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Cellular/Molecular

Altered Excitability and Local Connectivity of mPFC-PAG
Neurons in a Mouse Model of Neuropathic Pain

John Cheriyan and ““Patrick L. Sheets
Department of Pharmacology and Toxicology and Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana
46202

The medial prefrontal cortex (mPFC) plays a major role in both sensory and affective aspects of pain. There is extensive evidence that
chronic pain produces functional changes within the mPFC. However, our understanding of local circuit changes to defined subpopula-
tions of mPFC neurons in chronic pain models remains unclear. A major subpopulation of mPFC neurons project to the periaqueductal
gray (PAG), which is a key midbrain structure involved in endogenous pain suppression and facilitation. Here, we used laser scanning
photostimulation of caged glutamate to map cortical circuits of retrogradely labeled cortico-PAG (CP) neurons in layer 5 (L5) of mPFCin
brain slices prepared from male mice having undergone chronic constriction injury (CCI) of the sciatic nerve. Whole-cell recordings
revealed a significant reduction in excitability for L5 CP neurons contralateral to CCI in the prelimbic (PL), but not infralimbic (IL), region
of mPFC. Circuit mapping showed that excitatory inputs to L5 CP neurons in both PL and IL arose primarily from layer 2/3 (L2/3) and were
significantly reduced in CCI mice. Glutamate stimulation of L2/3 and L5 elicited inhibitory inputs to CP neurons in both PL and IL, but
only L2/3 input was significantly reduced in CP neurons of CCI mice. We also observed significant reduction in excitability and L2/3
inhibitory input to CP neuronsipsilateral to CCL These results demonstrating region and laminar specific changes to mPFC-PAG neurons
suggest that a unilateral CCI bilaterally alters cortical circuits upstream of the endogenous analgesic network, which may contribute to
persistence of chronic pain.
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Chronic pain is a significant unresolved medical problem that is refractory to traditional analgesics and can negatively affect
emotional health. The role of central circuits in mediating the persistent nature of chronic pain remains unclear. Local circuits
within the medial prefrontal cortex (mPFC) process ascending pain inputs and can modulate endogenous analgesia via direct
projections to the periaqueductal gray (PAG). However, the mechanisms by which chronic pain alters intracortical circuitry of
mPFC-PAG neurons are unknown. Here, we report specific changes to local circuits of mPFC-PAG neurons in mice displaying
chronic pain behavior after nerve injury. These findings provide evidence for a neural mechanism by which chronic pain disrupts
the descending analgesic system via functional changes to cortical circuits. j

ignificance Statement

Introduction

The medial prefrontal cortex (mPFC) integrates sensory, affec-
tive, and attentional components of pain perception (Rainville et
al., 1997; Lorenz et al., 2002; Porro et al., 2002; Qu et al., 2011;
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Bushnell etal., 2013) and therefore has become a significant focus
of chronic pain research. In humans, neuropathic pain alters the
structure, chemistry, and connectivity of the mPFC (Apkarian et
al., 2004; Apkarian, 2004; Baliki et al., 2006). More specifically,
prolonged pain results in reduced activation or increased inhibi-
tion of mPFC (Jones and Derbyshire, 1997; Derbyshire et al.,
1999; Mayer et al., 2005). Epigenetic, morphological, and func-
tional changes across multiple mPFC regions are observed in
rodent models of pain (Cao et al., 2009; Metz et al., 2009; Al-
varado et al., 2013; Blom et al., 2014; Alvarado et al., 2015; Cor-
deiro Matos et al., 2015; Zhang et al., 2015; Kelly et al., 2016;
Kiritoshi et al., 2016). In addition, reduced mPFC activity is im-
plicated in affective and cognitive disturbances associated with
chronic pain (Millecamps et al., 2007; Ji et al., 2010; Cardoso-
Cruzetal,,2013; Leeetal., 2015; Wangetal., 2015). Together, this
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suggests that dysfunction of input—output processing in the
mPFC is involved in chronic pain pathology. However, pain-
induced alterations to intracortical (i.e., local) circuits of defined
mPFC neurons have not been examined thoroughly.

We (Ferreira et al., 2015; Cheriyan et al., 2016) and others
(Shipley et al., 1991; Floyd et al., 2000; Gabbott et al., 2005) have
shown that a major subpopulation of layer 5 (L5) neurons in
prelimbic (PL) and infralimbic (IL) regions of the mPFC send
projections to the periaqueductal gray (PAG). The PAG is a sub-
cortical node within the endogenous analgesic network that sup-
presses ascending nociceptive signals (Basbaum and Fields, 1978;
Behbehani, 1995; Millan, 2002; Benarroch, 2012). Stimulation of
the mPFC can produce analgesia in rats (Hardy, 1985) which
likely involves the cortico-PAG (CP) pathway (Hardy and
Haigler, 1985). Further, activation of CP pathways in humans is
associated with attentive and emotional modulation of pain (Va-
let et al., 2004; Villemure and Schweinhardt, 2010). Therefore,
alterations to the circuitry of L5 CP neurons caused by peripheral
nerve injury may disrupt normal function of the descending an-
algesic network while also affecting attentive and emotional as-
pects of chronic pain.

Our goal was to determine how peripheral nerve injury alters
excitability and local circuitry of CP neurons in PL and IL regions
of mPFC. We used chronic constriction injury (CCI) of the sciatic
nerve in mice to model neuropathic pain. Concurrent with the
CCI model, we injected the PAG with fluorescent retrograde
tracer to identify and target CP neurons in mPFC for whole-cell
electrophysiology and circuit mapping in acute brain slices. We
show that CCI attenuates the excitability of PL-CP neurons but
not IL-CP neurons. Mapping experiments demonstrate that CCI
also significantly reduces local excitatory and inhibitory inputs to
L5 CP neurons in both PL and IL cortex. Reduction in local
excitatory input spans multiple cortical layers, whereas reduction
of local inhibitory input to is laminar specific. Reduction in ex-
citability of PL-CP neurons was bilateral across the mPFC. Inter-
estingly, mapping of CCI-CP neurons in PL cortex ipsilateral to
the nerve injury revealed a similar pattern in reduction of local
inhibitory input, whereas local excitatory input remained unaf-
fected. Together, our findings reveal that peripheral nerve injury
induces specific changes to local excitatory and inhibitory circuit
pathways of mPFC neurons connected to the descending analge-
sic network, thereby providing insight into how cortical dysfunc-
tion potentially contributes to the persistent nature of chronic
pain.

Materials and Methods

Animals. Wild-type C57BL/6 male mice (total n = 94; We confirm the
source of mice as Jackson Laboratories) and transgenic mice expressing
Td-tomato reporter protein specifically in somatostatin-expressing in-
terneurons (SOM+; total n = 10) or parvalbumin-expressing interneu-
rons (PVINs; total n = 8) were used in accordance with the animal care
and use guidelines of Indiana University, the National Institutes of
Health, and the Society for Neuroscience. To generate transgenic mice
expressing the red fluorescent protein Td-Tomato specifically in SOM+
neurons and PVINs, B6.Cg-Gt(ROSA)26Sor'™*(CAG-tdTomato)Hze/] e
(Jackson Laboratories, RRID:IMSR_JAX:007909) were crossed with ei-
ther  BON.Cg-Sst21(@e)4m] (RRID:IMSR_JAX:018973) or B6.129P2-
Pralp™ (@A (RRID:IMSR_JAX:017320), respectively (both from The
Jackson Laboratory). The Institutional Animal Care and Use Committee
at Indiana University approved all experiments.

Retrograde labeling. Mice (postnatal day 24-32) were anesthetized
with 1.5% isoflurane in 100% O, at a flow rate of 0.8 L/min (SurgiVet
Isotech 4). Body temperature was maintained at 37°C using a feedback-
controlled heating pad (FHC). The head was mounted in a stereotaxic
frame (Kopf Instruments). The top of the head was shaved and betadine
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was used to disinfect the area. A midline incision was made to the scalp to
expose the skull. A Ram Power hand drill (MHC) was used to create a
small craniotomy for the injection. Single injections (75-100 nL/injec-
tion) of fluorescent tracers (Retrobeads; Lumafluor) were targeted
throughout dorsolateral, lateral, and ventrolateral PAG regions (see Fig.
1A-C) using the UltraMicroPump controlling a Gastight 1701 Hamilton
syringe paired with a beveled, two-inch, 27-gauge removable needle. We
found that this strategy was ideal for adequate retrograde labeling of
neurons in L5 across both PL and IL regions of mPFC. The coordinates
for PAG injection were (relative to bregma; in mm): 0.35 lateral, 3.2
caudal, and 3.2 deep at a 0° angle. The tracers were injected at a rate of 100
nL/min. The injection syringe was left in place for 5 min to prevent
backflow and then slowly removed. The incision was closed with Vet-
Bond (3M). Mice were monitored for 48 h after surgery to ensure their
wellbeing. Animals were allowed to recover from intracranial injection
for a minimum of 3 d (range 3-7) before induction of the neuropathic
pain model.

Neuropathic pain model. The cuff variation of CCI to the sciatic nerve
was used to model neuropathic pain (Yalcin et al., 2014). Briefly, the left
hind leg (contralateral to the injection site of retrograde tracer into the
PAG) was shaved from knee to hip. Betadine was applied to disinfect
the shaved area. Under isoflurane anesthesia, an incision was made into
the skin to expose the biceps femoris and gluteus muscles. These muscles
were separated via a blunt dissection and the sciatic nerve was exposed
and gently retracted (for sham animals, this was the surgical end point
and the wound was closed as detailed below). Sterile saline (0.09% NaCl)
solution was used to keep the surgical site moist. A 2 mm section of PE-20
polyethylene tubing (0.38 mm ID/1.09 mm OD; Harvard Apparatus) was
split lengthwise on one side and placed around the sciatic nerve, which
was subsequently set back in place. Surgical glue (VetBond; 3M) was used
to close the incision.

Pain assessment. The behavior-testing apparatus was an elevated wire
mesh platform that held 6-inch-tall, 3-inch-diameter Plexiglas tubes or
4-inch-wide, 4.5-inch-long, 4.5-inch-tall glass cubicles. Mice were accli-
mated inside the tubes or cubicles on the wire mesh platform for 1-2 d
(45 min/d) before baseline testing. On testing days, mice were acclimated
to the apparatus for 30—45 min before testing began. Assessment of
mechanical allodynia via paw-withdrawal threshold (PWT) was per-
formed using standard von Frey filaments (Touch Test, VWR) in com-
bination with the up-down method to quantify the responses in 50%
gram (Chaplan et al., 1994; Bonin et al., 2014). The baseline PWT was
established after complete recovery from retrograde tracer injections but
before CCI surgery. Changes in PWTs were measured on postoperative
days (POD) 3 and 7.

Acute brain slice preparation. At POD7-8, acute brain slices were pre-
pared as described previously (Ferreira et al., 2015). An off-coronal
blocking cut (spine of the blade tilted rostrally ~30° off vertical plane)
was performed for proper radial orientation of the mPFC. Coronal brain
slices (300 wm) containing the mPFC were made using a vibratome
(VT1200S; Leica) in a chilled choline cutting solution containing the
following (in mm): 110 choline chloride, 25 NaHCOj, 25 p-glucose, 11.6
sodium ascorbate, 7 MgSO,, 3.1 sodium pyruvate, 2.5 KCL, 1.25
NaH,PO,, and 0.5 CaCl,). Slices were transferred to a 37°C artificial CSF
(ACSF) bath containing the following (in mm): 127 NaCl, 25 NaHCO;,
25 p-glucose, 2.5 KCl, 1MgCl,, 2 CaCl,, and NaH,PO, for 30 min. Slices
were subsequently incubated for at least 45 min in ACSF at room tem-
perature before recording experiments.

Electrophysiological recordings. Before recording, slices were trans-
ferred into a recording chamber of a SliceScope Pro 6000 (Scientifica)
paired with an upright microscope (BX51; Olympus) and PatchStar mi-
cromanipulators (Scientifica). Slices were held in place with flattened
gold wire (0.813 mm diameter; Alfa Aesar). Fluorescently labeled neu-
rons were identified using an LED illumination system (CoolLED pE-
4000). Recording pipets were fabricated from borosilicate capillaries with
filaments (G150-F; Warner Instruments) using a horizontal pipet puller
(P-97; Sutter Instruments). For intrinsic recordings, pipets were filled
with an internal solution containing the following (in mm): 128
K-gluconate, 10 HEPES, 1 EGTA, 4 MgCl,, 4 ATP, 0.4 GTP, 10 phospho-
creatine, 3 ascorbate, and 0.05 Alexa Fluor 488 hydrazide (Invitrogen)
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75 wm spacing) was rotated with the top row of
the grid flush with the pia and the soma was
centered horizontally in the grid. The grid lo-
cations were sampled (every 0.4 s) with a UV
stimulus 1.0 ms in duration and 15 mW at the
specimen plane. For both excitatory and in-
hibitory mapping, patch pipettes contained
cesium-based intracellular solution containing
the following (in mm): 128 Cs-gluconate, 10
HEPES, 1 EGTA, 4 MgCl,, 4 ATP, 0.4 GTP, 10

Chronic constriction model 1.5+ Mechanical phosphocreatine, 3 ascorbate, 1 QX-314, and

of neuropathic pain a"odynia 0.05 Alexa-594 or 488 hydrazide. Photostimu-

Sural 2 lation sites resulting in activation of glutamate

Tibial § 1.0 4 receptors on the dendrites of the recorded

£ neuron were readily detected based on charac-

FiGHoneal > teristically short onset latencies (<7 ms) of re-

x 0.5 sponses (Schubert et al., 2001; Anderson et al.,

3 Sham . 2010). Responses overlapped by direct activa-

ccl £ tion of the recorded neuron’s dendrites were

ccl 0.0 6 3[ 7' excluded and rendered as black pixels in input

Sciatic nerve

Figure 1.

E, Assessment of mechanical allodynia after CCl of the sciatic nerve (control: sham surgery).

plus 4 mg/ml biocytin (Sigma-Aldrich). Whole-cell patch-clamp record-
ings were performed at 30—-32°C in ACSF containing synaptic blockers: 5
mM each of gabazine (a GABAA antagonist), NBQX (an AMPA receptor
antagonist), and CPP (an NMDA receptor antagonist). Pipette capaci-
tance was compensated and inclusion of data required a series resistance
<35 M() (mean = 16.3 M{}). Current-clamp recordings were bridge
balanced. Recordings were amplified and filtered at 4 kHz and digitized
at 10 kHz using a Multiclamp 700B amplifier (Molecular Devices). Ephus
software (http://www.ephus.org) was used for data collection (Suter et
al., 2010). Methods for determining input resistance and voltage thresh-
old for action potential (AP) firing have been reported previously (Suter
etal., 2013). Briefly, input resistance was measured as the slope of a linear
least-squares fit to the voltage—current relationship established from
steady-state responses to a series of hyperpolarizing and subthreshold
depolarizing current steps (duration 1.0 s, amplitude =200 pA). The
voltage threshold for AP firing was calculated as the point when dV/dt
exceeded 10% of its maximum value relative to the mean dV/dt baseline
measured over the 5-4 ms window before the AP peak. Frequency—
current slope was calculated using a polynomial fit to the firing frequency
at current threshold through the firing frequency at twice the current
threshold.

Glutamate uncaging and laser scanning photostimulation. Glutamate
uncaging and laser scanning photostimulation (glu-LSPS) were per-
formed as described previously (Anderson et al., 2010; Ferreira et al.,
2015) using an ultraviolet (UV) laser (355 nm; DPSS Lasers). Stock so-
lutions (50 mm in water) of MNI-caged glutamate (Tocris Bioscience
catalog #1490) were prepared at room temperature (to avoid precipita-
tion) with sonication, aliquoted, and stored at —20°C until use. Ephus
software was used for hardware control and data acquisition (Suter et al.,
2010). The bath solution for photostimulation studies contained ele-
vated concentrations of divalent cations (4 mm Ca*" and 4 mm Mg?™)
and an NMDA receptor antagonist (5 um CPP; Tocris Bioscience) to
dampen neuronal excitability. Gabazine and NBQX were not included in
the bath solution for glu-LSPS mapping studies. Caged glutamate (0.2
mM) was added directly to the bath solution. Voltages were not corrected
for liquid junction potential. Recordings were performed at 21°C and
were monitored for series resistance (inclusion criterion: <35 MJ();
mean: 17.3 M()). Once a patch recording of a labeled neuron was estab-
lished, an image of the slice (4 X objective) was acquired before mapping
for precise registration of the mapping grid. The mapping grid (16 X 16;

Post-operative day

Identifying cortico-PAG neurons in the CCl model of neuropathic pain. 4, Schematic depicting red retrograde tracer
injection into the PAG. B, (, Representative coronal brain section (B: bright field; C: epifluorescence) showing retrograde tracer
injection into the PAG. D, Image (top) and schematic (bottom) depicting the chronic constriction model of neuropathic pain
involving placement of tubing (“cuff”) around the sciatic nerve medial to the trifurcation into the peroneal, tibial, and sural nerves.

color maps. All remaining recorded inputs
with onset latencies >7 ms were included in
the map analyses as synaptic responses result-
ing from uncaged glutamate activation of pre-
synaptic neurons within the local circuit. These
maps thus represent “images” of the local
sources of monosynaptic input arising from
small clusters of ~100 neurons at each stimu-
lus location. Excitatory (glutamatergic) re-
sponses were recorded at a command voltage
of —70 mV. Excitatory input maps were constructed on the basis of the
mean inward current over a 0-50 ms poststimulus time window. Inhib-
itory (GABAergic) responses were recorded at a command voltage of
+10 mV. Inhibitory input maps were constructed on the basis of the
mean outward current over a 0—750 ms poststimulus time window. The
inhibitory poststimulus time window was increased due to the longer
time course for inhibitory responses to return to baseline.

Experimental design and statistical analysis. Custom MATLAB (The
MathWorks, RRID:SCR_001622) routines were used to analyze data of-
fline. Normal distribution of data was determined using a Lilliefors nor-
mality test. Statistical comparisons between sham and CCI groups were
performed using the Student’s unpaired t test for normally distributed
data and the Wilcoxon’s rank-sum test for non-normally distributed
data. Differences were considered significant a p < 0.05. Unless other-
wise noted, results in the text are presented as mean * SEM. For data
presented as boxplots, the box displays the central 50% of the data with
the central line indicating the median and the lower/upper boundary
lines being the 25%/75% quantile of the data. Whiskers extend maxi-
mally to 1.5 times the height of the box but do not extend past the range
of the data. Outliers are indicated by “+.”

Results

Nerve injury reduces intrinsic excitability of CP neurons in
the prelimbic, but not infralimbic, region of mPFC

To identify CP neurons in the mPFC, we stereotaxically injected
red fluorescent Retrobeads into the PAG in vivo several days be-
fore the CCI or sham procedure (Fig. 1A-D). We observed sig-
nificant mechanical allodynia in the hindpaw ipsilateral to the
CCI on POD3 that persisted through POD7 (Fig. 1E). At POD7-
8, acute brain slices containing mPFC were prepared for whole-
cell electrophysiology recordings (Fig. 2A). Soma of CP neurons
fluorescently labeled with retrograde tracer were robustly distrib-
uted in L5 of both the PL and IL regions of mPFC ipsilateral to the
tracer injection site (Fig. 2B, C), as shown previously by us (Fer-
reira et al., 2015; Cheriyan et al., 2016). Using whole-cell electro-
physiology in acute brain slices, we measured the intrinsic
excitability of L5 CP neurons from both PL and IL cortex of sham
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and CCI mice (Fig. 2B, C, insets). In PL,
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Figure 2.
CP neurons in both PL and IL cortex
receive weaker local excitatory inputs
after nerve injury
We next aimed to measure local excitatory
circuit strength of CP neurons in CCI
mice compared with sham controls. We
targeted labeled L5 CP neurons in coronal
brain slices for patch-clamp recording
and synaptic input mapping using glu-
LSPS (see Materials and Methods). We
mapped local excitatory inputs onto L5 CP neurons via photo-
stimulation of 256 sites spanning cortical layers 1-6ina 16 X 16
square grid (Fig. 3A,G). In PL cortex, we recorded excitatory
input maps from 16 CP neurons in CCI mice and 15 CP neurons
in sham controls (Fig. 3B) and compared the data by averaging
the maps and performing region-of-interest (ROI) analyses (Fig.
3C). When we pooled the excitatory maps for each group, row
analysis of excitatory inputs from a defined breadth of columns
(Fig. 3C, gray dashed line) revealed robust differences spanning
from layer 2/3 (L2/3) to L5 (Fig. 3D). Our ROI analysis showed
that local excitatory inputs originating in L2/3 (Fig. 3C, ROI 1,
black line) and L5 (Fig. 3C, ROI 2, green line) were significantly
weaker (L2/3: p = 0.04; Wilcoxon rank-sum test; L5: p = 0.007, ¢
test) for CCI CP neurons (L2/3: 7.9 = 1.5 pA; L5: 2.5 = 0.2 pA)
compared with sham controls (L2/3: 15.5 % 3.5 pA; L5: 5.0 = 0.9
pA; Fig. 3D, E). In IL cortex, we recorded excitatory input maps
from 15 CP neurons in CCI mice and 13 CP neurons in sham
controls (Fig. 3H). Row analysis of excitatory inputs to IL CP
neurons revealed minimal decrease in excitatory input spanning
from L2/3 to L5 in CCI mice (Fig. 3]). ROI analysis (Fig. 3I)
showed no significant reduction in inputs originating in 1L2/3
(sham: 9.7 = 1.6 pA; CCIL: 7.0 = 1.7 pA; p = 0.13; t test; Fig. 3K).
However, a significant reduction in inputs originating in L5 was

(Cl of the sciatic nerve reduces excitability of prelimbic, but not infralimbic, CP neurons. 4, Schematic depicting
chronic constriction injury to the left sciatic nerve and retrograde labeling of cortico-PAG neurons in the mPFC contralateral to
injury. B, C, Representative coronal brain section (B: bright field; C: epifluorescence) showing fluorescent retrograde labeling of CP
neurons in L5 of PL and IL cortices of the mPFC. (B,(, insets) Representative bright-field and epifluorescence images of the
identification and recording of fluorescently labeled CP soma (white and red arrow; 60} magnification). D, Example traces of
current-evoked action potential firing from a CP-sham (gray) and a CP-CCl (red) neuron in prelimbic cortex. Scale bar, 50 mV. E,
Frequency—input (Fl) current curves for CP-sham and CP-CCl neurons in PL cortex. F, Fl slope. G, Current threshold. H, Input
resistance comparisons (*p = 0.05, Student’s unpaired t test) for sham (n = 9) and CCI-CP (n = 9) neuronsin PL cortex. /, Example
traces of current-evoked action potential firing from a CP-sham (gray, n = 7) and a CP-CCl (red, n = 7) neuron in infralimbic cortex.
Scale bar, 50 mV. J, Fl current curves for CP-sham and CP-CCl neurons in IL cortex. K, Fl slope. L, Current threshold. M, Input
resistance comparisons for sham and CCl CP neurons in IL cortex. *p << 0.05.

detected (sham: 3.0 = 0.3 pA; CCI: 1.8 = 0.4 pA; p = 0.02; ¢ test;
Fig. 3L). These data show that CCI decreases the strength of local
excitatory input to L5 CP neurons in both the PL and IL regions
of the mPFC.

Nerve injury reduces local inhibitory input to CP neurons in a
laminar-specific manner

Using cesium-based intracellular solution and recording at a
holding potential of +10 mV, close to the reversal potential for
glutamatergic inputs, we mapped local inhibitory inputs to CP
neurons. Inhibitory responses were elicited after stimulation
(glutamate uncaging) of L2/3 and L5 for both sham and CCI-CP
neurons in L5 of PL (Fig. 4A) and IL (Fig. 4G) cortex. In PL
cortex, we recorded inhibitory input maps from 15 CP neurons in
CCI mice and 14 CP neurons in sham controls (Fig. 4B) and
performed an ROI analysis similar to the excitatory maps (Fig.
4C). When we pooled the inhibitory maps for each group, row
analysis of inputs (Fig. 4C, gray dashed line) to CCI -CP neurons
showed weaker inhibitory responses primarily after stimulation
of L2/3 (Fig. 4D). Our ROI analysis (Fig. 4C, ROI 1, black line)
showed that inhibitory input resulting from L2/3 excitation was
significantly weaker in CCI CP neurons (sham: 31.0 * 7.2 pA;
CCI: 13.7 = 2.2 pA; p = 0.04; Wilcoxon rank-sum test; Fig. 4E).
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Figure3. (P neurons of CC mice have weaker excitatory input maps. 4, Representative bright-fieldimage depicting an excitatory trace map fora CP neuronin PL cortex. Image scale bar, 500 um;
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Although perisomatic inhibitory responses also appeared to be
slightly weaker for CCI CP neurons, ROI analysis of L5 showed
no significant differences between groups (sham: 23.4 = 3.1 pA;
CCI: 17.1 * 2.3 pA; p = 0.12; t test; Fig. 4F). In IL cortex, we
recorded inhibitory input maps from 15 CP neurons in CCI mice
and 12 CP neurons in sham controls (Fig. 4H ). Row analysis
revealed a decrease in inhibitory input from stimulation of L2/3
in CCI CP neurons (Fig. 4]). Our ROI analysis (Fig. 4I) showed
significant reduction in inhibitory inputs after L2/3 stimulation
(sham: 29.2 = 5.3 pA; CCI: 15.6 £ 4.0 pA; p = 0.04; ¢ test; Fig.

4K), but not after stimulation of perisomatic L5 sites (sham:
19.2 £ 3.8 pA; CCI: 14.4 = 3.0 pA; p = 0.2; Wilcoxon rank-sum
test; Fig. 4L). These results show both region- and laminar-
specific decreases in local inhibitory input to L5 CP neurons in
mPFC after CCIL.

CCI effects on the photoexcitability of excitatory and
inhibitory neurons in L2 and L5 of mPFC

Differences in CP maps from CCI and sham-control mice could
be explained by differences in the photoexcitability of presynaptic
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for excitation profiles (right). B, Schematic depiction similar asin A to show recording of EPs from L5 neurons. C, D, Representative fluorescent image showing distribution of SOM+ neurons (€) and
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0.5mV, 100 ms for CC. R, S, Intensity (R) and resolution (S) of EPs from L2/3 PVIN neurons (sham = 5, CCl = 5). T, Example EPs for L5 PVINs mice. Scale bar, 2.5 mV, 100 ms for sham and 1 mV, 100
ms for CCl. U, V, Intensity (U) and resolution (V) of EPs in L5 PVINs (sham = 7, (Cl = 12). *p < 0.05.

neurons rather than differences in synaptic connectivity. To
explore this possibility, we performed excitation profiles
(EPs), maps revealing the number and spatial distribution of
photoexcitable sites across individual neurons, to measure
photoexcitability of presynaptic neurons quantitatively as de-
scribed previously (Wood and Shepherd, 2010). We obtained EPs
in slices from sham and CCI animals by recording neurons in
loose seal mode and mapping their photoexcitability under the
same conditions used for synaptic input mapping. We recorded
EPs for both excitatory and inhibitory neurons in L2/3 (Fig. 5A)
and L5 (Fig. 5B), which comprise the main presynaptic source of
local inputs to CP neurons. Transgenic strategies (see Materials
and Methods) were used to identify SOM + and PVINs by expres-

sion of red fluorescent protein Td-Tomato (Fig. 5C,D). The EP
datasets were analyzed to determine the mean distance of spike
evoking sites from the soma as an estimator of the resolution of
photostimulation and the total number of spikes per map per cell,
an estimator of photoexcitability. We found that photoexcitability of
pyramidal and SOM+ neurons in L2/3 and L5 was not significantly
different between sham and CCI animals (Fig. 5E-P, Table 1). Sim-
ilarly, CCI did not alter the photoexcitability of L2/3 PVIN neurons
(Fig. 5Q=S, Table 1). However, we did find that the photoexcitability
of L5 PV+ neurons was significantly enhanced in CCI animals as
evident by increase in the total number of spikes (sham: 3.3 = 0.9;
CCL 6.6 = 1.0; p = 0.047; t test) without a significant change in
resolution of photoexcitable sites (Fig. 5T-V).
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Table 1. CCl effects on photoexcitability
Total no. of spikes

Photoexcitation resolution (.m)

Cell type Sham « p-value Sham « p-value
L2 pyramidal 63 £06 56135 0.7 54964 692+85 02
L5pyramidal 38 +09 35*+10 08 528 =44 735%169 0.2
[2SOM+  11.7%x21 13720 05 772101 79367 09
L5 SOM+ 12813 108*+15 04 81650 868*53 05
L2 PVIN 6614 66143 1.0 60632 67.2%50 03
L5PVIN 33210 6610 0.047 461*63 56.0*+34 02

Data are shown as mean == SEM. Statistical significance of all data was determined using Student’s unpaired t test.
Statistically significant value is displayed in bold.

CCI shifts the inhibitory/excitatory (I/E) ratio in local circuits
of CP neurons

We next analyzed whether CCI induces a shift in the I/E balance
of local inputs originating from specific laminar locations. For
this, we took the ratio of the mean input values for inhibitory
(green dashed line) and the excitatory (black line) ROIs used for
L2/3 (Fig. 6A) and L5 (Fig. 6D) analysis of local circuit maps
(Figs. 3, 4). We found that the I/E ratio of L2/3 inputs to PL-CP
neurons was unaltered in CCI mice due to similar reductions in
both excitatory and inhibitory input (sham: 1.49 = 0.05, CCL
1.45 = 0.02; p = 0.47; t test; Fig. 6B). However, the I/E ratio of
L2/3 inputs to IL-CP neurons was significantly reduced in CCI
mice (sham: 2.3 £ 0.09, CCI: 1.85 = 0.05; p = 0.002; Wilcoxon
rank-sum test; Fig. 6C). This is likely due to a significant decrease
in inhibitory input, but not excitatory input, following L2/3 stim-
ulation (Figs. 3K, 4K). The I/E ratio of L5 inputs to PL-CP neu-
rons in CCI mice was significantly increased (sham: 2.2 = 0.1,
CCI: 2.8 = 0.07, p = 2.6 X 10 t test; Fig. 6E), whereas it was
significantly decreased for IL-CP neurons in CCI (sham: 2.93 *
0.1, CCI: 2.0 = 0.08; p = 1.3 X 10~ ¢ test; Fig. 6F). The PL-IL
dichotomy in I/E shifts induced by CCI reflects the differential
decreases to excitatory and inhibitory input following L5 stimu-
lation observed in our mapping data (Figs. 3L, 4L). Overall, these
data suggest that CCI shifts the laminar I/E balance of local CP
circuits differentially in PL and IL.

CCI reduces the excitability and local inhibitory inputs of
PL-CP neurons ipsilateral to nerve injury

We next tested whether CCI decreases excitability of CP neurons
in PL cortex ipsilateral to the injured hindpaw. For this, we in-
jected retrograde tracer into the left PAG, which was ipsilateral to
CCI of the left sciatic nerve (Fig. 7A, B). Interestingly, suprath-
reshold recordings from ipsilateral CP-CCI neurons (sham: 7
neurons; CCI: 8 neurons) showed increased current threshold for
AP firing (sham median: 150 pA, interquartile range: 137.5-162.5
pA; CCI median: 250 pA, interquartile range: 200-250 pA; p =
0.014; ttest; Fig. 7C,D). However, the frequency of APs elicited by
depolarizing current steps was unchanged by CCI (sham: 0.10 =
0.01 Hz/pA; CCI: 0.10 = 0.01 Hz/pA; p = 0.98; t test; Fig. 7E).
Further analyses showed that CP-CCI neurons ipsilateral to CCI
have a lower membrane input resistance (sham: 87 = 6.0 MQ);
CCIL: 66 = 5.8 MQ); p = 0.023; ¢ test; Fig. 7F) and a narrower AP
half-width (sham: 0.84 = 0.018 ms; CCI: 0.62 = 0.005 ms; p =
0.031; ¢ test; Fig. 7G). Overall, this shows that unilateral CCI can
decrease input resistance and increase current threshold for AP
firing of CP neurons bilaterally across PL cortex.

Using glu-LSPS, we also recorded local excitatory and inhibi-
tory input maps from PL-CP neurons (sham: n = 8; CCI: n = 10)
ipsilateral to CCI (Fig. 8 A, F). Row average analysis (Fig. 8B, blue
dashed line) showed that excitatory inputs are unaltered across
L2/3 and L5 between CCI and sham (Fig. 8C). ROI analyses (Fig.
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8B, ROI 1, black line, ROI 2, green line) showed no significant
differences in excitatory inputs from L2/3 (sham = 7.1 * 2.2;
CCI=7.0 £ 1.7;p = 0.9; ttest; Fig. 8D) or L5 (sham = 1.1 = 0.2;
CCI = 1.0 = 0.3; p = 0.66; t test; Fig. 8E) between sham and CCI.
Next, we analyzed the inhibitory input maps from the same
PL-CP neurons (Fig. 8F). Row average analyses (Fig. 8G, gray
dashed line) showed weaker inhibitory responses after stimula-
tion of L2/3 and L5 in PL-CP neurons of CCI mice (Fig. 8H ). ROI
analyses showed a significant reduction in inhibitory inputs to
PL-CP neurons after L2/3 stimulation (sham = 21.4 *= 3.1;
CCI = 13.6 = 1.9; p = 0.041; ¢ test; Fig. 81), but not L5 stimula-
tion (sham = 19.9 = 2.7; CCI = 12.9 = 3.4; p = 0.014; t test; Fig.
8] ), in CCI mice. These results indicate that CCI bilaterally atten-
uates local inhibitory inputs to L5 PL-CP neurons in a laminar-
specific manner.

Discussion

Here, we report that peripheral nerve injury producing neuro-
pathic pain behavior alters both excitability and local circuit phe-
notypes of L5 pyramidal neurons in mPFC that send projections
to the PAG. The PAG is a key midbrain structure within the
descending network responsible for inhibiting ascending nocice-
ptive input (Basbaum and Fields, 1978; Behbehani, 1995; Millan,
2002; Benarroch, 2012). Our findings here suggest that nerve injury
induces dysfunction in cortical circuits directly upstream of the
PAG, which likely alters homeostasis of endogenous pain modula-
tion, potentially contributing to the persistence of chronic pain.

Functional roles of PL and IL cortex in pain

PL and IL cortex are adjacent mPFC regions that play opposing
roles in fear learning (Vidal-Gonzalez et al., 2006; Laurent and
Westbrook, 2009; Sierra-Mercado et al., 2011). However, studies
indicate that PL cortex plays a more prominent role than IL cor-
tex in pain processing. Lesions of PL cortex before inducing pe-
ripheral inflammation blocks emergence of hyperalgesia and
conditioned-place aversion, whereas lesions of IL cortex does not
(Jiang et al., 2014; Wang et al., 2015). Our data show that CCI
reduces intrinsic excitability of PL-CP neurons but not IL-CP
neurons. We also demonstrate that CCI enhances the I/E balance
of local L5 input to PL-CP neurons. These data are consistent
with evidence showing that deactivation of PL cortex contributes
to chronic pain. For example, activating PL cortex reduces allo-
dynia and affective symptoms produced by nerve injury (Mille-
camps et al., 2007; Lee et al.,, 2015). Blocking glutamatergic
transmission in nucleus accumbens (NAc) reduces, but does not
eliminate, pain relief driven by PL stimulation (Lee et al., 2015).
This suggests that attenuated PL-NAc activity contributes to
chronic pain, but that other mechanisms may be involved. Given
that the PAG is involved in endogenous analgesia, we speculate
that diminished activity of the PL-PAG pathway also contribute
to the persistence of chronic pain after nerve injury. Future strat-
egies aimed at activating the PL-PAG pathway in chronic pain
models are needed to confirm this.

Although a role of IL cortex in pain is emerging, it remains
unclear. Whereas we show that CCI does not affect intrinsic ex-
citability of IL-CP neurons, circuit-mapping data reveal de-
creases to local I/E balance of both L2 and L5 inputs, suggesting
that chronic pain increases local activity of the IL-PAG pathway.
This is consistent with a study showing glutamate stimulation of
IL cortex enhances nociception via metabotropic glutamate re-
ceptor 5 activity (David-Pereira et al., 2016). This infers that the
functional roles of PL and IL cortex in descending modulation are
distinct. Descending anti-nociceptive action of the PAG is medi-
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ated through the rostral ventromedial
medulla (RVM) (Vanegas et al., 1984; Ai-
mone and Gebhart, 1986; Cheng et al.,
1986; Morgan et al., 1992). However, ac-
tivation of this same supraspinal circuity
can also facilitate nociceptive signals (Light
et al., 1986; Fields, 1992; Urban and Geb-
hart, 1999; Porreca et al., 2002). This infers
that distinct circuits within the mPFC-
PAG-RVM network modulate suppression
and facilitation of pain input. Distinct out-
puts from PL and IL targeting different
subpopulations of PAG neurons may con-
tribute to this dichotomy.

Reduction in local excitatory circuit
strength of CP neurons after CCI

We are the first to show that layer 2/3
(L2/3) excitatory input to CP neurons, the
predominant local input to CP neurons
(Ferreira et al., 2015), is significantly de-
creased 7 d after CCI. Previous pain stud-
ies report conflicting changes to L2/3
neurons in mPFC. A specific subtype of
L2/3 pyramidal neurons in anterior cin-
gulate cortex (ACC) are hyperexcitable
after nerve injury (Cao et al., 2009). In-
trinsic excitability of L2/3 neurons in PL
cortex is reduced 1 d after the onset of
inflammatory pain (Wang et al., 2015).
Another study did not observe any signif-
icant changes to intrinsic excitability of
L2/3 neurons in PL cortex after nerve in-
jury (Metz et al., 2009). We show that
photoexcitability of L2/3 pyramidal neu-
rons 7 d after CCI is unchanged. There-
fore, we interpret reduced L2/3 excitation
of L5 CP neurons as a decrease in input
strength and/or number of inputs. Recent
work shows that neuropathic pain de-
creases glutamatergic transmission to L5
pyramidal neurons in PL cortex (Kelly et
al., 2016), which, based on our excitatory
mapping data, is due at least in part to
diminished local excitatory input.

Laminar-specific effects of CCI on local
inhibitory circuits of CP neurons

We show that CCI decreases local inhibi-
tory inputs to CP neurons after stimula-
tion of L2/3. This is possibly due to CCI
attenuating direct inhibition of L5 CP
neurons by L2/3 inhibitory neurons (Ji-
ang et al., 2013; Naka and Adesnik, 2016).
Alternatively, CCI may alter an interlami-
nar disynaptic pathway. Across cortex,
SOM+ L5 inhibitory neurons, also called
Martinotti cells, play a key role in L2/3

feedforward inhibition of L5 pyramidal neurons (Kapfer et al.,
2007; Otsuka and Kawaguchi, 2009; Apicella et al., 2012; Jiang et
al., 2015; Naka and Adesnik, 2016). We show that photoexcitabil-
ity of both L2/3 and L5 SOM+ cells is not altered by CCI, dem-
onstrating that decreases in local inhibitory inputs are not due to
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attenuated SOM + excitability. Given that we observed decreased
L2/3 excitatory input to L5 CP neurons after CCI, L2/3 excitation
of L5 SOM+ neurons may also be attenuated, leading to de-
creased feedforward inhibition of L5 CP neurons. However, with
the reduction of L5 excitatory input, the local I/E balance of L5
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input to both hemispheres of the PAG,
which could contribute to bilateral sensi-
tization. Interestingly, CCI did not alter
local excitatory circuit strength of PL-CP
neurons ipsilateral to injury, but did re-
duce local inhibitory inputs evoked by
stimulation of L2/3. This laminar-specific
reduction of inhibitory input is similar for
CP neurons in both PL hemispheres. It is
probable that increased BLA input to
mPFC caused by chronic pain (Ji et al.,
2010; Zhang et al., 2015) is bilaterally al-
tering local inhibitory neurons in PL cor-
tex. The optogenetic strategies that we
used (Cheriyan et al., 2016) can be used in
future studies to determine whether CCI
alters contralateral BLA input to inhibi-
tory neurons in mPFC.

Implications for CP circuit dysfunction
The CNS contains a descending modula-
tory network that drives endogenous pain
relief (Basbaum and Fields, 1978; Stam-

and ROI 2 (J). *p < 0.05.

input is still increased, likely decreasing overall activation of
PL-CP neurons.

Previous pain studies report alterations to L5 inhibitory path-
ways in mPFC. In ACC, reciprocal connectivity between L5 py-
ramidal neurons and L5 fast-spiking inhibitory neurons is
reduced after nerve injury (Blom et al., 2014). Arthritic pain
causes cognitive deficits resulting from hyperactivity of the baso-
lateral amygdala (BLA) driving polysynaptic inhibition of L5 py-
ramidal neurons in PL cortex (Ji et al., 2010). Similarly, nerve
injury increases input to PVINs in PL cortex, thus decreasing the
excitability of L5 pyramidal neurons (Zhang et al., 2015). Inter-
estingly, our mapping data show that CCI does not alter L5 in-
hibitory input to PL-CP neurons. One explanation for this is that
increased PVIN inhibition of L5 pyramidal neurons after nerve
injury (Zhang et al., 2015) is driven by long-range glutamatergic
inputs to PVINs, whereas our input maps are local and do not
activate long-range inputs. Another explanation is that CCI does
not affect the sensitivity of PVINs to uncaged glutamate. How-
ever, we found that CCI increases the sensitivity of L5 PVINs to
glutamate uncaging. Importantly, our circuit mapping nonselec-
tively activated all classes of inhibitory interneurons. Previous
work shows that PVINs and SOM + neurons differentially target
cortical pyramidal neurons based on projection target (Lee et al.,
2014; Rock and Apicella, 2015; McGarry and Carter, 2016).
Therefore, if L5 PVINs do not robustly target CP neurons, then
increased sensitivity of L5 PVINSs to glutamate uncaging after CCI
may not lead to measurable changes in L5 inhibitory input to CP
neurons. Nonetheless, future studies determining connectivity of
PVIN and SOM+ neurons to CP neurons and measuring local
circuit strength of PVINs and SOM+ neurons after nerve injury
are critical for illuminating the mechanisms underlying our ob-
served decreases in local inhibitory input to CP neurons.

Bilateral alterations to CP neurons after unilateral CCI

Unilateral nerve injury can evoke bilateral pain behavior (Seltzer
etal.,, 1990; Vos et al., 1994; Sinnott et al., 1999). Here, we report
that unilateral CCI reduces intrinsic excitability of CP neurons
bilaterally in PL cortex. This suggests that CCI attenuates cortical

ford, 1995). Analgesic mechanisms of this

network involve activation of the PAG via
opioid or cannabinoid pathways (Morgan et al., 1991; Morgan et
al., 1992; Lichtman et al., 1996). It is believed that mPFC activity
triggers opioid release in PAG, which contributes to endogenous
analgesia (Wager et al.,, 2004; Tracey and Mantyh, 2007). We
demonstrate that CCI alters the I/E balance of local inputs to
mPFC neurons directly upstream of the PAG. These data are
consistent with the implication that disruption of the descending
analgesic network contributes to the pathology of chronic pain
(Ossipov et al., 2010; van Wijk and Veldhuijzen, 2010). Future
work aimed at determining the impact of mPFC input on PAG
circuits is necessary to reveal a functional role of the mPFC-PAG
pathway in chronic pain pathology.
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