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Alzheimer’s disease (AD) is one of the
most prevalent neurodegenerative disor-
ders, and it greatly reduces quality of life in
the affected population (Anand et al., 2014).
Extracellular accumulation of amyloid-�
(A�) plaques and intracellular aggrega-
tion of neurofibrillary tangles are the most
obvious pathological hallmarks of AD
(Selkoe, 2004; Ballatore et al., 2007), but
neural and synaptic loss has been sug-
gested as key players in the development
of the disease, particularly in initial stages
(Ingelsson et al., 2004). It should be held
in mind that AD does not result from a
single pathologic mechanism, but from a
combination of several converging events.
Even so, among the suggested pathologic
mechanisms, synaptic dysfunction has re-
ceived copious attention. In this regard,
evidence suggests that A� oligomers are
the primary cause of disrupted structure
and function of cortical synapses (Walsh
and Selkoe, 2007). Furthermore, AD-
related cognitive impairments are most
strongly associated with disruptions in the
structure and function of cortical syn-

apses (DeKosky and Scheff, 1990; Scheff et
al., 2007).

Membranous protrusions known as
dendritic spines are the site of the majority
of excitatory synaptic input to cortical
neurons, and it is postulated that loss of
dendritic spines is responsible for exces-
sive synaptic demise in AD (Walsh et al.,
2005). Dendritic spine morphology, plas-
ticity, and maintenance are heavily depen-
dent on the underlying actin cytoskeleton.
Actin filaments (F-actin) are built from
monomers of globular (G) actin, and some
of the actin in dendritic spines can be best
conceived of as a dynamic equilibrium be-
tween F- and G-actin (Kasai et al., 2003).
Actin filaments are polar structures depo-
lymerizing from one pole (pointed end)
and polymerizing at the other pole (barbed
end), in a process known as treadmilling.
This dynamic equilibrium is essential for
activity-dependent remodeling of spine
structure and, therefore, synaptic plastic-
ity (Matus, 2005; Penzes and VanLeeu-
wen, 2011). At the same time, the backbone
of dendritic spine structure is maintained by
a pool of actin filaments with different life-
times, ranging from more stable fractions,
such as cross-linked filaments, to less stable
fractions, such as branched filaments (Star
et al., 2002; Blanchoin et al., 2014). There-
fore, the loss of synapses in AD might stem
from disruption of actin dynamics in den-
dritic spines. Indeed, previous work (Krucker
et al., 2000; Blanpied and Ehlers, 2004; Szabó

et al., 2016) has shown that actin dynamics
are important for both LTD and LTP, which
are compromised in AD. However, it is not
clear whether F-actin disassembly precedes
disruption of synapses or the elimination of
synapses impairs F-actin assembly. More-
over, the association between the loss of
dendritic spines and AD-related cognitive
impairments is not well established.

In a recent study, Kommaddi et al.
(2018) scrutinized the role of F-actin disas-
sembly in A�-induced dendritic spine loss
and cognitive impairment. Using mice har-
boring AD-linked mutations (APPswe/
PS1E9 mice), the authors investigated G-/F-
actin equilibrium as an indicator of F-actin
nanoarchitecture in dendritic spines. Syn-
aptic terminals (synaptosomes) were ex-
tracted from the cortex of 1-month-old
male AD mice. Importantly, APPswe/
PS1E9 mice show no signs of AD-related
pathology at this age. Nonetheless, a sig-
nificant shift from F-actin to G-actin with
no alteration in total actin levels was ob-
served in APP/PS1 mice compared with
controls. Thus, F-actin disassembly pre-
ceded the accumulation of A� plaques
and neurofibrillary tangles in this AD
model. The disequilibrium in G-/F-actin
was also present in 9-month-old AD mice,
in which substantial A� plaques were pres-
ent, suggesting that F-actin disassembly is a
continuous and possibly progressive event in
the pathological development of AD. Sim-
ilar to the findings in the mouse model of
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AD, immunoblot analysis of postmortem
tissues from people with mild cognitive
impairment or AD revealed a significant
reduction in levels of synaptosomal
F-actin. In addition to demonstrating that
F-actin disassembly precedes plaque for-
mation, this result suggests that assess-
ment of synaptic F-actin might be of value
in diagnosing and, thus, treating AD pa-
tients at a much earlier stage of the disease.

One of the most important findings of
the study by Kommaddi et al. (2018) re-
gards the possible role of disrupted F-actin
nanoarchitecture in AD-related behav-
ioral impairments. The authors used fear
conditioning to study learning in AD mice.

Specifically, an aversive stimulus (shock) was
repeatedly delivered in an otherwise neutral
context or in conjunction with a neutral sen-
sory cue. This causes normal mice to express
fear responses to the neutral context or cue
(Maren, 2001). A previous study (Huang et
al., 2013) showed that F-actin disassembly
impaired cued and contextual fear memory.
In the study by Kommaddi et al. (2018),
APP/PS1 mice showed decreased freezing
responses compared with control mice in
the shock-paired context, suggesting that
fear learning was impaired. An actin-
polymerizing agent, jasplakinolide, and
an actin-depolymerizing agent, latruncu-
lin, were used to determine the role of

F-actin disassembly in the observed im-
pairment of fear learning. Jasplakinolide
led to elevated freezing responses in
2-month-old APP/PS1 mice, whereas la-
trunculin led to decreased freezing re-
sponses in 4-month-old control mice,
suggesting that intact nanoarchitecture
and dynamics of F-actin are required for
normal learning and memory. Consistent
with this, F-actin reduction in postmor-
tem tissue from AD patients was corre-
lated with defects in episodic memory and
working memory, providing further evi-
dence for a role of F-actin disassembly in
AD-induced cognitive impairments. Even
more notably, the results from mice indicate

Figure 1. F-actin nanoarchitecture and two of its regulators (cofilin and drebrin) in dendritic spines. Under normal conditions, F-actin nanoarchitecture provides structural and functional support
for dendritic spines (right). In Alzheimer’s disease, A� oligomers disrupt the equilibrium between G- and F-actin, which will eventually lead to spine shrinkage and disappearance (left). The
detrimental effects of A� oligomers on G-/F-actin equilibrium might occur through direct effects on actin monomers, or through its effects on P-cofilin/cofilin ratio and decreased levels of drebrin.
Activated (dephosphorylated) cofilin catalyzes the conversion of F-actin to G-actin, whereas drebrin contributes to F-actin polymerization.
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that synaptic loss seen in AD is reversible
and can be reversed with actin-polymerizing
agents.

To further investigate the relationship
between F-actin disruption and spine loss
in cortical neurons, Kommaddi et al. (2018)
analyzed cultured primary cortical neu-
rons from APP/PS1 mice. After 10 DIV,
dendritic spines were minimally altered,
whereas F-actin structure was significantly
diminished. By 16 DIV, both the number
and morphology of dendritic spines and
F-actin were altered. This suggests that
F-actin disassembly preceded and likely
caused dendritic spine loss in the AD mice.
In addition to cortical neurons, a considerable
portion of AD-related cognitive impairments
are suggested to result from synaptic dysfunc-
tion in the hippocampus (Scheibel, 1979).
However, Kommaddi et al. (2018) focused
only on neurons from cortical regions.
Hence, further studies are required to inves-
tigate possible cytoskeletal deficits in hip-
pocampal synaptosomes, as well.

In the last part of their study, Kommaddi
et al. (2018) scrutinized the interaction
between actin and its major intracellular regu-
lators, including ADF/cofilin, a negative regu-
lator of actin polymerization, and drebrin, a
positive regulator of actin polymerization
(Bamburg, 1999; Bamburg and Bernstein,
2016). Dephosphorylated (active) cofilin
causes a shift in G-/F-actin equilibrium by
prompting the transformation of F-actin to
G-actin (Bamburg and Bernstein, 2016).
Phosphorylated (inactive) cofilin, p-cofilin/
cofilin ratio, and drebrin were reduced in
synaptosomes extracted from 1-month-
old and 9-month-old AD mice, suggesting
that ADF/cofilin and drebrin, as well as
F-actin, are disrupted in early and later
stages of AD. It is conceivable that A�-
induced actin disassembly results from al-
ternations in the levels and function of
ADF/cofilin family members (Fig. 1).
However, validation of cofilin as one of
the mediators of A�-induced actin disas-
sembly is missing in this study. It also remains
possible that upstream proteins alter F-actin
dynamics and nanoarchitecture indirectly
(Penzes and VanLeeuwen, 2011).

Synaptic dysfunction, particularly loss
of dendritic spines, is currently recognized
as a predominant pathologic event in the
initial stages of AD, and it is closely corre-
lated with AD-related cognitive impair-
ments. The findings from cellular studies,
animal models, and human postmortem
brain tissue discussed herein provide
strong evidence that dynamics of F-actin
nanoarchitecture, specifically G-/F-actin
equilibrium, along with its cellular regula-

tors, including ADF/cofilin and drebrin, are
impaired, even in early stages of AD. F-actin
cytoskeleton contributes to the mainte-
nance of dendritic spine structure and
supports the scaffolding of several impor-
tant synaptic proteins. Thus, A�-medi-
cated F-actin disassembly likely leads to
spine collapse and synaptic dysfunction.
The maintenance of F-actin stability could be
a promising therapeutic target in the fu-
ture treatment of AD.

There are some major questions re-
garding A�-mediated F-actin disassembly
that should be addressed in future studies.
First and foremost, how does A� cause the
F-actin disassembly in synaptosomes and,
thus, cause spine loss? It remains to be
investigated whether A� exerts its effects
directly on F-actin nanoarchitecture or
whether there are mediators linking A�
toxicity to loss of dendritic spines. Second,
in addition to A�, tau protein has been
proposed to contribute to AD pathology.
However, the connection between F-actin
disassembly and tau protein pathology is
unclear. Finally, the animal model of AD
revealed that disruptions in F-actin nano-
architecture could be reversed through
actin polymerization agents. Actin-poly-
merizingagentscouldbepotentiallytranslated
to be applicable in clinical settings. How-
ever, such agents are likely to produce
severe side effects given the ubiquitous im-
portance of the actin cytoskeleton through-
out the body. Therefore, targeted treatment
strategies, such as actin-polymerizing agents
conjugated with antibodies directed against
AD-affected neurons, could be considered in
future studies to maximize the effect of actin-
polymerizing agents and minimize the likeli-
hood of possible side effects.

References
Anand R, Gill KD, Mahdi AA (2014) Therapeu-

tics of Alzheimer’s disease: past, present and
future. Neuropharmacology 76:27–50. CrossRef
Medline

Ballatore C, Lee VM, Trojanowski JQ (2007)
Tau-mediated neurodegeneration in Alzhei-
mer’s disease and related disorders. Nat Rev
Neurosci 8:663– 672. CrossRef Medline

Bamburg JR (1999) Proteins of the ADF/cofilin
family: essential regulators of actin dynamics.
Annu Rev Cell Dev Biol 15:185–230. CrossRef
Medline

Bamburg JR, Bernstein BW (2016) Actin dy-
namics and cofilin-actin rods in Alzheimer
disease. Cytoskeleton (Hoboken) 73:477–497.
CrossRef Medline

Blanchoin L, Boujemaa-Paterski R, Sykes C, Plas-
tino J (2014) Actin dynamics, architecture,
and mechanics in cell motility. Physiol Rev
94:235–263. CrossRef Medline

Blanpied TA, Ehlers MD (2004) Microanatomy
of dendritic spines: emerging principles of
synaptic pathology in psychiatric and neuro-

logical disease. Biol Psychiatry 55:1121–1127.
CrossRef Medline

DeKosky ST, Scheff SW (1990) Synapse loss in
frontal cortex biopsies in Alzheimer’s disease:
correlation with cognitive severity. Ann Neu-
rol 27:457– 464. CrossRef Medline

Huang W, Zhu PJ, Zhang S, Zhou H, Stoica L,
Galiano M, Krnjević K, Roman G, Costa-
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