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Behavioral/Cognitive

Closed-Loop Slow-Wave tACS Improves Sleep-Dependent
Long-Term Memory Generalization by Modulating
Endogenous Oscillations
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Information and Systems Sciences Laboratory, Center for Human Machine Collaboration, HRL Laboratories, Malibu, California 90265 and 2Psychology
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Benefits in long-term memory retention and generalization have been shown to be related to sleep-dependent processes, which correlate
with neural oscillations as measured by changes in electric potential. The specificity and causal role of these oscillations, however, are still
poorly understood. Here, we investigated the potential for augmenting endogenous slow-wave (SW) oscillations in humans with closed-
loop transcranial alternating current stimulation (tACS) with an aim toward enhancing the consolidation of recent experiences into
long-term memory. Sixteen (three female) participants were trained presleep on a target detection task identifying targets hidden in
complex visual scenes. During post-training sleep, closed-loop SW detection and stimulation were used to deliver tACS matching the
phase and frequency of the dominant oscillation in the range of 0.5-1.2 Hz. Changes in performance were assessed the following day using
test images that were identical to the training (“repeated”), and images generated from training scenes but with novel viewpoints
(“generalized”). Results showed that active SW tACS during sleep enhanced the postsleep versus presleep target detection accuracy for
the generalized images compared with sham nights, while no significant change was found for repeated images. Using a frequency-
agnostic clustering approach sensitive to stimulation-induced spectral power changes in scalp EEG, this behavioral enhancement signif-
icantly correlated with both a poststimulation increase and a subsequent decrease in measured spectral power within the SW band, which
in turn showed increased coupling with spindle amplitude. These results suggest that augmenting endogenous SW oscillations can
enhance consolidation by specifically improving generalization over recognition or cued recall.

Key words: consolidation; EEG; long-term memory; sleep; tACS

(s )

This human study demonstrates the use of a closed-loop noninvasive brain stimulation method to enhance endogenous
neural oscillations during sleep with the effect of improving consolidation of recent experiences into long-term memory.
Here we show that transient slow oscillatory transcranial alternating current stimulation (tACS) triggered by endogenous
slow oscillations and matching their frequency and phase can increase slow-wave power and coupling with spindles.
Further, this increase correlates with overnight improvements in generalization of recent training to facilitate performance
in a target detection task. We also provide novel evidence for a tACS-induced refractory period following the tACS-induced
increase. Here slow-wave power is temporarily reduced relative to sham stimulation, which nonetheless maintains a posi-
tive relationship with behavioral improvements. j

ignificance Statement

Introduction
Large strides have been made in research surrounding the role of
sleep in stabilizing memories. The current model suggests that
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recent experiences are reactivated during slow-wave sleep, and
this reactivation allows for the integration of these experiences
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into long-term memory. The proposed mechanisms supporting
this consolidation suggest that during slow-wave sleep the neo-
cortex begins synchronously oscillating in the slow-wave (0.5-1
Hz) and delta bands (1-4 Hz). These oscillations are made up of
periods of neuronal depolarization accompanied by sustained
firing (“up states”) and periods of hyperpolarization associated
with neuronal silence (“down states”). These depolarizing up
states allow for thalamocortical spindles (10—16 Hz) to emerge in
the neocortex, which in turn have been shown to synchronize
with hippocampal sharp-wave ripples. This has been suggested to
facilitate the consolidation of recent experiences, such that rip-
ples indicate hippocampal reactivation, and ripple spindle-slow-
wave events mark the transfer of that content to the neocortex
(Rasch and Born, 2013; Staresina et al., 2015). The causal role of
slow-wave (SW) oscillations on spindles and ripples, and the im-
plications of manipulating the endogenous interdependence of
each in memory consolidation have yet to be fully explored.

Many studies of sleep-dependent changes in declarative mem-
ory show correlations between spindle power and increased
“gist” in the learned material rather than recall or recognition.
This gist has been captured in various ways, including insight into
the hidden structure of digit strings (Wagner et al., 2004), explicit
knowledge of hidden serial reaction time task response patterns
(Fischer et al., 2006), and integration of new words into existing
knowledge (Tamminen et al., 2010). These behavioral changes
have been shown to correlate with neural oscillations during
sleep, suggesting that altering sleep-related neural oscillations
could in turn alter the consolidation of these various experiences
into existing knowledge.

Indeed, transcranial alternating current stimulation (tACS)
has been shown to enhance sleep-dependent consolidation
processes. The dominant paradigms thus far generally use
open-loop blocks (5 min on, 1 min off) of 0.75 Hz tACS applied
to prefrontal cortex in non-rapid eye movement (REM) sleep
stages N2 and N3. In general, they have shown a selective en-
hancement for postsleep declarative memory tasks as opposed to
procedural memory tasks (Marshall et al., 2006; Westerberg et al.,
2015; Ladenbauer et al., 2017). These results, however, have not
been without contention. Some transcranial stimulation studies
have yielded null results in both behavior and electrocorticogra-
phy, casting doubts on the capability for tACS to influence
neuronal processing without matching endogenous activity
(Horvath et al., 2015; Lafon et al., 2017). These results suggest
that stimulation-induced changes in sleep processes can impact
behavior; however, the specificity of those behavioral changes
and the sufficient physiological manipulation are not yet well
understood.

Similarly, transcranial direct current stimulation (tDCS)
has been shown to influence behavioral performance in a va-
riety of tasks. In particular, Clark et al. (2012) found a stable
dose-dependent effect of tDCS on performance such that in-
creasing levels of stimulation improved participants’ ability to
find hidden targets in complex scenes. This effect was found to
persist for at least 24 h; however, no overnight changes in
performance were found (Clark et al., 2012; Coffman et al.,
2012; Falcone et al., 2012). This raises an intriguing question:
if tDCS-enhanced performance was paired with tACS-enhanced
sleep-dependent consolidation, could behavioral improvements be
further augmented?

This study addresses these open questions by using a novel
closed-loop tACS stimulation protocol to target the endogenous
SW oscillations during sleep. The influence on behavior is mea-
sured in declarative memory through a tDCS-enhanced target
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detection paradigm where participants must learn subtle cues to
detect targets hidden in a complex visual environment. Critically,
this paradigm has previously shown no overnight changes in per-
formance and can assess performance in recognition memory as
well as generalization. Here we aimed to show that closed-loop
tACS would enhance endogenous SW oscillations driving an im-
provement in overnight memory performance beyond any
tDCS-related improvements.

Materials and Methods

The description of the experimental paradigm and procedures below are
also presented in the study by Jones et al. (2018).

Inclusion/exclusion criteria

Participants were 18—40 years of age, used English as a first language,
completed high school, and had no history of head injury with loss of
consciousness for >5 min. They were right handed according to the
Edinburgh Handedness Inventory (Oldfield, 1971), had no history of
neurological or psychiatric disorder, had no history of alcohol or drug
abuse, were nonsmoking, had no excessive alcohol or caffeine consump-
tion, were not currently taking any medication significantly affecting the
CNS, had no implanted metal, had no sensitivity or allergy to latex, had
good or corrected hearing and vision, and reported no sleep distur-
bances. Women who were pregnant, or thought they may be, were also
excluded.

Participants

A total of 21 participants, who were recruited using flyers placed around
campus of the University of New Mexico and surrounding community,
completed the experiment and received monetary compensation. Four
subjects were excluded from the analyses due to equipment failure result-
ing in relatively fewer stimulation events through their active nights (>1
SD of stimulation counts across the pool), and one subject was excluded
due to an unexpected long gap between the acclimation night and the
first experimental night. All participants provided signed informed con-
sent to participate in the study, which was approved by the Chesapeake
Institutional Review Board. The remaining N = 16 participants com-
prised 3 females, with a mean age of 22.25 years and an SD of 4.96 years.

Target detection paradigm

A modified version of the original task, described in the study by Clark et
al. (2012), which trained subjects to discover the presence of hidden
targets in static images and tracked changes in performance through
time, was created to allow for the within-subjects design of the current
study. A total of 1320 still images were extracted from the videos and
edited to include or remove specific objects. Targets that were hidden in
these images included explosive devices concealed by or disguised as dead
animals (e.g., camels), roadside trash, fruit, flora, rocks, sand, or building
structures; and enemies in the form of snipers, suicide bombers, tank
drivers, or stone throwers. The stimulus set was divided into the follow-
ing two target categories: people targets (e.g., enemy snipers, friendly
fire) and object targets (e.g., improvised explosive devices, trip wires).
Half of the images presented to participants during testing following
training were identical to those seen in training (repeated images), and
half were related, but with varying spatial perspective from the same
corresponding scenes (generalized images). This design allowed for the
investigation of effects of the sleep intervention on performance of ve-
ridical recall or selective item consolidation in the repeated images, and
of multi-item generalization performance in the generalized images
(Stickgold and Walker, 2013). Participants were instructed that they
could stop the task at any time if the stimuli were too uncomfortable or
made them anxious. No subjects elected to stop for such a reason.

Waking electroencephalographic data collection

Subjects were prepped and fitted with a neoprene electroencephalo-
graphic (EEG) cap that incorporated 32 Ag-AgCl EEG electrodes, placed
according to the 10-20 international EEG system (P7, T7, CP5, FC5, F7,
F3, C3, P3, FC1, CP1, Pz, PO4, 02, Oz, O1, PO3, CP2, Cz, FC2, Fz, AF3,
Fpl, Fp2, AF4, P8, T8, CP6, FC6, F8, F4, C4, and P4). Three external
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channels were used, including electrocardiogram (PO3) placed under the
left collarbone, and both vertical (AF3) and horizontal (AF4) electro-
oculogram: one channel was placed superior and lateral to the right outer
canthus, and another was placed inferior and lateral to the left outer
canthus. CMS (common mode sense) and DRL (driven right leg) refer-
ence electrodes were placed on the preauricular. Data were sampled at
500 Hz.

Sleep polysomnographic data collection

For polysomnographic (PSG) data collection during sleep, the setup was
nearly identical to wake, with a few exceptions. First, two EMG electrodes
were placed on and under the chin in accordance with PSG recording
guidelines set forth by the American Academy for Sleep Medicine (Berry
etal., 2015) to help with sleep scoring. Second, data were collected from
25 EEG electrodes, of which C3, C4, O1, and O, were used for sleep
staging. For overnight closed-loop SW sleep augmentation, four chan-
nels dedicated for stimulation were used; namely, F3/F4 place in normal
10-20 positions, and T7/T8 placed on bilateral mastoids. Finally, as F3
and F4 were used for stimulation, they were omitted from data collection;
thus, Fpl and Fp2 were used to assign sleep stages when needed.

Waking transcranial direct current stimulation
Thirty minutes of continuous tDCS was delivered via the StarStim R32
simultaneous EEG/Stimulation device (Neuroelectrics) during 48 min of
training. A custom tDCS template for use during awake training was
defined in the Neuroelectrics control software CoreGUI. In the active
condition, a total dose of 1000 nA (1.0 mA) was specified, and for the
sham condition a total dose of 100 nA (0.1 mA) was specified. Two
electrodes with saline-soaked sponges (25 cm?) were affixed to the par-
ticipants using a Coban adhesive bandage. In the active condition, the
anode electrode was centered over the right sphenoid bone (electrode site
F10), and the cathode electrode was placed on the upper contralateral
arm. These locations and stimulating amplitudes are based on prior stud-
ies using this target detection paradigm (Clark et al., 2012). In the sham
condition, the placement, polarities, and duration were identical to the
active placement, but the current was set to 0.1 mA instead of 1.0 mA.
Physical sensation ratings were solicited three times during tDCS ad-
ministration: once after current ramp-up (~1 min), 4 min following
ramp-up before the first training run began (~5 min after stimulation
had begun), and immediately following the first training run (~21 min
after stimulation had begun). Participants were asked to rate three dif-
ferent types of sensations (itching, heat/burning, and tingling) on a 0-10
Likert scale, where 0 indicated no feeling of sensation at all and 10 indi-
cated the worst possible feeling of sensation. Any report of a score of =7
resulted in immediate cessation of stimulation and termination of the
experiment, without penalty to the participant.

Closed-loop transcranial alternating current stimulation during
slow-wave sleep

Ilustrated in Figure 2, our closed-loop algorithm for electrical augmen-
tation of slow-wave sleep first detects the presence of SW oscillations,
which consist of slow synchronized upward and downward deflections of
EEG that are associated with memory consolidation. The algorithm next
attempts to match the stimulation frequency and phase with ongoing SW
activity such that maximal stimulation occurs at the up states ( positive
half waves) of the endogenous SW oscillations, as prior work suggests
that these are the periods during which coordinated memory replays
between hippocampus and neocortex occur to facilitate long-term mem-
ory consolidation (Ji and Wilson, 2007). For robust SW detection, a
virtual channel is computed by averaging 13 frontocentral EEG channels
(Cz,FC1, FC2, CP1, CP2, Fz, C4, Pz, C3, F3, F4, P3, and P4 in the 10-20
system) to determine the overall synchronous activity of EEG recorded
during sleep. The virtual channel allows the observation of moments of
relatively high SW power, referred to as “SW events,” while averaging out
the activity of lesser magnitudes on individual channels unrelated to the
pattern of SW oscillations. The included channels are stored in a running
5 s buffer. They undergo moving average subtraction with a 1 s window
(to mean center the signals at 0 wV), and noisy channels exceeding a 500
wV minimum-to-maximum amplitude across the 5 s are rejected before
the virtual channel is computed. The buffer is updated with each discrete
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data fetch operation that gets the latest data up to the point of that data
request. By the time the buffer is updated, there is a random transmission
delay, which needs to be accounted for to plan and precisely time the
brain stimulation intervention in the near future.

The virtual channel data in the buffer is further processed to actually
detect the presence of SW oscillations and possibly predict the upcoming
up state. The algorithm applies a fast Fourier transform to these stored
data to determine the power spectrum. Stimulation is planned when the
ratio of the cumulative power in the SW band (0.5-1.2 Hz) is >20% of
the total cumulative power from 0.1 to 250 Hz. If this SW relative power
threshold of 0.2 (or 20%) is crossed, the algorithm then filters the data in
the SW band with a second-order, phase-corrected Butterworth filter.
Next, a sine wave is fit to the filtered virtual channel using the identified
dominant frequency in the SW band, and with the amplitude, offset, and
phase parameter values optimized. The sine wave is then projected into
the future, identifying the temporal targets that would synchronize brain
stimulation to the predicted endogenous signal. Throughout this pro-
cess, the dynamic latency associated with data processing is timed using
the system clock. Together with distributions of calibrated latencies for
data fetch and stimulation commands (mean = 5 ms, SD = 2 ms), which
were measured off-line, the algorithm determines the correct time point
to communicate with the hardware to initiate the stimulation. For in-
stance, suppose at a given moment the algorithm initiates data fetch to
populate the buffer with the last 5 s of EEG data, the data become avail-
able for processing a few milliseconds (say, 6 ms) into the future based on
sampling from the distribution for data fetch latency. Then, say it takes
100 ms for data processing to predict the next up state, which happens to
be 600 ms into the future from the starting time point. If it takes a few
milliseconds (say, 7 ms) to physically initiate stimulation based on sam-
pling from the distribution for stimulation command latency, the algo-
rithm would wait 487 ms after the EEG processing step to send the
stimulation command to the device. Ideally, tACS is applied for 5 cycles
at the detected SW frequency over bilateral frontal electrodes (F3 and F4)
at 1.5 mA/hemisphere with temporal/mastoid returns. Should process-
ing times push beyond any potential stimulation time point, the algo-
rithm compares the current time to the (now deprecated) stimulation
time, and checks whether at least 300 ms of up-state stimulation is still
possible. If so, the stimulation is initiated with an altered start phase
(based on the detected SW frequency) for aligning with the endogenous
SW oscillations, despite the delay, and is continued until 4 full cycles are
completed (where a cycle is defined as the progression from 0° phase to
360° phase). In the event that at least 300 ms of up-state stimulation is not
possible, then the algorithm plans the stimulation to start at the next
upcoming up state based on the continued sine wave projections from
the buffer. Once stimulation is delivered, the system idles for 3 s to avoid
the collection of stimulation artifacts in the data buffer, then resumes the
cycle of data update in the buffer, data processing and predictions, and
stimulation planning as the criteria specified above are met. Our closed-
loop system thus adapts and adjusts stimulation parameters on-line to
ensure the proper administration of stimulation at the correct temporal
targets for matching the predicted transient brain states of interest. It is
able to minimize the pitfalls of temporal inaccuracies that arise as a result
of variable delays intrinsic to any recording/stimulation/processing
hardware. On sham nights, up states were similarly predicted but no
stimulation was applied.

Experimental procedures

The experiment was conducted over the course of 6 d, including
3 nights spent in our sleep laboratory referred to here as “accli-
mation,” “Night 2,” and “Night 3,” two afternoon follow-up test-
ing sessions (“Day 2 Post-Sleep” and “Day 3 Post-Sleep”), as well
as an initial orientation session. Participants were randomly
assigned to one of the following four conditions in a within-
subjects, counterbalanced, single-blind design: Object Target/
Sham Stimulation Night 2, People Target/Active Stimulation
Night 3 (SO/AP); Object Target/Active Stimulation Night 2, Peo-
ple Target/Sham Stimulation Night 3 (AO/SP); People Target/
Sham Stimulation Night 2, Object Target/Active Stimulation
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Night 3 (SP/AO); and People Target/Active Stimulation Night 2,
Object Target/Sham Stimulation Night 3 (AP/SO). At the orien-
tation session, participants were invited to provide informed
consent, and were given several questionnaires to assess various
aspects of their personality and sleep habits, as well as to gather an
IQ estimate. Following the questionnaires, head measurements
were made (circumference, nasion to inion, and preauricular to
preauricular) to fit an EEG cap. Participants were next given a
tour of the sleep laboratories and an explanation of the EEG/
stimulation equipment and experimental procedures. Finally,
each participant was issued a Fitbit wrist-worn biometric sensor
(Dickinson et al., 2016), with instructions on how to correctly
operate it to track sleep before their laboratory visits.

For the acclimation night, participants arrived at the sleep
laboratory by 5:00 P.M., and were prepped and fitted with an EEG
cap (see Waking EEG data collection section), and an adapted
version of Raven’s Progressive Matrices, called Sandia Matrices,
was administered (Matzen et al., 2010). Next, data were collected
to calibrate biometrics for use in a predictive computational
model, including a breath count task to measure attentional
lapses (Braboszcz and Delorme, 2011) that lasted 30 min, as well
as a three-back task to generate cognitive stress and mental fa-
tigue (Hopstaken et al., 2015) that lasted 21 min was gathered.
Participants could then relax in the laboratory until approximately
9:00 P.M., when they were prepped for PSG recording during sleep
(see Polysomnographic data collection section). EEG electrode loca-
tions were digitized using Polhemus FASTRAK System for data
analysis purposes as well as to measure how much the cap may
have shifted during the subsequent sleep episode. Participants
were instructed to lie down in a supine position at approximately
10:00 P.M., when biocalibrations were performed to help identify
sources of noise in later EEG acquisition. This included EEG data
collection of eyes open for 1 min, closed for 1 min, looking up,
down, right, and left, blinking slowly five times, clenching the
jaw, and finally moving into a comfortable sleeping position.
Lights out for the participants occurred between 10:00 P.M. and
11:00 P.M., and they slept for up to 8 uninterrupted hours before
being awoken. During sleep, EEG data were monitored, and the
closed-loop prediction algorithm was started when 4 min of con-
tinuous, visible N2/N3 sleep was observed by a trained research
assistant. During the acclimation sleep, no stimulation was ap-
plied, but the information gathered from the closed-loop predic-
tion algorithm was used to verify the SW relative power threshold
of 0.2 for subsequent experimental nights for each participant.
Upon waking, participants could use the restroom and were of-
fered water and snacks. They filled out the Karolinska Sleep Diary
(KSDj Akerstedt et al., 1994) to assess subjective sleep quality.
Next, they completed a one-back task for 21 min to assess alert-
ness, and then were disconnected from the EEG hardware and
released.

For night 2, subjects arrived at the laboratory at approximately
5:30 P.M. and were immediately set up for EEG data collection
and tDCS stimulation. Participants were seated in front of the
computer and instructed on how to respond to the stimuli, but
were not given specific information about the nature of the hid-
den targets or any strategies with which to find them. First, par-
ticipants performed two baseline runs, consisting of 60 images/
run, and made a binary response (target present/target absent)
using the keyboard. Each baseline run lasted ~8 min, and no
feedback was given regarding performance.

Participants then took a brief baseline mood questionnaire to
help assess potential effects of tDCS on subjective mood. The
mood questionnaire consisted of nine questions on a 0—5 Likert
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scale. Items included feelings of nervousness or excitement, tired-
ness, confusion, sadness, degree of frustration, dizziness, nausea,
degree of physical pain or discomfort, and ability to pay atten-
tion. After all questions were answered, the training portion of
the target detection task was administered.

Participants completed three training runs, the first two of
which (training blocks one and two) were <30 min of either
low-active (1.0 mA) or sham (0.1 mA) tDCS stimulation, fol-
lowed by one more run (training block three) immediately fol-
lowing the administration of tDCS. The training blocks differed
from the testing blocks in that after each choice the participants
were given audiovisual feedback using a short clip regarding the
consequence of their decision. If the participant indicated “target
present” and was correct, a short video depicting the mission
progressing as planned was shown, with a voiceover praising the
participant for choosing correctly. If the participant incorrectly
indicated that a target was present, a voiceover chastised them for
delaying the mission, or insulted them by indicating they were
acting cowardly. If the participant correctly indicated that there
was no target present, feedback was given that the mission was
progressing as planned. If participants incorrectly indicated that
no target was present when in fact there was one, a video showing
the consequence of missing the target was shown. For example,
another member of the participant’s platoon was shot by a sniper
or a Humvee was destroyed by an improvised explosive device.
Further, a voiceover scolded the participant for missing the target
and told them that members of their team had been killed. Each
of the three training blocks consisted of 60 trials each and lasted
~16 min. Each image was presented for 2 s with an intertrial
interval that varied from 4 to 8 s. The audiovisual feedback did
not provide specific details of the shape or location of the target
object, but enough information was available from the test image
and feedback movie that the participant could infer the type and
general position of the target in the image.

Following the three training runs, two more test runs (testing
blocks three and four, referred to as an “immediate test”) were
administered to gauge the immediate effect of tDCS on learning
before sleep. Half of the stimuli used in the immediate test had
been presented during training (repeated stimuli), while the re-
maining stimuli were similar in content and had the same types of
targets, but had not been presented during training (generalized
stimuli). Thus, memory for trained images and the generalization
of the training to novel images could be examined separately.
Following the final test block, participants were administered an
exit mood questionnaire consisting of the same nine questions in
the initial mood assessment, as well as a questionnaire probing
the strategy the participants used to complete the task. Next, a
new set of Sandia Matrices was administered, as was a Language
History Questionnaire. Then participants could relax in the lab-
oratory until approximately 9:00 P.M., when they were prepped
for PSG recording duringsleep (see Sleep polysomnographic data
collection section). EEG electrode locations were digitized, and
biocalibrations were performed. Lights out for the participants
occurred between 10:00 P.M. and 11:00 P.M., and they were al-
lowed again to sleep for 8 uninterrupted hours before being awo-
ken. During sleep, EEG data were monitored, and the closed-loop
stimulation intervention was started when 4 min of continuous
visible N2/N3 sleep was observed, and allowed to run through the
remainder of the night. Participants received either closed-loop
tACS (1.5 mA/hemisphere) or sham tACS (no current) for the
entire duration of sleep (for a description of the intervention, see
Closed-loop transcranial alternating current stimulation during
slow-wave sleep section), administered at bilateral frontal anodes
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A

Baseline Test

Training

Respond:
Threat, No-Threat
No Feedback

B Repeated

Original

Figure 1.

1 mA anodal tDCS at F10, cathode left arm
Respond: Threat, No-Threat
Video feedback on response accuracy
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Post-Sleep Tests
(Morning, Afternoon)

Pre-Sleep Test

Respond: Respond:
Threat, No-Threat Threat, No-Threat
No Feedback No Feedback

A, Target detection task. Participants identified cues of potential targets with binary target present/absent decisions. The study was conducted in multiple phases: baseline (i.e., no

feedback on response), training (video feedback identifying correct and incorrect choices), immediate test (no feedback, immediately after training), and postsleep tests (no feedback, ~12and 24 h
after training). Active and sham stimulation conditions (counterbalanced within subjects) were administered at training (tDCS) and post-training sleep (closed-loop slow-wave tACS) with the
stimulation montage shownin €. B, Memory was tested on two image types: repeated (identical from training to test) and generalized (same scene from training to test, but novel spatial viewpoint).
€, tDCS montage used for training shown on left, and tACS montage used for slow-wave augmentation during sleep shown on right.

(F3 and F4 in the 10-20 system) and temporal/mastoid returns.
These locations are based on previous slow-wave sleep interven-
tions (Marshall et al., 2006; Westerbergetal., 2015; Ladenbauer et
al., 2017). If the participant showed signs of waking, or needed to
use the restroom, the stimulation was paused and resumed after
the participant was again in N2/N3 sleep. Upon waking, partici-
pants were allowed to use the restroom and were offered water
and snacks. They filled out the KSD to assess subjective sleep
quality. Next, for the Day 2 Post-Sleep tests, they first completed
two more testing blocks of the target detection task (referred to as
the “morning test”) to assess the effect of SW sleep augmentation
on consolidation/performance, filled out the strategy question-
naire, and then were disconnected from the EEG hardware and
released. For the second Day 2 Post-Sleep test, participants ar-
rived ~24 h after their initial Day 1 arrival (5:30 P.M.), were
prepped for EEG data collection, and were administered two
more testing blocks (referred to as the “afternoon test”) to assess
the effects of SW sleep augmentation on more long-term reten-
tion and performance. Note that each block of test runs (three
through eight; i.e., immediate, morning, and afternoon tests)
presented 60 repeated and 60 generalized images, and there was
no overlap in stimuli across these runs.

Approximately 5 d after completing the Day 2 Post-Sleep tests,
participants came back to the laboratory for their Night 3 and
Day 3 follow-up. The timeline and procedures were identical to
the Night 2 and Day 2 follow-up, the only differences being the

target detection condition (object targets/people targets) and
stimulation condition (active/sham) were the opposite of their
Night 2 assignments. Upon completion of the Day 3 Post-Sleep
tests, a final exit questionnaire was administered to gather sub-
jective ratings from participants in terms of how they felt the
intervention impacted their memory functioning generally, and
they were debriefed, during which time they could ask questions
about the nature of the experiment. Please see Figure 1 for a
graphical description of the experimental procedures.

Post hoc sleep EEG analysis

Analysis of the sleep EEG data was performed using custom-built scripts
implemented in Matlab R2016a (MathWorks) taking advantage of vari-
ous FieldTrip (Oostenveld et al., 2011) and EEGLab (Delorme and
Makeig, 2004) functions. EEG data were extracted from sleep sessions
and epoched into prestimulation and poststimulation windows, which
were in turn triggered by the SW oscillations described in the Materials
and Methods section. The same process was carried out for the sham
condition off-line by estimating where stimulation events would have
occurred given the ongoing SW oscillations, and are synonymously re-
ferred to here as “SW events.” It should be noted these sham SW events
were computed post hoc on the full night’s worth of data from the record-
ing session. Indeed, the number of SW events significantly varied be-
tween active and sham conditions (¢,5, = — 8.01, p < 0.001), with an
average (=SEM) of 280.87 * 45.58 SW events on the active nights and
1223.70 * 84.32 on the sham nights. An appreciable reason for the dis-
crepancy is that the sham off-line code operates on the whole night
without any starting latency or pauses, unlike the active on-line code
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where the intervention is initiated only after 4 min of continuous N2
sleep, and is paused in response to awakenings or any other visual dis-
ruption in the participants’ sleep.

Pre-SW event epochs captured —6.4 to —0 s before SW event onset,
and post-SW event epochs captured 0 to 12.8 s relative to SW event offset.
Here, SW event offset occurs after the temporal duration of the targeted
stimulation for that event, which is 5 cycles at the event-specific domi-
nant frequency within the range of 0.5-1.2 Hz (i.e., a range from 4.16 to
10's). A segment-level artifact removal was performed within each epoch
by searching in 200 ms sliding windows for a peak-to-peak voltage
change of 500 wV within each channel. Any segment that crossed this
threshold was marked as bad and interpolated using non-artifact-
afflicted time points before and after the marked segments. Any channel
that had >25% of its segments within a given epoch marked as bad was
discarded and the full epoch for that channel was interpolated using
neighboring channels. Any SW event that had >80% of its channels
exceed the 25% segment threshold were discarded entirely. On average
across channels, trials and subjects that were 15 = 229% (here, error is 1
SD) of prestimulation and 15 % 21% of poststimulation event epoch
time points were interpolated in the active condition, and 3 = 4% of
pre-SW events and 3 = 5 post-SW events were interpolated in the active
and sham conditions respectively. There were significantly more inter-
polated events in the active versus the sham condition (between-subjects
t test: pre-SW event, f1s) = 2.56, p = 0.02; post-SW event, f(1s) = 2.48,
p = 0.03). The significantly noisier quality of the active EEG data also
contributed to the discrepancy in SW events between active and sham
conditions. After segment-level artifact removal, a pass of trial-level re-
moval was performed such that any channel that exceeded the 500 uV
(minimum-to-maximum voltage change) threshold within a given
SW event was reconstructed by interpolation of its neighbors, and any
SW event in which >80% of the channels exceeded that threshold the SW
event was discarded entirely. Trial subselection was done with the con-
straint that each trial had at least 5.75 s of usable data both pre-SW and
post-SW events. On average across subjects, 18 * 6% of sham and 19 *
28% of active SW events were discarded due to limited duration, and
10 * 8% of sham and 18 = 20% of active SW events were discarded due
to >80% of channels exceeding the artifact threshold. Following artifact
removal, all epochs were truncated to —6.4 to —1 s before the SW event
and 3 to 12.8 s after the SW event to ensure that no stimulation artifacts
lingered in the data. Finally, all epochs were mean centered, bandpass
filtered between 0.1 and 125 Hz, and bandstop filtered between 59 and
61 Hz, and all channels were rereferenced to the global average across
channels.

Spectral power methods

Time frequency decomposition was performed in FieldTrip using More-
let wavelets. Before decomposition, symmetric (mirror) padding was
used to extend the pre-SW and post-SW event time-series to avoid edge
artifacts in frequency decomposition. The series of wavelets used in the
decomposition started with a width of 4 at the center frequency of 0.5 Hz,
and subsequent center frequencies were chosen such that each wavelet
was 1 SD in frequency domain from the previous wavelet. Simultane-
ously, the wavelet width was increased as a function of center frequency
to minimize the combined uncertainty in time and frequency domains,
with a starting width of 4 and maximum width of 12. This yielded a time
frequency representation with 52 approximately log-spaced frequency
bins from 0.5 to 100 Hz, and equally spaced time bins of 20 ms. Normal-
ized power within each frequency bin was calculated by first z-scoring
within each SW event based on a mean and SD in power estimated over
the whole time period (—6.4 to 12.8 s). Relative power within each fre-
quency bin was then calculated using a baseline period across SW events
by concatenating —3.5 to —3 s from all pre-SW event periods and esti-
mating a mean and SD from this concatenated time series. These values
were then used to z-score within frequency bins both the before and after
periods for each SW event to avoid single-trial bias in spectral normal-
ization (Ciuparu and Muregan, 2016). This z-scored change in power was
then averaged across epochs within the active and sham stimulation
conditions separately to yield a single channel X time X frequency ma-
trix for each condition and subject.
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Phase—amplitude coupling methods

Phase—amplitude coupling was estimated using an adaptation of the os-
cillation triggered coupling (OTC) method as described by Dvorak and
Fenton (2014). OTC is essentially an event-related potential (ERP) anal-
ysis where the events are time locked to the peaks of high-power events
within a targeted frequency band. Summing the voltage signal that is time
locked to these events results in a waveform where the peak-to-peak
amplitude (referred to as modulatory strength) can be used as a measure
of how consistently the higher-frequency triggering events fall at a par-
ticular phase of the modulating lower-frequency signal. This method was
chosen as it allows for estimates of coupling within relatively small win-
dow sizes (e.g., <2's). This allowed for a more nuanced temporal analysis
that was necessary given the dynamics of the spectral power results.

To estimate the influence of tACS on the relationship between the SW
phase and the amplitude of spindle oscillations, the temporal onset of
high-power events within the range of 8—16 Hz were determined using
the same variable-width wavelet decomposition methods described in
the Spectral power methods section. Here, approximately log-spaced
frequencies from 8 to 16 Hz were estimated from 3 to 10 s every 2 ms to
provide the most temporal precision possible given the sampling rate.
The spectral estimates were then z-scored over time within each chan-
nel X frequency bin, and peaks within these bins that exceeded a z-score
of 2 were used as triggering events. To differentiate where the strongest
effects occurred in time, a sliding window with a 1 s duration and a
separation (i.e., slide) of 0.25 s was used to segregate triggering events to
a given temporal extent. In total, 21 overlapping windows were used,
starting from 3.5 to 4.5 s and ending at 8.5-9.5 s relative to SW event
offset. Here our hypothesis was that SW stimulation increased spindle
coupling, therefore the voltage signal centered on triggering spindle
events was filtered using a phase correcting second-order Butterworth
filter with passband between 0.5 and 1.2 Hz, as this was the range of
frequencies used in tACS. Finally, a 1 s window centered on each of the
triggering events for a given channel, modulated frequency, and the
temporal extent were summed together to determine the underlying
modulating signal, which was then characterized by taking the mini-
mum-to-maximum amplitude referred to here as the “modulatory
strength.” This yielded a channel X modulated frequency X time matrix
for each condition and subject. This measure of modulatory strength was
z-scored based on an estimate of chance coupling within each channel X
modulated frequency X time bin. Here, the same number of triggering
events for a given modulatory strength estimate were randomly sampled
in time to produce an estimate of random coupling within that set of
data. This process was repeated 200 times for each modulatory strength
estimate to determine the mean and SD by which it was z-scored.

Additionally, the preferred phase for a given channel X modulated
frequency X time bin was estimated by collecting the phase angle from
the SW filtered voltage signal centered on each triggering event. The
average over this distribution was considered the preferred phase for each
bin in the modulatory strength matrix of each subject and condition.

Experimental design and statistical analyses

Behavioral performance. To assess waking tDCS-related changes in per-
formance a 2 (stimulation: active, sham) by 2 (image type: generalized,
repeated) ANOVA with a dependent variable of F1 score in the target
detection task was tested as a linear mixed-effects model using the Ime4
package for R (Bates et al., 2015; R-Core-Team, 2015), and p values for
each predictor were estimated using the ImerTest package (Kuznetsova et
al., 2015). Similarly, to investigate overnight changes in performance a 3
(test session: immediate, morning, afternoon) by 2 (stimulation: active,
sham) by 2 (image type: generalized, repeated) ANOVA with a depen-
dent variable of F1 score in the target detection task was tested as a linear
mixed-effects model using the Ime4 package for R. This model allowed us
to account for the random effects related to individual subjects while also
allowing us to include the four subjects who had missing data for a single
post-sleep test session (2 missing active-afternoon, 1 missing sham-
morning, and 1 missing sham-afternoon). Test session contrasts were
coded to compare the average F1 score in the post-sleep tests to the
immediate test (i.e., immediate < mean(morning, afternoon), referred
to as “postsleep vs presleep”), and a linear increase with time (i.e., imme-
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diate < morning < afternoon, referred to as “temporal increase”). For
the overnight model, subjects were used as a random factor for the main
effects of stimulation and image type (excluded effects from the full
random model did not significantly contribute, x2(4) = 4.25, p=0.37
compared with the full model), and fixed effects were defined for the full
three-way interaction of test session by stimulation by image type. A
similar model was also used for the tDCS effects, with subjects as random
factors for the main effects of stimulation and image type. Results from
these models are reported here as significant where any predictor reached
an « level of p < 0.05.

Targeted up-state validation. A test for the precision of the up-state
detection algorithm was performed using a V-test on the distribution
of phase angles within each subject, as well as the distribution of
average phase for each subject across the group (Berens, 2009). The
null hypothesis of this test was the phase within each subject is either
uniformly distributed or not reliably different from the targeted
phase of 0.

A test for the distribution of algorithmically detected SW events per
sleep stage was performed using a linear mixed-effects model with the
percentage of total SW events overnight broken down by sleep stage as
the dependent variable, a fixed-effect categorical variable identifying in-
dividual sleep stages, and a stimulation condition grouped by subjects as
a random factor. All but one session were included in this analysis; a
single subject’s active night sleep stage data were missing and could not
be accounted for. Here, three specific contrasts were tested to determine
whether detected SW events were biased to stages N2 and N3. The first
compared the average in N2 and N3 with the average over all other sleep
stages. The second compared counts in N2 to counts in REM, and the
third compared N3 to REM.

Spectral power and modulation strength. Significant changes in relative
power and correlations with behavior were estimated using the FieldTrip
permutation-based clustering algorithm (Maris and Oostenveld, 2007).
A contrast of the relative change in power (post-SW event normalized by
pre-SW event, as described in the EEG methods section), for the active
stimulation condition compared with the relative change in power for
the sham condition was made for each channel X time X frequency bin
between 3 and 10 s from offset of SW events. These contrasts were eval-
uated using a paired t test over subjects, and a cluster-based permutation
test was performed to determine the significant channel X time X fre-
quency bins. Clusters were created by grouping adjacent bins that had an
alevel of p < 0.05. Each cluster was then characterized by the sum of its
t values, and a surrogate distribution of clusters, similarly characterized,
was created by shuffling the subject labels and repeating the clustering
procedure 500 times. Thus, a clusterwise significance value can be attrib-
uted to each observed cluster in reference to its position in the per-
mutation-based surrogate distribution. Here we report any cluster that
reached a clusterwise significance of <0.05 (i.e., 95% of the surrogate
clusters had smaller summed ¢ values then the observed cluster). Any
contrast cluster that reached this clusterwise threshold was then used as a
mask to perform a subsequent cluster-based permutation test on the
correlation between behavior and the significant channel X time X fre-
quency bins. This effectively limits the correlation cluster analysis to the
channel X time X frequency bins that a priori show a significant differ-
ence between the active and sham stimulation conditions. Behavioral
measures correlated with this masked change in relative power were
limited to the measures that showed a significant difference between
active and sham conditions, which included an F1 score on generalized
images alone and the interaction of generalized versus repeated images. A
separate cluster analysis was performed for each of these behavioral mea-
sures where correlation coefficients for each significant channel X
time X frequency bin was calculated within each subject, transformed
into a t value, and adjacent bins that had a significance of p < 0.05 were
clustered together. The same permutation-based significance test was
performed as in the contrast clusters, where a surrogate distribution of
clusters was created by shuffling the subject labels and repeating the
correlation clustering procedure 500 times. This number of permuta-
tions at the « level of 0.05 leads to an expected error of £0.01 in the
clusterwise p values. This hierarchical clustering procedure focuses on
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extracted biomarkers that account for performance differences between
active and sham conditions and are induced by closed-loop tACS, com-
pared with biomarkers that are agnostic to brain stimulation.

Significant modulation strength (of phase—amplitude coupling be-
tween slow waves and spindles) and its relationship to behavior was
determined using a masked cluster-based permutation test similar to the
method used for spectral power. In this analysis, the first-level contrast is
between active and sham conditions using data in the z-scored modula-
tion strength matrix. Clusters of channel X modulated frequency X time
bins that reach a clusterwise p < 0.05 are then passed onto to the masked
correlation clustering. Here we again restricted behavioral measures to
F1 score on generalized images and the interaction of generalized and
repeated images.

A test of the significance of a preferred phase for OTC waveforms was
performed on the distribution of phase angles using Rayleigh’s test for
nonuniformity with no specific hypothesized mean direction.

Results

Behavioral results

tDCS-related changes

As shown in Figure 3A, active tDCS stimulation showed no signif-
icant difference in performance compared with the sham condition
(t(329) = 0.881, p = 0.385), and there was no difference in perfor-
mance for the repeated versus generalized images (9,5, =
—1.067, p = 0.295). There was a marginally significant interac-
tion between stimulation and image type (f,935 = — 1.90,
p = 0.067) such that repeated images show an increase in perfor-
mance for active versus sham tDCS (mean * SEM: active =
0.81 = 0.04; sham = 0.83 = 0.04), while the generalized images
show the reverse (active = 0.74 = 0.03; sham = 0.78 = 0.03). To
address any concerns regarding outlier subjects, an estimate of
each subject’s influence on the model was performed using
Cook’s distance. A single subject had a Cook’s distance that ex-
ceeded 2 SDs from the mean distance across subjects. This subject
was removed from the model; however, there was no substantive
change in the pattern of results. In general, these results suggest
that there was no reliable effect of tDCS on performance, and, if
anything, tDCS improved repeated image performance more so
than generalized image performance.

Overnight changes in behavior

A significant main effect for image type (4435 = — 2.74,p =
0.008) was found, implying that generalized images, averaged
across test sessions and stimulation conditions, had a lower F1
score compared with repeated images. Critically, however, the
postsleep versus presleep by stimulation by image type interac-
tion (14376, = 2.451, p = 0.015) and the temporal increase by
stimulation by image type interaction #,,5 ,¢) = 2.457, p = 0.015)
were both significant. Again an estimate of outliers was per-
formed using Cook’s distance. Again, the same subject as the
tDCS-related changes was determined to be an outlier with a
Cook’s distance of >2 SDs for the group, and, again, rerunning
the model without this subject yielded no substantive change to
the pattern of results. This suggests that the change in F1 score
after sleep is greater for the active compared with sham stimula-
tion conditions, and this relationship is contingent upon the test
image type being generalized rather than repeated. A follow-up ¢
test comparing the postsleep versus presleep change in F1 score
on generalized images for active versus sham conditions also
showed a significant difference (#.,5) = 2.79, p = 0.014). These
relationships are illustrated in Figure 3B. More detailed behav-
ioral results are presented in Jones et al. (2018).
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Slow Wave detection and prediction

Illustration of the closed-loop system. The left plot shows a standard 10 —20 electrode montage used during closed-loop tACS, and the middle plot shows an example of slow-wave

detection and prediction from a given subject’s sham session (time locked to the peak of the targeted up state). Raw EEG from the teal electrodes shown on the left are minimally preprocessed, then
averaged together to form a single virtual channel used for slow-wave detection (shown in light blue). This signal is filtered between 0.5 and 1.2 Hz (shown in dark blue), then used to produce a
predictive sine wave fit (shown in green) that is used to schedule the next up state (shown with the dashed line). The light orange line shows the unfiltered virtual channel outside the predictive
buffer only available during sham sessions. The right plot shows a group-level ERP from sham nights centered on the start of the predicted up states. Red line shows average bandpass-filtered voltage
in the slow-wave band (0.5-1.2 Hz) over the within-subject averages shown in gray. The inset plot is the average phase angle at the start of the predicted up state across subjects. Blue-shaded
regions show the histogram over 16 subjects, the black arrow is average over those subjects, and the red-shaded region shows 95% confidence around the mean.

EEG Results
Slow-wave up state-targeted stimulation
Validation of closed-loop targeted stimulation was done off-line
using sleep EEG data from sham nights to get an artifact-free
estimate of the temporal accuracy of the up-state predictions
during the active nights and also to generate SW event markers
for sham nights for use in post hoc EEG analyses. EEG data were
extracted in 10 s windows surrounding the start of each predicted
up state as part of the off-line code to mark sham SW events.
Because of the stochastic delays in the system related to data fetch,
processing, and stimulation planning operations, the stimulation
does not always start at the zero phase of the predicted next up
state. The majority of the stimulation events would be initiated
during the first up state or at the start of the second up state of the
predicted sine wave fit to the endogenous SW oscillations. There-
fore, useful averages of consistent phase cannot be made with
extracted epochs centered at the start of actual stimulation. To
address this, epochs were centered at the start of the first pre-
dicted up state, filtered in the SW band from 0.5 to 1.2 Hz using a
phase-corrected second-order Butterworth filter, Hilbert trans-
formed, and again phase corrected by 90° to align with the sine
wave prediction used in the closed-loop system. The average
phase at the start of the first predicted up state across events
within each subject was calculated and tested against 0 (i.e., the
intended phase for the start of the positive half waves of the SW
oscillations). Using a V-test for circular uniformity (Berens,
2009), each subject rejected the null hypothesis illustrating that
the phase within each subject is both nonuniformly distributed
and not different from the targeted phase of 0. These average
phase estimates are then aggregated across subjects in the polar
histogram shown in Figure 2, and the average ERP across events
centered at the targeted up-state onset is plotted for each subject
as gray lines, with the average over subject ERPs overlaid in red.
Because the closed-loop intervention was allowed to deliver
stimulation whenever a SW oscillation reached a sufficient rela-
tive amplitude, we assessed the distribution of stimulation events
across sleep stages in a post hoc analysis, as illustrated in Figure 3.
Here, collapsed across active and sham conditions, the percent-
age of total SW events for a given night averaged over stages N2
and N3 was larger than the average percentage of SW events over
all other stages (5,5, = 14.4, p < 0.001). Further, the percentage
counts in N2 (f(,,3) = 10.82,p < 0.001) and N3 (¢ 5,5, = 3.58,p <
0.001) were significantly larger than that in REM.

Stimulation-induced spectral power changes

Post-SW event changes in power were estimated between the
active and sham conditions using the clustering procedure de-
scribed in the Experimental design and statistical analyses sec-
tion; in short, the contrast of relative post-SW event power in the
active versus sham conditions were clustered between 3 and 10 s
poststimulation across all channels and frequencies. Three clus-
ters reached a clusterwise threshold of p < 0.05. The first cluster
is a positive cluster (i.e., active greater than sham) shown in Fig-
ure 4A, with a temporal extent from 3.02 to 4.22 s relative to
stimulation offset, a frequency extent from 0.5 to 4.7 Hz, and a
clusterwise p value of 0.036. The second cluster is a negative clus-
ter, shown in Figure 4B, with a temporal extent from 4.28 to
9.88 s, a frequency extent from 0.5 to 47.2 Hz, and a clusterwise p
value of 0.008. The third cluster is a negative cluster, with a tem-
poral extent from 4.62 to 9.82 s, a frequency extent from 0.5 to 2.6
Hz, and a clusterwise p value of 0.047 (this cluster yielded no
significant correlations with behavior and is therefore omitted
from plots).

Behavioral correlations with stimulation-induced spectral

power changes

A similar cluster analysis was performed when correlating over-
night differences (postsleep — presleep) in F1 score with power
changes. However, this analysis was restricted by using the signif-
icant contrast clusters as masks to subselect the channel X time X
frequency bins used in the correlation with the behavior change
differences. Separate correlation cluster analyses were performed
using each of the significant contrast clusters as a mask and cor-
relating with F1 score changes from the generalized images, as
well as the interaction between generalized and repeated images.
In total, this yielded six follow-up tests.

Correlating the difference in overnight F1 score in the gener-
alized images with each of the significant contrast clusters yielded
asignificant positive correlation cluster only when using the pos-
itive contrast cluster, shown in Figure 4A, as a mask. The corre-
lation cluster, shown in Figure 5A, had a very similar temporal
extent as its mask from 3.02 to 4.14 s, a more restricted frequency
extent from 0.5 to 2.0 Hz, and a clusterwise p value of 0.002.

Correlating the difference in overnight F1 score changes for
generalized images versus repeated images yielded significant
positive correlations when using both the positive (Fig. 4A) and
negative (Fig. 4B) contrast clusters as masks. The positive con-
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A, Left plot, The behavioral effects from waking tDCS. Target detection F1 score from the test immediately following training plotted as an interaction of image type by stimulation

condition. No significant main effects were observed, and a marginal interaction was found. The right plot shows overnight closed-loop slow-wave tACS effects. Here the change in F1 score from the
average postsleep — presleep performance is shown as an interaction between image type and stimulation condition. Critically, a significant interaction between image type and stimulation
condition showed an increased overnight change in F1 score for generalized images in the active condition. Each dot is a given participant’s performance, and error bars show the SEM. B, Left plot,
Detected SW events broken down per sleep stage as a proportion of the overnight total for each subject and condition. Here stages N2 and N3 on average had more SW events than all other stages.
Right plot shows total SW events for each stimulation condition. Here active stimulation had fewer total SW events compared with sham. Small dots reflect individual subjects, large dots reflect the

group mean, and error bars are boot-strapped 95% confidence intervals.

trast cluster mask yielded a significant positive correlation,
shown in Figure 5B, with a similar temporal extent compared
with its contrast cluster mask from 3.02 to 4.06 s, a restricted
frequency extent from 0.5 to 0.8 Hz, and a clusterwise p value of
0.008. The negative contrast cluster mask yielded a significant
positive correlation, shown in Figure 5C, with a restricted tem-
poral extent compared with its contrast cluster mask from 4.74 to
8.90 s, a restricted frequency extent from 0.5 to 2.0 Hz, and a
clusterwise p value of 0.034.

Phase—amplitude coupling
Changes in phase—amplitude coupling were assessed using an
adaptation of OTC with triggering frequencies from 8 to 16 Hz
such that the triggered events were segregated into 1 s windows
spaced every 0.25 s, starting from 3.5 to 4.5 s and ending at 8.5 to
9.5 s relative to SW event offset. A comparison between active and
sham modulation strength was made by calculating the
minimum-to-maximum amplitude of the OTC waveform fil-
tered in the SW band (0.5-1.2 Hz) for each channel X modulated
frequency X time bin. Using these data, a cluster analysis of mod-
ulation strength was performed in a fashion similar to that of the
spectral power changes.

As shown in Figure 6, the active stimulation condition showed
a marginally significant increase in SW phase to high spindle
(13-16 Hz) amplitude coupling in the time windows centered at
4 and 4.25 s (including all events from 3.5 to 4.75 s), with a

clusterwise p = 0.053. This increase in active stimulation modu-
lation strength highly overlaps in time and spatial topography
with the stimulation-induced increase in SW power and its cor-
relation with behavioral changes. The preferred phase of the SW
modulating signal in the significant channel X modulated fre-
quency X time bins for the active condition was nonuniformly
distributed across events (Rayleigh’s test for nonuniformity, r =
7.78, p < 0.001) and centered at 262°. The preferred phase in the
sham condition was not significantly different from a uniform
distribution (r = 0.03, p = 0.85).

Two other clusters, not shown in the figures, were found with
significant decreases in coupling for the active compared with
sham conditions. The first spanned from 9 to 16 Hz and from
6.25 to 7.25 s (including all events from 5.25 to 8.25 s), with a
clusterwise p = 0.02. The other spanned 13-16 Hz and from 8.5
to 9.0 s (including all events from 8 to 9.5 s), with a clusterwise
p = 0.03. Both clusters showed a predominant spatial topography
over the right central-posterior electrodes and no significant pre-
ferred phase.

A follow-up masked analysis for behavioral correlation was
also performed using each of the significant clusters found in
active versus sham modulation strength; however, no significant
clusterwise correlation with behavior was found for any of the
three masks with F1 score on generalized images or the interac-
tion between generalized and repeated images.
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Average power difference from significant channel X time X frequency bins. Top right plot, Topography of summed ¢ values from significant time X frequency bins. Bottom plot, t values from
significant time X frequency bins for each channel. Outlined areas show significant bins, and desaturated areas show nonsignificant bins, with an « p << 0.05. B, Negative cluster showing sham

greater than active with clusterwise p = 0.008. The plot layout is the same as in A.

Discussion

We have shown that fully closed-loop tACS can be used to effec-
tively target endogenous SW oscillations during natural sleep.
This stimulation shows an increase in SW power as late as 4.2 s
and is paired with a corresponding increase in coupling with high
spindle power. Further, this increase in SW power correlates with
behavioral changes in long-term memory performance generally
consistent with theories of systems-level consolidation. More-
over we show evidence for a decrease in SW power and coupling
with spindle amplitude in active stimulation relative to sham
starting ~5 s after stimulation offset. This decrease may be indic-
ative of a SW refractory period induced by stimulation; however,
these periods still show a positive correlation with behavior such
that the longer the stimulation-induced power increase is main-
tained, the better the postsleep memory performance.

The use of a frequency agnostic clustering approach in this
work adds to the validity of the results, as no a priori definition
of frequency bands was incorporated into the analysis; how-
ever, known biologically relevant frequency bands manifested
in the results. Similarly, the focus on stimulation-induced
spectral changes through the use of a masked correlation clus-
ter analysis narrows results to those that are related to the
stimulation intervention. This not only adds more sensitivity,
but allows for more specific interpretation of the changes wit-
nessed. These results help build a better understanding of the
potential for improving memory consolidation during sleep
and address growing concerns related to the efficacy of tACS
to induce physiological and behavioral changes.

Waking tDCS versus sleep-dependent slow-wave tACS

In the present study, no significant effect of tDCS was found with
a 1.0 mA current dose; however, a nonsignificant difference in the
appropriate direction was observed. It is possible that differences
in details of current generation and control between the ionto-
phoresis systems used previously and the current StarStim system
may be involved. Because of this null effect and previous studies
showing no overnight change in performance related to tDCS in
this target detection task, it is likely that all overnight behavioral
effects can be attributed to SW tACS.

Given this, it is unclear why there was no improvement in re-
peated images induced by SW tACS, as might be expected based on
previous studies. Generally, most of these studies have seen effects in
some form of a paired-associates task, either word pairs (Marshall et
al., 2004, 2006; Westerberg et al., 2015), or visual object paired asso-
ciates (Prehn-Kristensen et al., 2014; Ladenbauer et al., 2017). The
target detection task, particularly for the repeated images, requires
participants to find camouflaged targets in complex scenes, and
therefore relies more on recognition of perceptual details compared
with standard paired-associates tasks. This may explain why no over-
night effects were found in the repeated images alone. In contrast,
the strength of the generalized images in the target detection task is
that the performance for a given test cue image is not determined by
the best match to the originally studied cue image, but instead its
relation to the scene originally studied and the potential for a target
to exist in that scene. This provides a much more ecologically plau-
sible memory-testing paradigm, allowing for very different percep-
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Figure 5.  Significant (p << 0.05) masked correlation cluster results. 4, Correlation of spectral power change difference from significant positive contrast cluster bins (Fig. 44) and the overnight change

(postsleep — presleep) in F1 score for generalized images, with a clusterwise p = 0.002. Similar to the plot layout in Figure 4, the left plot shows the average spectral power change difference between active
and sham within the significant correlation cluster bins (desaturated area shows the nonsignificant bins from the full mask). lllustrative inlay of scatter plot based on average power change difference per subject
over all significant bins correlated with the overnight change in F1 score for generalized images. Middle plot, Topography of summed ¢ values from significant time X frequency bins. Right plot, Time-series of
weighted (by summed ¢ values from significant correlation channel X frequency X time bins) average of active and sham power. Significant correlation cluster time points marked in dark-shaded region, and
errorribbons are SEM. B, Correlation of spectral power change difference from significant positive contrast cluster bins (Fig. 44) and the overnight change differencein F1 score on generalized images — repeated
images, with a dusterwise p = 0.008. The plot layout is the same as in 4. C, Correlation of spectral power change difference from significant negative contrast cluster bins (Fig. 48) and the overnight change
difference in F1 score on generalized images — repeated images, with a clusterwise p = 0.034. The plot layout is the same asin A and B.

tual cues to imply the same underlying study item, which is ideal for
testing the consolidation of essential gist rather than specific items.

Stimulation-induced spectral power decreases

The time period and broad frequency range that shows a decrease
in SW power for active versus sham conditions suggests that there
may be some stimulation-induced refractory period, and it is
unclear how long this period of decreased power lasts. Masked
correlation analysis shows that this decrease has the same rela-
tionship to behavior as the stimulation-induced increases in
power shown in Figure 5, B and C. This suggests that the
stimulation-induced relationship with behavior is relatively con-
stant throughout the analysis window; however, the induced
power changes start at a level that is higher than the sham nights
and slowly decreases over time.

Previous results have shown stimulation-induced decreases in
SW oscillations. Ngo etal. (2015) applied auditory clicks in predicted
up states to enhance endogenous SW oscillations and found that SW
events and spindle-SW coupling decreased as the number of contig-
uous stimulation events increased. Interestingly, they found that this
decrease did not negatively impact behavior. In reference to our
results, this suggests that the stimulation-induced refraction in SW
power is a normal self-limiting function, such that large increases in
SW power as a result of stimulation are accompanied by periods of
suppressed activity.

Previous sleep-dependent memory-enhancing tACS findings

Several empirical results exist addressing the effectiveness of
transcranial electric stimulation (tES; here encompassing both
direct and alternating current) at inducing measurable electric
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0TC-derived measures of phase—amplitude modulation strength (minimum-to-maximum measures of the average voltage signal temporally centered on high-power events within

the modulated frequency, derived from 15 windows centered on each temporal bin). Here, a marginally significant (clusterwise p = 0.053) positive cluster shows active stimulation with greater
slow-wave modulation strength of high spindle (13—16 Hz) band amplitude derived from spindle events occurring between 3.5 and 4.75 s relative to slow-wave event offset. Left plot, Summed ¢
values from significant cluster bins. Middle plot, Individual ¢ values from the time X modulated frequency plots for each channel with the nonsignificant bins desaturated. Right plot, The average
slow-wave filtered OTC waveform for active and sham conditions derived from significant cluster bins. These waveforms reflect the summed voltage centered on high-power modulating frequency
events, which are then averaged over significant cluster bins, and finally over subjects; the ribbon is the SEM over subjects. The inset polar plot shows the average preferred phase for each subject
inthe active (preferred phase = 262°, p << 0.001) and sham (no significant preferred phase) conditions.

fields within the brain (Horvath et al., 2015; Opitz et al., 2016;
Huang et al., 2017; Lafon et al., 2017; Ruhnau et al., 2018), as well
as several studies showing various behavioral changes beyond
those targeted here (for review, see Jacobson et al., 2012). The
main concerns surrounding the effectiveness of tES is that the
induced electric fields are not sufficient to bias network-level
firing patterns or oscillations, as is the assumed mechanism of tES
protocols. Our approach, however, attempts to target ongoing
endogenous oscillations, both in frequency and phase, as op-
posed to inducing them de novo. Based on in vivo studies, the
estimated threshold of influence for induced electric fields when
attempting to match endogenous activity is 0.25 V/m (Jefferys et
al., 2003; Reato et al., 2010; Lafon et al., 2017). Conversely, the
measured maximal influence was 0.5 V/m when stimulating at
1.0 mA using a device similar to the Neuroelectrics StarStim de-
vice used in this study (Opitz et al., 2016), and 0.4 V/m when
stimulating at 2.0 mA using the NeuroConn DC Stimulator Plus
(neuroCare; Huang et al., 2017). This suggests our approach has
a better chance of inducing measurable oscillatory effects in-
tracranially compared with previous work.

One other study, to our knowledge, has investigated a version
of closed-loop tACS with the intent of enhancing overnight
memory consolidation. Lustenberger et al. (2016) applied 12 Hz
tACS triggered by endogenous spindle (11-16 Hz) activity and
found a positive influence of stimulation on behavior in a motor
memory task but not a declarative memory task. Our study pro-
vides a more precise closed-loop system by matching the domi-
nant frequency and ongoing phase within the SW band (0.5-1.2
Hz), and validates the influence on behavior in a target detection
task that is similar to many declarative memory tasks. Moreover,
we find effects for a stimulation-induced refractory period that
decreases SW power relative to sham but does not disrupt the
influence of stimulation on behavior. These results suggest that
the longer the stimulation-induced increases in power persist, the
better the postsleep performance on the generalized images rela-
tive to the repeated images. Further investigations into this phe-
nomenon could provide insight into individual differences in
stimulation-induced power changes and its subsequent relation-
ship with behavior.

Spindle coupling
Here a marginally significant (clusterwise p = 0.053) increase in
coupling between the phase of the SW band and the amplitude of

high spindles for the active condition was found, and this increase
was similar to the stimulation-induced window of spatial and
temporal increases in SW power that correlated with behavioral
improvements. This is consistent with recent results of sleep-
dependent consolidation; however, the preferred phase in our
results is 180° out of phase with the SW up state (Ladenbauer et
al., 2017; Helfrich et al., 2018). Further, a correlation with behav-
ior was not found in these coupling measures; however, the over-
lap in time and spatial topography with the stimulation-induced
changes in SW power that correlated with behavior suggest that
the increased coupling is potentially related to the behavioral
changes. Perhaps the specificity of the high-power spindle events
used in the modulation strength metric was too broadly defined
to reveal correlations with the behavioral measures of interest
and center on the SW up state. Further investigations into these
stimulation-induced effects are necessary to integrate with exist-
ing results.

Conclusions

In this work and the study by Jones et al. (2018), we focused on
building a closed-loop system to better target endogenous oscil-
lations during sleep in hopes of increasing the efficacy of trans-
cranial stimulation on hypothesized systems-level consolidation
mechanisms. Through this intervention, we showed behavioral
changes that were consistent with consolidation theories, and
poststimulation changes in EEG that suggest stimulation-in-
duced enhancement of SW oscillations that positively correlated
with those behavioral changes. An increase in SW to spindle cou-
pling was found in an overlapping temporal and spatial topogra-
phy to the stimulation-induced increases in power and
correlation with behavior, suggesting that enhanced SW oscilla-
tions lead to an increase in systems-level consolidation processes.
We also witnessed apparent stimulation-induced decreases in
SW power and coupling with spindles that suggest a reset or
refractory period in the endogenous SW oscillations. The positive
correlation with behavior persisted into this refractory period,
however, and may suggest that individuals less prone to this de-
crease ultimately show the most improvement in consolidation-
related memory performance. The mechanisms that would
explain this relationship with individual differences are unclear,
and more investigations into the influence of closed-loop tACS
on neuronal processes is required.
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