other re-
gions. Using the interaction term (ldlPFC � offered self-bonus
value), we found the mPFC activation to be significant (ROI PPI:
t(35) � 2.063, p � 0.047, p � 0.039 by bootstrap test, [9, 47, �5]
in voxelwise PPI at the p � 0.05 level, FWE-corrected; Fig. 4A,
Table 4). Using [dmPFC � offered self-bonus value], we found
the mPFC activation to be significant (ROI PPI: t(35) � 2.617, p �
0.013 and also p � 0.005 by bootstrap test, [9, 62, 4] in voxelwise
PPI at the p � 0.05 level, FWE-corrected; Table 4). These results
indicate that the offered self-bonus value encoded in the respec-
tive ldlPFC and dmPFC responses had a direct impact on the
mPFC responses.

rAI activation differs between prosocial and
individualistic subjects
We tested the hypothesis that variability in the value conversion
process may underlie different sociobehavioral isotypes. To do
this, we investigated whether relative differences in this process
underpin one example of sociobehavioral isotype, namely, SVO,
which is a social preference about resource allocation between the
self and others. Differences in SVO give rise to different behav-
ioral phenotypes, including prosocial and individualistic (self-
ish). Prosocial people prefer to maximize the resource gain for
both the self and others, whereas individualistic people prefer to
maximize gains for themselves (Van Lange et al., 1997; Van

Lange, 1999). Through a postexperiment SVO questionnaire, we
found that 21 subjects were prosocial, 12 were individualistic, and
three were unclassified, largely consistent with the results of pre-
vious studies (Van Lange et al., 1997; Haruno and Frith, 2010).
Although their responses to the SVO questionnaire clearly dif-
fered, the prosocial and individualistic groups behaved similarly
within our task. The behavioral weight for the other-bonus was
not significantly different between prosocial and individualistic
subjects ((t(31) � 0.870, p � 0.391; Fig. 6A, details in the legend).
Two additional tests also supported the finding (Table 2). It is
important to note that the aims are quite different between our
experimental task and the SVO. Our task was designed to exam-
ine social value conversion in proximal self-oriented decision
making (in which the other-bonus was given in addition to the
standard reward to the self in the same option), whereas the SVO
aims to capture individual differences in preference for balancing
reward allocation between the self and others.

To explore possible between-group differences of brain sig-
nals in social value conversion, we first examined the activations
related to the other-bonus values in the rTPJ, ldlPFC, and rAI
(Fig. 3) by entering the SVO classification variable (a binary in-
dicating either prosocial or individualistic) as another covariate
for the ROI GLM second-level analysis of the corresponding
other-bonus value variable, in addition to the original covariate
(weight for the other-bonus). We found a notable difference in
only the rAI, showing significant effects of both the covariates
(weight for the other-bonus: t(33) � 3.517, p � 0.001; SVO clas-
sification: t(33) � 2.142, p � 0.040) mPFC, but no covariate effect
on the ROIs activated either by offered other-bonus value in the
rTPJ and ldlPFC, or by DV in the mPFC.

For further examinations, we reanalyzed the rAI activation
separately for each SVO group by using the signed effective value
of the other-bonus together with the original covariate (weight
for the other-bonus). We found that the rAI activation worked in
an opposing manner between the two groups (Fig. 6B). In our
original all-subject analysis, the rAI was significantly activated by
the signed effective other-bonus value through the weight for the
other-bonus (a covariate in the second-level analysis), but not by
signed effective other-bonus value as a constant in the second-
level analysis. In a comparison between the groups, we found that
the significant effect of the weight for the other-bonus as a cova-
riate remained for the prosocial subjects (t(19) � 2.350, p � 0.030)
but not for the individualistic subjects (t(10) � 0.086, p � 0.934),
with a marginal difference between the groups (t(31) � 1.570, p �
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0.063). By contrast, the constant had a sig-
nificant negative effect in the individual-
istic subjects (t(10) � �2.623, p � 0.026),
whereas the effect tended to be positive
but not significant in the prosocial sub-
jects (t(19) � 1.493, p � 0.152); there was a
significant difference between the groups
(t(31) � 2.471, p � 0.019). These results
suggested an opposing influence of the
rAI activation on decision making be-
tween the groups, such that the increased
rAI activation would promote or suppress
the choice of the option with the
other-bonus.

In the above and following analyses,
one might wonder about the validity of
the results for the individualistic subjects
because the number of the subjects was
relatively small (n � 12). To address this
concern, we conducted two additional
analyses (Table 5; for details, see Materials
and Methods) and obtained essentially
the same results with larger samples, when
adding four new individualistic subjects
(n � 16) or when further including the
seven originally excluded subjects (n �
23).

ldlPFC and rAI coupling to the mPFC in prosocial and
individualistic subjects
We next examined differences between the two groups in the
coupling between these activations, by applying all the PPI anal-
yses described above to each group separately. We found that
impacts of the rAI and ldlPFC on the mPFC responses differed
between the groups (but the impact of the TPJ responses did not).
The mPFC responses were significantly modulated by the rAI
response only in the individualistic subjects ([rAI � signed effec-
tivity of the other-bonus value]), but by the ldlPFC response only
in the prosocial subjects ([ldlPFC � offered other-bonus value]),
supported by voxelwise PPI (Fig. 7A, Table 4) and by ROI PPI
analysis (Fig. 7B). To further examine the between-group differ-
ence, we performed a 2 � 2 repeated-measures ANOVA in the
ROI PPI analysis (two levels of groups [prosocial, individual-
istic] by 2 levels of seed regions [rAI, ldlPFC]). We found a
significant interaction (F � 6.278, p � 0.018; Fig. 7B) but no
significant main effects (F � 0.010, p � 0.923 for prosocial vs
individualistic, F � 1.544, p � 0.223 for rAI vs ldlPFC). These
results suggest a stronger impact of the rAI and ldlPFC re-
sponses on the mPFC responses for the individualistic and
prosocial groups, respectively.

This characteristic remained evident even after controlling for
the responses related to the self-bonus value (Fig. 7C; Materials
and Methods). First, the impacts of the rAI and ldlPFC responses
on the mPFC response for the self-bonus value did not signifi-
cantly differ between the two groups. As shown in Figure 7C, the
prosocial subjects responded similarly in cases with the other-
and self-bonus values, whereas the responses of individualistic
subjects in the other-bonus case were quite different from those
in the remaining three cases (i.e., the individualistic subjects with
the self-bonus value, and the prosocial subjects with the self-
bonus value and the other-bonus value). Using ROI PPI [ld-
lPFC � self-bonus value], we found that the activation was
significant in the prosocial subjects (t(20) � 2.841, p � 0.010 and

p � 0.005 by bootstrap test) and marginally significant in the
individualistic subjects (t(11) � 1.876, p � 0.086, but significant
by bootstrap test p � 0.039), and this was also confirmed as
significant by voxelwise PPI (Table 4). These observations were
further supported by two types of circular statistical analysis of
the directional change in the 2D map at both the group and
individual levels (for details, see “Circular statistical analysis for
SVO PPI” section).

Our DCM analysis further supported these results. First, we
examined by DCM analysis whether the subjects in each SVO
group had differences in connectivity from the ldlPFC to the
mPFC (Fig. 7D). Comparing exceedance probabilities in Bayes-
ian model selection (Stephan et al., 2009), we found that the
three-stage processing together with the connection from the ld-
lPFC to the mPFC was dominant in the prosocial subjects,
whereas the three-stage processing alone was dominant in the
individualistic subjects (Fig. 7E). Next, using Bayesian model av-
eraging, we examined the connectivity strength in each SVO
group (for connectivity from the ldlPFC to the mPFC, and from
the rAI to the mPFC). First, we found that the ldlPFC to mPFC
connectivity was significantly positive in only the prosocial sub-
jects (t(20) � 2.596, p � 0.017, p � 0.001 by bootstrap test; in the
individualistic subjects, t(11) � 1.104, p � 0.293, p � 0.240 by
bootstrap test). Second, we found that the rAI to mPFC connec-
tivity was marginally significant in the individualistic subjects by
t test (t(11) � 2.034, p � 0.067), but significant by bootstrap (p �
0.001), which we take to suggest overall consistency with our PPI
results. Interestingly, this connectivity was also significant in the
prosocial subjects (t(20) � 2.630, p � 0.016, p � 0.001 by boot-
strap test), which notably differs from the PPI results above (Fig.
7B; see Discussion).

We did not find significant between-group differences in the
rTPJ’s impact on the mPFC, or in the rTPJ’s and ldlPFC’s impacts
on the rAI. First, the PPI effects of rTPJ ([rTPJ � offered other-
bonus value]) on the mPFC was not significant within each group
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different between prosocial and individualistic subjects (t(31) � 0.870, p � 0.391). However, for clarification, stars indicate the
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(brown and pink); therefore, as a second-level analysis, multiple regression was performed on the rAI � sizes using the regressors
of the constant (corresponding to the signed effective other-bonus value) and behavioral weights (covariates) in each SVO group;
left, effect size of the covariate term; right panel, effect size of the constant term (error bar: SE); *p � 0.05, significantly larger than
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or between groups (individualistic: t(11) � �0.489, p � 0.634,
bootstrap p � 0.600; prosocial: t(20) � 1.217, p � 0.238, bootstrap
p � 0.215; difference: t(31) � 1.333, p � 0.192, bootstrap p �
0.278). Second, for the PPI on rAI responses by the rTPJ ([rTPJ �
choice effectivity of other-bonus value]) and by the ldlPFC ([ld-
lPFC � choice effectivity of other-bonus value]), we found no
significant between-group difference by the rTPJ (t(31) � 0.606,
p � 0.549, bootstrap p � 0.649, independent t test) or by the
ldlPFC (t(31) � 0.995, p � 0.328, bootstrap p � 0.422), and no
significant main effects or interaction by 2 � 2 repeated-
measures ANOVA (prosocial vs individualistic, F � 0.717, p �
0.403; rTPJ vs ldlPFC, F � 0.842, p � 0.366, interaction F �
0.608, p � 0.442). We note that the effect of the rTPJ on the rAI
was significant in the prosocial (t(20) � 3.163, p � 0.005, boot-
strap p � 0.002) but not in the individualistic subjects (t(11) �
1.446, p � 0.176, bootstrap p � 0.078), but this finding might be
attributable to the relatively small number of the original individ-
ualistic subjects (n � 12) rather than a significant difference be-
tween the two groups, because the effect became significant with

a larger sample size (n � 23, t(22) � 1.842, p � 0.079, bootstrap
p � 0.024).

These results suggest that the prosocial subjects have a greater
relative reliance on the ldlPFC activation by the other-bonus
value affecting the mPFC response similarly to the self-bonus
value (the process of which is common between the two groups),
whereas the individualistic subjects have a greater relative reli-
ance on the rAI activation by the other-bonus value affecting the
mPFC response.

Before proceeding to the Discussion, we have a cautionary
remark on roles played by feedback processing. This study fo-
cused on feedforward processing of social value conversion
through the areas identified above, however, these should not be
considered as indicating a strict feedforward process for the con-
version. Indeed, we consider it possible to involve feedback inter-
actions among these areas. For this caution, we expanded the
main DCM model (Figs. 4C, 5A) to a family of models having
additional feedback connections (Fig. 8) and then found that the
Main model family with feedback connections was relatively bet-
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ter at explaining the data for both all subjects (Fig. 8B) and each
SVO group (Fig. 8C,D). First, for all subjects, we expanded the
main DCM model (Fig. 4C) to a family of models having different
single bidirectional connections (the Main model family in Fig.
8A). We found that the Main family still had a better fit than the
reversed family (Fig. 8B, left) and, within the Main family, models
with bidirectional connections between the rAI and the mPFC
(e.g., M5, Fig. 8B, right) were relatively better than the other
models at explaining the data. Second, we merged this best model
(M5) with the best model of each SVO group (Figs. 7D, 8C, left)
and found that the respective models (Main and Main � family,
e.g., M5 and M5�) better accounted for the individualistic and
prosocial subjects, respectively (Fig. 8C, right). We also per-
formed the Bayesian model averaging test for this case and the
case below Figure 8D, and the results were similar to the original
analysis. Further verification involved another family, called the
Main�� family, that had a bidirectional ldlPFC-mPFC connec-
tion (e.g., M5�� in Fig. 8D, left). In prosocial subjects, the
Main� and Main�� families were better, whereas in the indi-
vidualistic subjects, the Main model family was better (Fig.
8D,E). In sum, these results suggest that such feedback process-
ing would likely be involved in social conversion of the feedfor-
ward processing identified in this study, and remains a topic for
further investigation.

Discussion
This study aimed to characterize a fundamental brain computa-
tion in human social cognition: How are social signals activated
by rewards to others converted into self-oriented valuation and
decision making? Our experimental paradigm enabled a detailed
examination of social value conversion during proximal self-
oriented decision making, and the isolation of brain signals asso-
ciated with the computational stages from the offered valuation
to the choice-effective valuation and finally to the decision valu-
ation. Further, we indexed differences in value conversion be-
tween SVO behavioral phenotypes. Collectively, our results
reveal a neural circuit for converting the social value of the others’
reward into a self-oriented decision signal and demonstrate that
individual variability in the conversion likely underlies discrete
sociobehavioral phenotypes.

Value conversion signals for three computational stages were
identified: rTPJ and ldlPFC activations for the offered value, rAI
activation for the signed effective value, and mPFC activation for
the integrated DV. These value conversion signals can help in
interpreting the neural activation patterns observed in various
social contexts in relation to a broader understanding of their
functions (Suzuki et al., 2012; Stanley and Adolphs, 2013; Tusche
et al., 2016). For example, rTPJ activations are generally consid-

ered critical for inferring others’ mental states, as in theory of
mind and perspective taking (Saxe, 2010; Lee and Seo, 2016). Our
findings show that the rTPJ activation signals the offered value of
others even without apparent involvement of theory of mind
(Hare et al., 2010). Likewise, dlPFC activations are generally
linked to higher-order cognitive operations such as cognitive and
self-control (Miller and Cohen, 2001; Rudorf and Hare, 2014;
Schmidt et al., 2018), thus mediating the balance between self-
impulses and other-regarding considerations in social behavior
(Hare et al., 2009; Baumgartner et al., 2011). Our findings on
ldlPFC activation provide another view, showing the nature of
the shared encoding or equivalent treatment of the offered other-
and self-bonus values. The rAI region responded to the effective
impact of the other-bonus offer on the choice (assessed by the
signed effective value) via individual variability, thus mediating
the self-relevance of a possible others’ outcome in the individual’s
choices. Although AI activations are typically thought to reflect
the involvement of emotion and subjective feelings in decisions
(Zaki and Ochsner, 2012; Hein et al., 2016), the observed rAI
activation signaled relevance to self-decisions in a setting without
strong emotional involvement, which may instead suggest the
self-relevance underpinning emotional responses (Rilling and
Sanfey, 2011; Gospic et al., 2014). The mPFC responses to the DV
(which might well be vmPFC responses) are concordant with the
region’s role as a general mechanism in signaling decisions (Hare
et al., 2008; Ruff and Fehr, 2014).

Our findings on the coupling of these areas’ responses from
PPI and DCM analyses support the three-stage processing from
the offer to the signed effective value, with the ldlPFC and rTPJ
responses modifying the rAI responses, and from the signed ef-
fective value to the decision, with the rAI responses modifying the
mPFC responses. These findings are corroborated by previous
findings regarding these regions’ functional and anatomical con-
nections (Petrides and Pandya, 1999; Ongür and Price, 2000;
Mars et al., 2013; Schmidt et al., 2018). Therefore, these findings
highlight a feedforward processing of social value conversion
through these areas. However, these results do not imply that the
conversion is strictly feedforward only, as explored at the end of
the Results. Future studies are required to delineate the roles of
feedforward and feedback processes in the conversion.

The value conversion process we identified should provide a
common denominator for more complex forms of social conver-
sion in decision making. Let us consider social preferences as an
example. The conversion treats an option’s utility as a simple sum
of self-regarding value and other-bonus value, whereas this sec-
ond term is replaced in many social preference models by terms
concerning the balance of reward allocation (Fehr and Schmidt,
1999; Fehr and Camerer, 2007; Gu et al., 2015). If reflecting this
balance is correct, then a relevant social factor may modulate the
other-bonus value signals found in this study, for instance, shift-
ing each signal relative to the preference or reward allocation
balance. Such modulation might occur in parallel across all the
stages and would also engage other value-related brain regions
such as the ventral striatum, amygdala, and dmPFC, including
the anterior cingulate (Nicolle et al., 2012; Báez-Mendoza et al.,
2013; Marsh et al., 2014; Bilek et al., 2015; Apps et al., 2016;
Wittmann et al., 2016; Hill et al., 2017). In the first stage, such
modulation in the rTPJ signals would reflect offered outcomes
for others under the allocation balance (Morishima et al., 2012;
Kameda et al., 2016). We found that the ldlPFC rather than the
rdlPFC was involved in offered other-bonus valuations, whereas
previous studies have placed greater emphasis on the rdlPFC in
social behavior (Nihonsugi et al., 2015; but also see Steinbeis et

4

(Figure legend continued.) based on the model M5 was constructed with connectivity from
the ldlPFC to the mPFC (M5�). Right, Exceedance probabilities obtained by using random-
effect Bayesian model selection to indicate which of the two models better fit data of each SVO
group; M5� was better for the prosocial group, whereas M5 was better for the individualistic
group. D, Left, One example (M5��) of the Main�� family. Right, Familywise comparison
of fit for each SVO group among the three model families (Main, Main�, and Main��). The
Main� and Main�� model families were each composed of eight models corresponding to
those of the main model family, in which feedforward and bidirectional connections were
added between the ldlPFC and mPFC, respectively. The results indicate that Main� and
Main�� family were better than the Main family for the prosocial group, whereas the Main
family was better for individualistic group. E, Exceedance probabilities obtained by using
random-effect Bayesian model selection of all the models in the three families in each SVO
group.
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al., 2012; Crockett et al., 2017). Modulated dlPFC signals might
selectively engage the rdlPFC (Buckholtz et al., 2015), thus index-
ing the allocation balance, for example, with respect to social
norms (Baumgartner et al., 2011; Ruff et al., 2013). In the second
stage, the modulation of the AI under the allocation balance
would likely be related to social dispositions such as fairness,
inequity aversion, and guilt (Zaki and Mitchell, 2011; Gluth and
Fontanesi, 2016). In future studies, it will be important to inves-
tigate integrative modulation processes in social value conversion
while taking into account other key considerations. For example,
recent studies have suggested that rTPJ signals provided a top-
down signal of commitment to altruistic behavior (Park et al.,
2017) or resolve moral conflict in response to material rewards
(Obeso et al., 2018). How these factors are integrated into and
modulate social value conversion, leading to a final decision vari-
able, remains a topic for future study.

As a common denominator process, social value conversion
would constitute a primitive process for a range of social behav-
iors and their conditional variability. For example, our findings
suggest that differences in social value conversion may underlie
different SVO behavioral phenotypes. For the difference in the
rAI activation between prosocial and individualistic subjects, our
results suggest that the rAI responses in the prosocial subjects
encode individual variability of the self-relevance of others’ re-
ward for the decision, whereas in the individualistic subjects, the
elevated rAI response might lead to choices that disregard the
others’ reward (Sanfey et al., 2003; Chang et al., 2011; Dawes et
al., 2012). From the findings on the coupling from the ldlPFC to
the mPFC responses, we consider that the prosocial subjects con-
vert offered other-bonus and self-bonus values into decisions in a
similar way, with a relative reliance on ldlPFC–mPFC coupling.
In contrast, the individualistic subjects might convert other-
bonus values via an effective influence on self-oriented decisions,
with a relative reliance on the rAI–mPFC coupling (Hare et al.,
2010). Indeed, our findings from the DCM indicated that the
rAI–mPFC coupling was strong in the individualistic subjects
and also considerable in the prosocial subjects. In sum, these
findings indicate the importance of value conversion in under-
standing the variable relationships of brain social functions and
motivated behavior.

Because of the simplicity of our task, we could isolate the
social value conversion process, but this finding also has limita-
tions. First, in complex social environments involving social in-
ferences and interactions, higher-order processes in the brain
would modulate the signals of the conversion that we studied
(Coricelli and Nagel, 2009; Yoshida et al., 2010; Crockett et al.,
2014; Fareri et al., 2015; Garvert et al., 2015). Second, we did not
address relationships involved in how social value is generated,
for instance, various motives that are psychologically or econom-
ically distinguishable, such as pure altruism, reputation, inequity
aversion, direct/indirect reciprocity, and warm-glow giving
(Harbaugh et al., 2007; Tricomi et al., 2010; Rilling and Sanfey,
2011). Also, our study considered charity donation as merely an
addition to self-gain and thus did not directly address the social
conversion in more complex forms of charity donation behavior,
which would entail a reduction of self-gain and thus probe the
nature of altruism (Moll et al., 2006; Kuss et al., 2013; Kuss et al.,
2015). The interaction of generative motives with the primitive
conversion, and the conversion process under balancing of
other-gain with reduction of self-gain, remain for future studies.
In relation to these, a promising research direction is to examine
the possibility that the primitive conversion might differ over a

wider spectrum of populations such as antisocial extremes
(Marsh, 2019).

In summary, our results help to explain an important but
heretofore unaddressed human social computation: how social
value migrates into the self-oriented decision-making process via
social value conversion. We further demonstrate the behavioral
relevance of value conversion in different sociobehavioral pheno-
types. These primitive computations could be used as building
blocks to enable value conversion for a wide variety of behavioral
outputs in human social behaviors, preferences, and interactions
based on the social cognition of other-regarding information in-
volving layers of social valuation with increasing complexity.
Combining our methodological approach with a systematic ex-
ploration of social cognitive behaviors holds great promise for
addressing these questions quantitatively.
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