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Behavioral/Cognitive

Unique Mapping of Structural and Functional Connectivity
on Cognition

Joelle Zimmermann, John D. Griffiths, and ““Anthony R. McIntosh

Baycrest Health Sciences, Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada

The unique mapping of structural brain connectivity (SC) and functional brain connectivity (FC) on cognition is currently not well
understood. It is not clear whether cognition is mapped via a global connectome pattern or instead is underpinned by several sets of
distributed connectivity patterns. Moreover, we also do not know whether the spatial distributions of SC and FC that underlie cognition
are overlapping or distinct. Here, we study the relationship between SC and FC and an array of psychological tasks in 609 subjects (males,
269; females, 340) from the Human Connectome Project. We identified several sets of connections that each uniquely map onto cognitive
function. We found a small number of distributed SCs and a larger set of corticocortical and corticosubcortical FCs that express this
association. Importantly, the SC and FC each show unique and distinct patterns of variance across subjects as they relate to cognition. The
results suggest that a complete understanding of connectome underpinnings of cognition calls for a combination of the two modalities.
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ignificance Statement

Structural connectivity (SC), the physical white-matter inter-regional pathways in the brain, and functional connectivity (FC), the
temporal coactivations between the activity of the brain regions, have each been studied extensively. Little is known, however,
about the distribution of variance in connections as they relate to cognition. Here, in a large sample of subjects (N = 609), we
showed that two sets of brain- behavior patterns capture the correlations between SC and FC with a wide range of cognitive tasks,
respectively. These brain— behavior patterns reveal distinct sets of connections within the SC and the FC network and provide
new evidence that SC and FC each provide unique information for cognition.
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Introduction

In neuroscience, big data initiatives such as the Human Connec-
tome Project (HCP) acquire connectomic and phenotypic data
from a large number of individuals in an effort to understand
how brain networks relate to individual behavior (Van Essen et
al., 2013; Fornito et al., 2016). Connectomes can represent either
structural connectivity (SC), the white matter inter-regional
pathways estimated from diffusion-weighted MRI (dwMRI;
Baldassarre et al., 2012), or functional connectivity (FC), the pat-
terns of temporal dependencies between regional activity mea-
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surements such as blood oxygenation level-dependent (BOLD)
functional magnetic resonance imaging (fMRI) time series. The
most commonly studied form of FC, resting-state FC (rsFC), is
measured in the absence of an explicit task. It represents mean-
ingful coordinated fluctuations that have been related to task FC
and performance (Mennes et al., 2010; Baldassarre et al., 2012;
Stevens and Spreng, 2014).

Both SC (Matejko et al., 2013; Willmes et al., 2014; Moeller et
al., 2015; Klein et al., 2016) and rsFC (Song et al., 2008, 2009;
Pamplona et al., 2015; Santarnecchi et al., 2015; Hearne et al.,
2016; Smith, 2016; Pezoulas et al., 2017; Ferguson et al., 2017)
have been linked to cognitive functioning, including higher-order
cognitive processes such as fluid and crystallized intelligence, visu-
ospatial processing (Ponsoda et al., 2017), or numerical cognition
(Matejko et al., 2013; Willmes et al., 2014; Moeller et al., 2015; Klein
etal., 2016).

What remains unclear, however, is the specificity of the be-
haviorally relevant aspect of the connectome. That is, can indi-
vidual variability across connectomes be explained by a single set
of connections that is highly predictive of cognitive function
more generally? Or are there multiple sets of connections that
each predict different aspects of cognitive functioning? The for-
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Table 1. Cognitive tests and corresponding function
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Test Function Mean (SD), range
ListSort_AgeAd; Working memory (list sorting) 103 (13), 63-141
PicSeq_AgeAd; Episodic memory (picture sequence memory) 106 (17), 56135
CardSort_AgeAdj Executive function/cognitive flexibility (dimensional change card sort) 102 (10), 58123
Flanker_AgeAdj Executive function/inhibition (flanker task) 102 (10), 74124
ProcSpeed_AgeAd; Processing speed (pattern completion processing speed) 103 (19), 45-149
WM_Task_2bk_Acc Working memory accuracy (2-back task) 83 (11), 37-100
WM_Task_2bk_Median_RT Working memory reaction time (2-back task) 970 (143), 602—1440
WM_Task_Obk_Acc Working memory accuracy (0-back task) 89 (11), 48100
WM_Task_Obk_Median_RT Working memory reaction time (0-back task) 775 (139), 506 -1571
PMAT24_A_CR Fluid intelligence correct responses (Penn progressive matrices) 17 (5), 5-24
(

PMAT24_A_RT(R

Fluid intelligence reaction time, correct responses (Penn progressive matrices)

15,454 (2976), 1989 - 61,641

mer suggests that connectomes are relevant for understanding
general differences in global cognitive functioning, while the lat-
ter suggests that individual differences in particular networks can
inform specific types of cognitive functioning, such as attention,
memory, or executive function. Evidence of both views exists. For
instance, Rosenberg et al. (2013) showed that a particular set of
connectivity patterns predicted individuals’ attention ability,
supporting the notion of specific connectome—behavior associa-
tions. The connections identified were specific to attention ability
and did not predict cognition more generally. In contrast, other
research has shown that a single mode of covariation can capture
relationships between a distributed set of functional connections
and a wide set of behavioral and demographic variables (Smith et
al., 2015). The same question can be asked for SC.

Currently, little is known about the overlap between the two
modalities in their mapping to individual differences in cogni-
tion. Given the limitations of mapping individual SC to FC (Koch
et al., 2002; Skudlarski et al., 2008; Honey et al., 2009; Zimmer-
mann et al., 2016, 2018a,b), we might expect that the two modal-
ities provide unique and distinct sources of cognitive-related
variability (Duda et al., 2010; Hirsiger et al., 2016). On the other
hand, cognition arises from an interplay of structure and func-
tion, and so a degree of overlap in the spatial pattern of networks
that give rise to cognitive function is expected.

In the present study, we examine how cortical and subcortical
SC and rsFC from 609 subjects from the Human Connectome
Project relates to a wide range of cognitive functions, including
working memory (WM), executive function/cognitive flexibility,
processing speed, fluid intelligence, episodic memory, and atten-
tion/inhibitory control. We examined (1) whether there exists a
single set of connections that generally map onto cognition, or
rather several sets of connections that map onto cognition; and
(2) whether the patterns of connectivity that map onto cognition
are independent and unique for SC versus rsFC or whether they
provide common information. We used partial least squares
(PLS) to map orthogonal patterns of brain—behavior relation-
ships (McIntosh and Lobaugh, 2004; Krishnan et al., 2011).

Materials and Methods

Subjects and behavioral measures

The sample included 609 genetically unrelated subjects (males, 269; fe-
males, 340; age range, 22—36 years) from the Q7 HCP release (MGH-USC
Human Connectome Project; RRID:SCR_003490; Van Essen et al.,
2013). The research was performed in compliance with the Code of Eth-
ics of the World Medical Association (Declaration of Helsinki). All sub-
jects provided written informed consent, and procedures were approved
by the ethics committee in accordance with guidelines of WU-Minn
HCP. In the current study, 11 behavioral measures of cognitive function
were correlated with SC and FC (described below). Cognitive measures
covered a range of processes. Note that the working memory 0-back and

2-back tasks each included the following two measures: accuracy and
reaction time. The measures are described in Table 1 and in detail in the
spreadsheet version of the Data Dictionary available here: https://wiki.
humanconnectome.org/display/PublicData/HCP +Data+ Dictionary +
Public-+Updated +for+the+ 1200+ Subject+ Release. Note that cogni-
tive scores were age adjusted.

MRI acquisition and preprocessing

Data acquisition details for the WU-Minn HCP corpus (Van Essen et al.,
2013) were described in detail previously (Smith et al., 2013; Sotiropou-
losetal., 2013; Ugurbil et al., 2013). The present study made use of resting-
state BOLD fMRI, multishell (multiple nonzero b-values) high-resolution
dwMR, and structural (T1-weighted MRI) data from the HCP minimally
preprocessed pipeline (Glasser et al., 2013; Smith et al., 2013).

Diffusion data with a spin-echo multiband EPI sequence, with 111
slices of 1.25 mm isotropic voxels (Feinberg et al., 2010; Sotiropoulos et
al., 2013; Ugurbil et al., 2013) and distortion corrected (Andersson et al.,
2003; Andersson and Sotiropoulos, 2015), were used. Segmentation and
parcellation were performed on the basis of the high-resolution T1-
weighted image (voxel size, 0.7 mm isotropic) of each subject using Free-
Surfer (Fischl, 2012), automatically parcellating the brain into 83 cortical
and subcortical ROIs (41 per hemisphere, plus brainstem) according to
the Lausanne 2008 atlas (Daducci et al., 2012). An 83 X 83 connectivity
matrix was formed, representing their reconstructed pathways for each
pair of regions. Deterministic tractography using Dipy software (Gary-
fallidis et al., 2014) was performed on minimally preprocessed data using
a method similar to that of Hagmann et al. (2008). Streamlines were
computed from 60 equally spaced points within each voxel on the gray
matter—white matter interface via the EuDX algorithm (Garyfallidis,
2012). Streamlines that were shorter than 10 mm or longer than 250 mm
were discarded, as well as those that did not terminate at the gray matter—
white matter interface. The strength of the reconstructed connections
was measured as streamline density, which was computed as the number
of tractography streamlines that touched both cortical regions (Hag-
mann et al., 2008).

Whole brain echoplanar images (TR = 720 ms; 2 mm ? voxels; Moeller
et al., 2010; Ugurbil et al., 2013) with denoising procedures from the
resting-state FIX (FMRIB ICA-based X-noiseifier) denoised dataset were
used (Glasser et al., 2013; Smith et al., 2013). Data included both phase-
encoding acquisition directions [left (L)-right (R), R-L; acquisition
time, 14 min and 33 s). We computed average regional time series from
these voxels, based on the 83 cortical and subcortical regions. Pearson’s
correlations were calculated for each pair of time series to compute
the FC between all regions; these were then Fisher z-transformed, and
the two pairs of matrices (L-R and R-L) were averaged for each
subject. The resulting FC matrices were 83 X 83 for the 609 subjects.
Global signal regression was not performed for comparability with
previous resting-state studies. Note that age was regressed from SC and
Fisher’s z-transformed FC, and residuals were used for analysis.

Experimental design and statistical analysis
Cognitive measures. The 11 cognitive measures were correlated (Pear-
son’s) with one another to quantify the relationship between them. The
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resulting p value cross-correlation matrix was of size 11 X 11. The p value
of each correlation value was corrected for multiple comparisons using
false discovery rate (FDR), MATLAB function fdr_bky (MATLAB;
RRID:SCR_001622; Benjamini et al., 2006). We also wanted to under-
stand whether the cognitive measures describe a single global cognitive
component of intelligence or whether numerous components are re-
quired to capture the different subtypes of cognitive functioning. To this
end, we conducted a principal components analysis (PCA) of the cogni-
tive measures (MATLAB function princomp). To assess the significance
of the resulting eigenvalues, we permuted the cognitive measures 100
times (scrambled across cognitive measures and subjects) and decom-
posed (PCA) the permuted cognitive matrices to obtain a null distribu-
tion of eigenvalues for each principal component (PC). We then
calculated the p value per PC eigenvalue as the proportion of times the
permuted eigenvalue exceeded the obtained eigenvalue.

Correlation between cognition and connectivity. We used PLS for neu-
roimaging (McIntosh and Lobaugh, 2004; Krishnan et al., 2011) to assess
the multidimensional connectome—cognition relationships (behavioral
PLS correlation, custom MATLAB code). As the connectivity matrices
are symmetric, we used the vectorized upper triangle of the connectivity
matrices from the 609 subjects. Structural connections that were 0 for
66% of subjects or more were not included in the analysis, resulting in
870 remaining connections for SC. The resulting input matrix to PLS con-
sisted of 25% of zeros across all subjects and connections removed connec-
tions in the SC were randomly distributed throughout the network. Note
that zero connections are not an issue for PLS per se but rather for resam-
pling statistics, which can produce low variance as a result. The entire vec-
torized upper triangle was included for the FC, which included 3403
connections. Vectorized connectomes were then stacked, resulting in a
subjects*connections brain matrix, for SC = 609*870, and for FC = 609*3403.
The behavioral matrix was subjects*behavioral measures, of size 609*11.

The brain and behavioral matrices were then cross-correlated to start
the PLS analysis. PLS is a multivariate analysis method comparable to
canonical correlation which, however, optimizes covariance rather than
correlations and captures the relationship between input matrices within
mutually orthogonal latent variables (LVs). We calculated the correla-
tions between input cross-correlation brain, and behavioral input matri-
ces. The significance of LVs is assessed via permutation tests (1000
iterations) of the singular values from singular value decomposition
(SVD) of the brain and behavioral correlation matrices, and the reliabil-
ity of each connectivity estimate to the LV is assessed via bootstrap resa-
mpling (3000 iterations). The reliability of the loading of each
connection onto the brain—behavior relationship in each LV is repre-
sented as a bootstrap ratio, the ratio of the weight of a connection over its
estimated SE. The ratio can be considered equivalent to a z-score, but is
used to impart reliability rather than significance. A connection with a
positive high bootstrap ratio contributes positively and reliably to the
brain—behavior correlation obtained for that LV, whereas a connection
with a negative high bootstrap ratio contributes negatively and reliably to
the brain—behavior relationship. Bootstrapping is also used to construct
confidence intervals on the brain—behavior correlations.

SC-cognition versus FC-cognition. To compare the connections that
contributed to the SC—cognition relationship and those that contributed
to the FC—cognition relationship, we calculated the scalar dot product
(MATLAB function dot) between the brain scores (U) from the PLS SVD
expressed in the FC-cognition relationship and those expressed in the
SC-cognition relationship, across all significant LVs. To compare the
behavioral patterns that contributed to the SC—cognition and the FC—
cognition relationships, we calculated the dot product between the be-
havioral scores (V) from the SC—cognition and FC—cognition SVD. To
show whether highly behaviorally performing individuals identified by
the SC—cognition analysis were the same as those identified by the FC—
cognition analysis, we correlated (Pearson’s) individual subject behav-
ioral scores between SC-cognition and FC—cognition LVs. Note that
correlations were corrected for multiple comparisons using FDR (MAT-
LAB function fdr_bky; Benjamini, 2006). Last, to assess how cognitive
PCs mapped onto connectivity— cognition latent variables, we calculated
the dot product between PCA scores and latent variable correlations
(Zimmermann et al., 2018a).

Zimmermann et al. e Unique Mapping of SCand FC on Cognition

Results

Cognitive measures

The cognitive scores correlated positively among one another,
with the exception of the WM reaction time tasks, which corre-
lated negatively with all other cognitive tests (Fig. 1). All correla-
tions were significant (all p < 0.001, multiple comparison
corrected; see Materials and Methods).

A PCA of the 11 cognitive test scores yielded three significant
PCs, where significance was assessed by permutation testing (see
Materials and Methods; A = 3.5072, 1.8679, and 1.2026; percent-
age of variance explained = 61%, 17%, 7%, respectively; Fig. 2).
All cognitive tests loaded onto the first PC, with negative WM
reaction time loadings representing a processing speed compo-
nent. Thus, participants who were more accurate (positive accu-
racy loading) were also faster (negative reaction time loading) on
these WM tests. The second PC emphasized the Penn progressive
matrices, tests of fluid intelligence (PMAT) tests; note that the
reaction time (RT) for correct responses and the number of cor-
rect responses were positively correlated. The third PC empha-
sized similarities between the two WM RT tests and the
remaining tests, in opposition to the two WM accuracy measures.

Correlation between cognition and connectivity

PLS analyses identified two significant LVs that describe the rela-
tionship between SC and cognition, and FC and cognition each,
respectively.

SC—cognition

The two LVs that captured the SC—cognition association revealed
two distinct patterns of cognitive functions that mapped onto
two sets of unique structural connections (Fig. 3; LV1 SC: 37.22%
of total covariance; singular value = 2.53; p = 0.04; LV2 SC:
14.81% of total covariance; singular value = 1.6; p = 0.03). For
both LVs, a small number of connections across cortical and
subcortical regions was stable by bootstrap. Connections loaded
positively and negatively onto each of the SC—cognition LVs (Fig.
3 B, D, bootstrap ratios). For the cognitive measures, the first LV
strongly expressed the full array of cognitive tests, while the sec-
ond LV expressed primarily the two PMAT tests.

FC-cognition

The two LVs that captured the FC—cognition association revealed
two distinct patterns of cognitive functions that map onto two
sets of functional connections (Fig. 4; LV1 FC: 41.5% of total
covariance; singular value = 6.45; p = 0.01; LV2 FC: 33% of total
covariance; singular value = 5.75; p = 0.046).

LV1 revealed FC—cognition correlations expressed across an
array of cognitive tests, and a large number of cortical, mainly
frontoparietal, connections (as well as insula, transverse tempo-
ral) that load negatively onto this relationship (Fig. 4 B, D, boot-
strap ratios). Thus, better performance on card sorting,
processing speed, WM accuracy, as well as the three RT measures
(better performance = lower RT) was associated with lower FC.
Only four connections loaded negatively onto this LV, three of
which were connections of the R entorhinal. LV2 revealed FC—
cognition correlations, expressed primarily with the PMAT tests.
A large number of interhemispheric corticocortical and cortico-
subcortical connections loaded positively onto this LV. Thus,
better performance on a PMAT test correlated with higher FC.

SC—cognition versus FC—cognition
As evident from Figures 3 and 4, there were more connections in
the FC that correlate with cognition compared with the SC. This
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can be shown as the number of connections that exceeded the
bootstrap ratio threshold for each connection—cognition LV, ex-
pressed as a proportion of the number of connections that en-
tered the PLS analysis (FC, 3403; SC, 870). The proportion of
connections that exceeded the bootstrap threshold were as fol-
lows: FC: LV1 = 15%; LV2 = 9%; SC: LV1 = 2%;LV2 = 1%. We
hypothesized that this may be due to the difference in total
between-subjects variance in the SC and FC. To this end, we
conducted an SVD of the subjectwise SC (609 subjects X 870
connections) as well as the subjectwise FC (609 subjects X 3403
connections) and compared the sum of the squared singular val-
ues corrected by the number of connections that entered the

analysis, to account for the sparsity of the SC (252, ccea)- IN-
deed, we found that the total corrected variance in subjectwise SC
was smaller than that in the subjectwise FC (3S%c corrected =
0.0198; 2S¢ correctea = 0-0294).

We observed that a very different pattern of connections in the
SC related to cognition than in the FC. This can be expressed
quantitatively as the dot product of the PLS brain scores (U) from
the FC—cognition SVD and from the SC—-cognition SVD, across
both LVs. These dot products were close to zero (Table 2), sug-
gesting that brain connectivity patterns show little overlap across
modalities. This comparison was made for the behavior contri-
butions to each LV as well. To this end, we calculated the dot
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Figure 4.  FC—cognition. A, LV1 correlations between FC and cognition, with Cls from bootstrap resampling. B, LV1 bootstrap ra
relationship: bootstrap threshold = —3 to 3. Connections with high bootstrap ratios contribute positively to the FC— cognition correla

tios. These are connection loadings on the FC—cognition
tion, and low bootstrap ratios contribute negatively to the

FC— cognition correlation. Right and left hemisphere regions, and subcortical and cortical regions, are separated by a space in the circular plot. , LV2 correlations between FCand cognition. D, LV2

bootstrap ratios.

product of the PLS cognitive scores ( V) from the FC—cognition
SVD and the cognitive scores from the SC—cognition SVD (Table
3). The behavioral patterns show some overlap across modalities.
In Table 3, we also showed the correlation of individual subject

scores on SC—cognition and FC-cognition LVs to examine
whether highly performing subjects identified via the two analy-
ses were comparable. To map which cognitive PCs were ex-
pressed in which LVs, we calculated the dot product between
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Table 2. Dot product hetween brain scores for FC— cognition and SC- cognition
across both LVs

FC—cognition
SC-cognition LV1 Lv2
LV 0.0043 0.0792
Lv2 0.0159 —0.0419

Table 3. Dot product between behavioral scores for FC- cognition and
SC- cognition across both LVs

FC—cognition
SC- cognition Lv1 Lv2
LV 0.51(0.69, p < 0.007) 0.83(0.92,p < 0.007)
Lv2 0.38(0.58, p < 0.007) —0.07(—0.05,p = 0.25)

Dot product between behavioral scores for FC— cognition and SC— cognition across both LVs are shown in regular
font; the correlation between behavioral individual subject scores are shown in italics.

Table 4. Dot product between cognitive PCs loadings and SC- cognition and
FC- cognition LVcorrs

SC- cognition FC— cognition
Cognition LV1 Lv2 Lv1 L2
PQ1 0.98 0.60 0.59 0.55
PC2 —0.13 —0.44 —0.83 0.38
[{€] —0.45 —0.20 —0.02 —0.52

LVcorrs, latent variable correlations.

cognitive PC loadings and the SC—cognition and FC-cognition
correlations on each LV (Table 4). We found that some cognitive
PCs were particularly strongly captured in specific connectivity-
cognition LVs. For example, the first cognitive PC was expressed
very strongly in the first SC—cognition LV. Yet, even the second
SC—cognition LV mapped well onto this PC.

Discussion

In the present study, we compared whole-brain cortical and sub-
cortical SC and rsFC from 609 subjects from the Human Con-
nectome Project with 11 measures, including working memory
(WM N-back, ListSort), executive function/cognitive flexibility
(CardSort), processing speed (ProcSpeed), fluid intelligence
(PMAT), episodic memory (PicSeq), and attention/inhibitory
control (Flanker). The cognitive measures mapped onto three
PCs, reflecting the heterogeneous nature of functions measured
via the tests. PC1 was a global cognition component. PC2 ex-
pressed fluid intelligence (PMAT). PC3 emphasized a deliberate,
slower, executive function/cognitive flexibility and attention/in-
hibitory control. We used PLS to characterize connectivity—cog-
nition relationships, a method that is comparable to Canonical
Correlation Analysis (CCA) and is increasingly used for neuro-
imaging data (Grady et al., 2010; Shen et al., 2015; Misic et al.,
2016; Zimmermann et al., 2018b). While either method may out-
perform the other in certain situations, PLS may be better suited
to handling sparse data (i.e., data with many zero entries, such as
our SC dataset) than sparse CCA (Grellmann et al., 2015). Al-
though there are several methods that can be used to characterize
SC/EC (Feng et al., 2015; Yu et al., 2017), PLS has been used
extensively for analyzing both SC and FC (the latter generally
being more dense; Grady et al., 2010; Shen etal., 2015; Misic et al.,
2016).

The conclusions of the study are twofold, as follows: (1) that
unique sets of connections map onto cognitive function; and (2)
that SC and FC each capture independent and unique connec-
tions related to cognition.

Zimmermann et al. e Unique Mapping of SCand FC on Cognition

Unique sets of connections map onto specific components of
cognitive functions

First, we showed that SC and rsFC each capture multiple sets of
connection—cognition associations. Two LVs for SC and FC, re-
spectively, each expressed a distinct and unique set of brain con-
nections. This is in line with the view that distinct sets of
connections are required to support cognition, implying more
specialized connectivity (Rosenberg et al., 2013) rather than a
global cognitive factor encompassed in a single set of connections
(Malpas et al., 2016; Smith, 2016). We showed that while brain
patterns that expressed cognitive variability did not overlap in SC
and FC, the behavioral patterns did. This suggests that while dif-
ferent connections are related to behavior in the two modalities,
the cognitive patterns mapped within these LVs overlap.

The two SC—cognition LVs each captured a limited, unique
set of primarily intrahemispheric cortical and subcortical con-
nections. SC—cognition LV1 mapped almost perfectly onto the
first global cognition PC, which can be attributed to low variabil-
ity across SCs. SC—cognition LV2 strongly expressed fluid intel-
ligence (PMAT) via a set of distributed cortical and subcortical
connections.

The two FC-cognition LVs each captured a large set of unique
interhemispheric and intrahemispheric connections. The con-
nectivity—cognition correlations we found were comparable to
those identified previously with the HCP dataset (Hearne et al.,
2016). FC—cognition LV1 expressed frontoparietal, visual, and
cingulate cortical connections, as well as transverse temporal,
insula, and L hippocampus connections to the rest of the cortex.
rsFC in these regions was negatively associated with processing
speed, executive function/cognitive flexibility, and working
memory performance. We note that negative FC—cognition as-
sociations can reflect both reduced positive associations and/or
altered anticorrelations (Kelly et al., 2008; Hearne et al., 20165
Spreng et al., 2016). However, anticorrelations composed a small
portion of our connectomes (9.3% of connections across all sub-
jects), and stronger anticorrelations composed only 8.6% of con-
nections contributing to the negative FC—cognition associations
on LV1. The second FC-cognition LV was expressed via widely
distributed corticocortical and corticosubcortical connections,
with strong contributions from the bilateral caudate and puta-
men connections to cortical regions. A large number of inter-
hemispheric connections were expressed in this LV. The PMAT
fluid intelligence measures were particularly dominant, with
higher rsFC correlating with higher PMAT accuracy and reaction
times, so that subjects with higher rsFC were more accurate, but
slower. We note that for both SC and FC, the PMAT measures
were expressed in the second LVs, which is consistent with pre-
vious findings of a fluid intelligence—connectome link (Finn et
al., 2015; Hearne et al., 2016; Smith, 2016; Ferguson et al., 2017).

The patterns of connectivity that were correlated with cogni-
tive variability in our study were consistent with those observed
previously. In SC, the limited, widespread connections that asso-
ciated with cognition were consistent with the findings of the
study by Ponsoda et al. (2017), where only 36 distributed connec-
tions predicted higher-order cognition. A number of these con-
nections mapped closely onto the SCs identified here. In rsFC,
connectivity distributed across the cortex likely supports cogni-
tive function (Ferguson et al., 2017). Positive rsFC-cognition
associations have typically been identified in frontoparietal re-
gions (Hearne et al., 2016), and negative associations in the de-
fault mode and dorsal attention network, including visual and
cingulate—parietal connectivity (Song et al., 2008, 2009; Pam-
plona et al., 2015; Santarnecchi et al., 2015). FC—cognition LV1
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and LV2 captured these negative and positive associations,
respectively. FC—cognition LV2 expressed several corticosubco-
rtical connections, primarily among the putamen, caudate, thal-
amus, and the rest of the cortex. This is not surprising, as the
cortical control of behavior is mediated via several corticostria-
tal-thalamic—cortical circuits (Alexander et al., 1986; Peters et al.,
2016) that can be identified via structural and functional imaging
(Seeley et al., 2007; Metzger et al., 2010). Connectivity from sub-
cortical areas including the striatum have previously been tied to
individual differences in phenotype and behavior (Vaidya and
Gordon, 2013). The corticostriatal-thalamic cognitive control
loop also includes the brainstem (Peters et al., 2016), which ex-
hibited cognition-related connectivity with the caudate in LV2.
Moreover, the striatum (putamen and caudate) is specifically
involved in learning, storing, and processing memories (Packard
and Knowlton, 2002), and higher WM performance has been tied
to higher connectivity between the cingulo-opercular network
and the putamen rsFC (Tu et al., 2012). In LV1, the only subcor-
tical region that had negative rsFC associations with cognition
was the L hippocampus, which is consistent with prior work (Sa-
lami et al.,, 2014). Insular connectivity, primarily with anterior
cingulate regions, was also particularly prominent in LV1, a re-
gion that may be important for reactive attentional control (Jiang
et al., 2015).

Interestingly, in a previous HCP study, Hearne et al. (2016)
identified only positive network-level associations between rsFC
and PMAT. As the authors themselves note, this may be because
their network-level approach overlooks any existing edge-level
connectivity—cognition relationships (Song et al., 2008, 2009;
Pamplona et al., 2015; Santarnecchi et al., 2015). We replicated
the positive association between rsFC and PMAT found previ-
ously (Hearne et al., 2016) within FC—cognition LV2, where fluid
intelligence was emphasized as the strongest cognitive correlate.

One notable difference between SC and FC associations with
cognition was that SC (LV1) correlated positively across all cog-
nitive domains. This was not the case for FC. These results suggest
that there is a global pattern of SC that supports cognition in
general, akin to the global FC-behavioral mode described by
Smith (2016).

SC and FC each capture independent and unique connections
that relate to cognition
Second, we showed that SC and FC each captured independent
and complementary features of the connectome linked to cogni-
tive function. The connections that expressed the SC—cognition
association did not overlap with behaviorally relevant connec-
tions in FC, as evidenced by the comparison of the spatial pattern
of brain scores between the two analyses. While a similar sugges-
tion has previously been made for SC versus task FC (Duda et al.,
2010) and rsFCin select pathways (Hirsiger et al., 2016), ithas not
as of yet been examined in whole-brain SC-rsFC in as large a
sample as ours. We found that far fewer connections within SC
compared with FC associated with cognition, even when correct-
ing for the sparsity of SC. This was likely due to lower variance in
SC across subjects. Yet, the amount of covariance accounted for
by SC and FC toward cognition was comparable, suggesting that
both modalities are equally important for understanding individ-
ual cognitive differences. Behaviorally, the highly performing
subjects identified by SC—cognition were the same as those iden-
tified by FC-cognition, particularly for LVs that expressed a
strong association on behavioral scores.

It is important to consider that the imperfect association be-
tween SCand FC (Koch et al., 2002; Skudlarski et al., 2008; Honey
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et al., 2009) may impose limitations on the amount of overlap-
ping information that can be provided by the two modalities.
While SC and FC do overlap (Khalsa et al., 2014; Huang and
Ding, 2016; Meier et al., 2016; Misic¢ et al., 2016), even within the
present HCP dataset the fit between individual SC and FC is
limited (Zimmermann et al., 2018a). This is in line with the pres-
ent findings, whereby individual variability in the spatial connec-
tivity patterns of SC and FC does not vary consistently across the
two modalities. Limitations on the congruency between the two
modalities may be exaggerated because FC is static while SC is
dynamic (Park and Friston, 2013). In this vein, an investigation
into functional connectivity dynamics may help to describe how
the spatial contributions of SC and rsFC to cognition fluctuate
over time. This is, however, beyond the scope of this study.
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