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Human behavior is influenced by serial decision-making: past decisions affect choices that set the context for selecting future options. A
primate brain region that may be involved in linking decisions across time is the supplementary eye field (SEF), which, in addition to its
well known visual responses and saccade-related activity, also signals the rules that govern flexible decisions and the outcomes of those
decisions. Our hypotheses were that SEF neurons encode events during serial decision-making and link the sequential decisions with
sustained activity. We recorded from neurons in the SEF of two rhesus monkeys (Macaca mulatta, one male, one female) that performed
a serial decision-making task. The monkeys used saccades to select a rule that had to be applied later in the same trial to discriminate
between visual stimuli. We found, first, that SEF neurons encoded the spatial parameters of saccades during rule selection but not during
visual discrimination, suggesting a malleability to their movement-related tuning. Second, SEF activity linked the sequential decisions of
rule selection and visual discrimination, but not continuously. Instead, rule-encoding activity appeared in a “just-in-time” manner
before the visual discrimination. Third, SEF neurons encoded trial outcomes both prospectively, before decisions within a trial, and
retrospectively, across multiple trials. The results thus identify neuronal correlates of rule selection and application in the SEF, including
transient signals that link these sequential decisions. Its activity patterns suggest that the SEF participates in serial decision-making in a
contextually dependent manner as part of a broader network.
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Introduction
Serial decision-making helps to maintain continuity of behavior.
The outcomes of past decisions inform current choices that, in
turn, set the context for evaluating and selecting later options. For

example, an NFL quarterback deciding which play to call will
consider both environmental factors (e.g., field position) and the
history of recent calls. At midfield, if passes have yielded more yards
than runs, the quarterback may be biased toward pass plays until
outcomes change. How the brain makes individual decisions has
been the focus of much recent work (Gold and Shadlen, 2007;
Shadlen and Kiani, 2013; Lee and Seo, 2016), but the neural mecha-
nisms that link decisions across time remain poorly understood.

One previous study examined the neural basis of serial
decision-making using a task in which macaques made a percep-
tual decision and then bet on their performance to receive reward
(Middlebrooks and Sommer, 2011, 2012). Neurons in the sup-
plementary eye field (SEF), but not the prefrontal cortex (PFC) or
frontal eye field (FEF), exhibited sustained activity after the per-
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Significance Statement

Much research has gone into studying the neurobiological basis of single, isolated decisions. An important next step is to under-
stand how the brain links multiple decisions to generate a coherent stream of thought and behavior. We studied neural activity
related to serial decision-making in an area of frontal cortex known as the supplementary eye field (SEF). Neural recordings were
conducted in monkeys that performed a serial decision-making task in which they selected and applied rules. We found that SEF
neurons convey signals for serial decision-making, including transient encoding of one decision at the time it is needed for the next
one and longer-term representations of trial outcomes, suggesting that the region plays a role in continuity of cognition and
behavior.
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ceptual decision that predicted the wager. Other work showed
that SEF neurons are sensitive to trial outcome, reward, variables
such as conflict and difficulty that affect reward likelihood, and
future behavior (for review, see Abzug and Sommer, 2017). SEF
activity related to trial outcome reflects whether a decision yields
reward (Amador et al., 2000; Stuphorn et al., 2000; Purcell et al.,
2012; Donahue et al., 2013; Kawaguchi et al., 2015). Such “per-
formance monitoring” signals can extend into later trials (Dona-
hue et al., 2013). SEF reward-related signals also can manifest as
mixed selectivity in combination with variables such as target
location, target identity, and expected reward (Uchida et al.,
2007; So and Stuphorn, 2012; Donahue et al., 2013; Kawaguchi et
al., 2015). SEF neurons tend to fire more when conflict is higher,
such as when saccades must be inhibited to flashed targets
(Schlag-Rey et al., 1997; Olson and Gettner, 2002), and SEF le-
sions in humans cause impairments in resolving this type of con-
flict (Husain et al., 2003; Parton et al., 2007). SEF neurons are
modulated by task rules (White and Wise, 1999; Olson and Gett-
ner, 2002), encode visual stimuli in a rule-contingent manner
(Missal and Heinen, 2004; Kim et al., 2005), and tend to fire more
for rules that are harder to apply (Schlag-Rey et al., 1997; Olson
and Gettner, 2002).

Prediction or anticipation is of particular relevance to serial
decision-making because the crux of the behavior is that the out-
come of one decision predicts the next decision. Several lines of
evidence implicate the SEF in predictive functions. When reward
probabilities and sizes are provided explicitly, SEF activity antic-
ipates the expected value of reward (So and Stuphorn, 2012).
Baseline and visual responses in SEF encode future saccade direc-
tion well in advance of movement (Coe et al., 2002) and SEF
activity predicts the performance of upcoming prosaccades and
antisaccades (Amador et al., 2000). SEF microstimulation de-
creases the latency of anticipatory smooth pursuit eye move-
ments (Missal and Heinen, 2004) and transcranial magnetic
stimulation of human SEF impairs prediction of smooth pursuit
target trajectories (Nyffeler et al., 2008).

The literature therefore suggests myriad ways in which the
SEF may contribute to serial decision-making. Here, we studied
SEF neural activity during a novel oculomotor task that required
two linked decisions per trial. Monkeys decided on rules that
guided later, visual decisions (Abzug and Sommer, 2018), essen-
tially the reverse of the task used by Middlebrooks and Sommer
(2012) in which visual decisions informed later, wagering deci-
sions. We tested two hypotheses. First, based on the body of
literature, we hypothesized that SEF neurons signal key events
in the serial decision-making task, such as when rules are set
and when trial outcomes are revealed. Second, based on the
results of Middlebrooks and Sommer (2012), we hypothesized
that SEF neurons exhibit sustained activity that links the two
decisions of our task, selecting a rule and applying it to a visual
discrimination.

Materials and Methods
Neuronal recordings
Two rhesus monkeys (Macaca mulatta; Monkey S: male, 10.0 kg; Monkey
M: female, 5.4 kg) were surgically prepared for neuronal recordings and
eye position measurements. Using aseptic procedures, ceramic screws
and an acrylic implant were affixed to the skull. Bound into the acrylic
was a recording chamber positioned over a craniotomy for accessing the
SEF (stereotaxic coordinates A25, L0) and a head-restraint socket placed
just posterior to the chamber (Crist Instrument). In the same surgery, a
scleral search coil was implanted for recording eye position (Judge et al.,
1980). Animals recovered for 1–2 weeks before behavioral training re-
sumed. Procedures were approved by and conducted under the auspices

of the Duke University Institutional Animal Care and Use Committee
and complied with the guidelines set forth in the United States Public
Health Service Guide for the Care and Use of Laboratory Animals.

We recorded neurons in the SEF by advancing a parylene-insulated
tungsten electrode (0.3–1 M� impedance at 1 kHz; FHC) through a
23TW gauge guide tube using a custom microdrive system (Laboratory
of Sensorimotor Research, National Institutes of Health). Guide tubes
were held by a plastic grid with 1 � 1 mm hole spacing (Crist Instrument)
attached inside the recording chamber. The SEF was identified by
moderate-current microstimulation (typically 50 –100 �A) that evoked
or delayed saccades (Schlag and Schlag-Rey, 1987; Russo and Bruce,
1996) or by anatomical reference based on MRI images. Standard extra-
cellular recording techniques were used to isolate action potentials of
single neurons (Sommer and Wurtz, 2004). All data were collected using
the REX real-time system (Hays et al., 1984), Spike2 (CED, RRID:
SCR_000903), and RHD2000 Evaluation System Software (Intan Tech-
nologies). Action potentials were sorted offline using Spike2 and analyses
were performed using MATLAB (R2016a; The MathWorks, RRID:
SCR_001622). Eye position was sampled at 1 kHz and saccades were
detected online using velocity and acceleration thresholds. During fixa-
tions, eye position had to be maintained in 4° � 4° window around visual
stimuli. Both raw eye position traces and saccade onset and offset timing
were recorded and saved.

Experimental design and statistical analysis
Serial decision-making task. Monkeys performed a two-stage task that
required sequential, linked decisions. Each trial consisted of a rule selec-
tion stage followed by a rule implementation stage (Fig. 1A). During rule
selection (Fig. 1A, left), a rule was established either because the monkey
actively chose it (self-selected trials) or because the monkey passively
observed it (instructed trials). We demonstrated previously that the
monkeys select rules purposely, not randomly, in self-selected trials (Ab-
zug and Sommer, 2018). The monkeys were trained to associate colored
stimuli with two abstract behavioral rules: the size rule, RS, which meant
“pick the smaller target,” and the brightness rule, RB, which meant “pick
the darker target.” For Monkey S, a green stimulus represented RS and a
red stimulus represented RB; for Monkey M, these color-rule assign-
ments were reversed. Because the monkeys made saccades to the colored
stimuli, as described in the next paragraph, they were called “rule tar-
gets.” For further details of training and selection of task parameters, see
our previous study (Abzug and Sommer, 2018).

To start each trial, a monkey fixated a central white spot for 400 – 600
ms (pseudorandomized) and then the rule targets appeared in the pe-
riphery, one in each visual hemifield (Fig. 1A, left). The rule targets were
different in self-selected trials (one red, one green) but were the same in
instructed trials (both red or both green). After the rule targets appeared,
the monkey had to maintain fixation for 300 –500 ms. Then, the central
spot was extinguished, cueing the monkey to make a saccade to one of the
rule targets and foveate it for at least 200 ms. In self-selected trials, be-
cause the rule targets differed in color, selection of a target established the
rule for the rule implementation stage. In instructed trials, because the
rule targets were the same color, it did not matter which target was
selected; the rule was imposed on the monkey. Importantly, everything
was the same in self-selected and instructed trials except that, in the
former, the monkey selected the rule to use. If at any time during the rule
selection stage, the monkey broke fixation by �4° before minimum du-
ration times, made a saccade before cued to go, or failed to make a
saccade, the trial was aborted and repeated later. Otherwise, the rule
selection stage ended with disappearance of the rule targets and reappear-
ance of the central white spot.

The rule implementation stage (Fig. 1A, right) then began as the mon-
key made a saccade to return to the central spot. After 400 – 600 ms of
fixation, the monkey was presented with two square “decision targets” 8°
to the left and right. These targets could vary both in their size and
brightness (see next paragraph for details). After another 500 –1000 ms,
the central spot disappeared and the monkey was required to make a
saccade to one of the decision targets. If it selected the target consistent
with the rule (e.g., the darker target when the rule was RB, “pick the
darker target”), the trial was correct and the monkey received 0.25 ml of
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water or juice reward. If the monkey selected the wrong target, then the
trial was an error and the monkey received no reward. If the monkey
moved from fixation early or made a saccade to a nontarget location,
then the trial was aborted, followed by a brief time-out before the start of
a new trial.

The sizes of the decision targets were independently drawn from iden-
tical discrete uniform distributions on each trial (side lengths of 3°, 3.5°,
or 4°; also 4.5° in some sessions). The brightnesses of the decision targets
were also independently drawn from identical discrete uniform distribu-
tions (1, 5, or 15 cd/m 2; also 27 cd/m 2 in some sessions). Monkeys
therefore were exposed to up to 4 2 � 16 possible decision targets, 16 2 �
256 possible pairs of decision targets, and 2 � 256 � 512 possible sets of
decision targets and rule target combinations in each session. The central
fixation point had a side length of 2° and brightness of 27 cd/m 2 and the
screen background had a brightness of 0.1 cd/m 2.

For most analyses, we were interested in the differences in size or
brightness (�S or �B, respectively) between the targets rather than abso-
lute sizes and brightnesses. Size and brightness scales have different
ranges and brightness perception is nonlinear, so we used arbitrary size
units (SU) defined as the difference between the ordinal ranks of the sizes
of the decision targets (and analogously for brightness units, BU). The
differences therefore varied between 0 and 3 SU for size and 0 –3 BU for
brightness, allowing for direct comparison of difficulty across both rules
using ordinal rankings. More details of this methodology, including the
use of SU and BU rankings in analyses of behavior during the task, can be
found in Abzug and Sommer (2018).

We tailored the locations of rule targets to response fields in the SEF
when possible, but the response fields are typically large and only a subset
of cells exhibit directional tuning for visual or saccade-related activity
(Schlag and Schlag-Rey, 1987; Russo and Bruce, 1996; Schlag-Rey et al.,

Figure 1. Task schematic and behavior. Orange symbols depict eye fixations (circles) and saccades (arrows). A, Each trial was divided into two stages. Left, Rule selection stage. A monkey looked
at a fixation spot and two colored rule targets appeared in the periphery. Each color represented a learned, behavioral rule: RS (pick the smaller target) or RB (pick the darker target). In self-selected
trials (top), the targets were of different colors and represented different rules. In instructed trials (bottom), the targets were the same color and represented the same rule. After a delay (t, time),
the monkey had to make a saccade to one of the targets, foveate it briefly, and then make a return saccade to the fixation spot. Right, Rule implementation stage. Two decision targets appeared,
differing in their sizes and brightnesses. After a delay, the monkey had to select one of the targets with a saccade. If it picked the target concordant with the rule, then it received a reward. Shown
is a successful RS trial. Stimuli are depicted larger than in the experiment for clarity of illustration. B, Accuracy on the task measured as fraction correct using data from recording sessions (Monkey
S: n � 27 sessions; Monkey M: n � 28 sessions) and behavior-only sessions (Monkey S: n � 38 sessions; Monkey M: n � 2 sessions). Results are plotted separately for each animal (Monkey S, left;
Monkey M, right). In each plot, data are separated by self-selected (SS; left) and instructed (IN; right) conditions and, within each condition, by rule RS (bold lines) and rule RB (thin lines). Accuracy
was better than chance (horizontal dashed line) in all four cases for each monkey (t tests against 0.5, all p � 0.0001, corrected for multiple comparisons). Boxes extend from the 25th to the 75th
percentiles of each set of samples and “�” symbols represent outliers. C, Session-by-session variation in rule selection biases. For each monkey, the amount of rule selection bias in a session was
significantly and positively correlated with the log-odds of reward when using RB versus RS (Monkey S: r � 0.531, p � 0.0001; Monkey M: r � 0.670, p � 0.0001). Lines show linear regression fits.
Monkey S: black filled dots and solid line. Monkey M: gray unfilled dots and dashed line. Self-selected and instructed trials were combined. Data in B and C are used with permission from Abzug and
Sommer (2018).
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1997). We probed for evidence of tuning by having monkeys make visu-
ally guided saccades in eight directions (typically 10° eccentricity) and
then, if a best direction was found, in eight eccentricities at that best
direction. In most recording sessions (64.7%, 44/68 sessions), no optimal
location was found, so we placed rule targets at locations (left and right
on the horizontal meridian, 10° eccentricity) similar to those of the de-
cision targets (same but 8° eccentricity). These locations were offset by 2°
to mitigate potential visual effects from the rule targets (e.g., afterimages)
that might affect discrimination of the decision targets, even though such
confounds were unlikely given that two saccades intervened before deci-
sion targets were presented (to a rule target and then back to central
fixation). In the other sessions, an optimal location was found and it, plus
the location diametrically opposite to it in the other visual field, was used
for the rule targets (35.3%, 24/68 sessions). The optimal locations
ranged from 5° to 20° eccentricity and �74° to 	45° in angle from the
horizontal meridian in contralateral space.

Analysis overview. We defined multiple epochs throughout the serial
decision-making task and measured and analyzed the average firing rates
within these epochs. There were four epochs during the rule selection
stage (Fig. 1A, left). The baseline epoch began 500 ms before the fixation
point appeared at the start of the trial and ended when the fixation point
turned on. The fpacq epoch began when the fixation point was acquired
and ended 300 ms after fixation had begun. The rulestim epoch began
50 ms after the colored rule targets appeared and ended 300 ms after
target onset. The sac1 epoch began 50 ms before the onset of the rule-
selecting saccade and ended 150 ms after saccade onset.

There were three epochs of interest during the rule implementation
stage (Fig. 1A, right). The refix epoch began 200 ms before the fixation
point was reacquired to begin the rule implementation stage and ended
200 ms after the fixation point was reacquired. The percstim epoch began
50 ms after the decision targets appeared and ended 500 ms after target
onset. The sac2 epoch began 50 ms before the onset of the rule-
implementing saccade and ended 150 ms after saccade onset.

There were also two reward-related epochs of interest, one before
reward delivery and one after reward delivery. On all trials, the monkey
needed to maintain fixation on the selected decision target for 200 ms;
after 200 ms, all visual stimuli disappeared and reward was delivered if
the decision was correct. Therefore, feedback (the presence or absence of
reward) on all trials was reliably and predictably time-locked to saccade
offset and we can consider the time point 200 ms after saccade offset to be
the time of “potential reward delivery” on all trials regardless of trial
outcome. The prerew epoch spanned from 150 to 50 ms before potential
reward delivery. The postrew epoch spanned from 50 to 500 ms after
potential reward delivery.

Preliminary screening. We recorded all well isolated neurons that we
encountered. We selected neurons for further analysis based on two cri-
teria: the neurons had to be task modulated and had to have been re-
corded during a sufficient number of behavioral trials. To determine task
modulation, we ran a one-way ANOVA on the firing rate of each neuron
individually ( p � 0.05 criterion level) across each of the nine epochs of
interest. We divided all behavioral trials into eight groups, representing
all possible combinations of task condition (self-selected vs instructed),
rule (RS vs RB), and outcome (correct vs error). If a neuron was recorded
for at least eight trials in each of these eight sets of conditions (and was
task modulated), we included it in the pool for analysis. In practice, 
200
total trials were required to satisfy this criterion. Of 163 recorded neu-
rons, 155 neurons met these criteria.

Because making two linked decisions involves many events and poten-
tial behaviors, we subjected our data to a first-pass analysis to identify
task variables that merited detailed study on the basis of their clear,
consistent effects on neural activity. To do this, we ran an ANOVA on the
firing rate of each neuron in each epoch individually ( p � 0.05 criterion)
across eight potential variables of interest: the task condition, the identity
of the right rule target, the identity of the left rule target, the direction of
the rule-selecting saccade, the rule, the location of the correct decision
target, the direction of the rule-implementing saccade, and the trial out-
come. We included a variable in further analyses if, in any epoch, there
was a main effect of that task variable for more neurons than expected by
chance (11.61% or 18/155 neurons, cutoff determined from � 2 test at

p � 0.05 criterion). These procedures identified three variables for fur-
ther analysis: the direction of the rule-selecting saccade, the rule, and the
trial outcome.

Selectivity indices. To summarize how task variables modulated activity
on a neuron-by-neuron basis, we used a selectivity index measure:

Selectivity index � (FRA � FRB)/(FRA � FRB)

where FRA is the neuron’s mean firing rate on trials in behavioral condi-
tion A and FRB is the mean firing rate on trials in behavioral condition B.
The selectivity indices corresponding to our three variables of interest
were as follows:

Direction selectivity index � (FRcontra � FRipsi)/(FRcontra � FRipsi)

Rule selectivity index � (FRRS � FRRB)/(FRRS � FRRB)

Outcome selectivity index � (FRcorrect � FRerror)/(FRcorrect � FRerror)

In order, conditions A and B for these indices were as follows: contralat-
eral (“contra”) versus ipsilateral (“ipsi”) direction; size rule (“RS”) versus
brightness rule (“RB”); and correct versus error trial outcomes. The sign
of each selectivity index defined the relative preference of a neuron for con-
dition A or B (e.g., directional selectivity was contralateral if the direction
selective index was � 0). The absolute value of each selectivity index defined
the magnitude or “bias” of selectivity regardless of preference.

Normalization of population-averaged activity. To plot population-
averaged activity across subsets of our SEF population, we first normal-
ized the activity of each neuron to its dynamic range within the epoch of
interest. We subtracted off the minimum firing rate ymin and divided by
the range ymax 	 ymin, yielding, for each neuron, a normalized firing rate
that ranged from 0 to 1. These normalized firing rates were then used to
calculate population-averaged activity and the SEM across neurons.

Population dynamics. We used the multidimensional distance method
of investigating population dynamics (Stokes et al., 2013). In short, the
state of the full population was represented as a 155-dimensional vector
in Euclidean space, where each dimension represents the instantaneous
firing rate of a single neuron estimated within a 50 ms sliding window.
The dynamic trajectory through this state space is the path that passes
through the multidimensional coordinate of each time point.

In each epoch, for each neuron, we calculated the mean activity profile
on correct and error trials. For each condition, we collected the individ-
ual time-varying neural responses and plotted them as a single trajectory
through the 155-dimensional state space. Then, we calculated the Euclid-
ean distance between trajectories for correct and error trials. To evaluate
the significance of these time-varying distances using randomized
permutation tests, we repeated the same process 1000 times but with
randomly shuffled trial rule and outcome labels to generate a null distri-
bution. Because distances are always positive, we normalized all distances
by subtracting the median of the null distribution. Distances between trajec-
tories were considered to be statistically significant when they exceeded the
99% confidence interval for the null distribution.

Results
Behavior
We investigated the neural basis of serial decision-making by
recording from single neurons in SEF as monkeys selected a rule
and then applied it to a visual discrimination. The monkeys’
behavior during the task was reported in detail previously (Abzug
and Sommer, 2018). To summarize, both monkeys performed
the task well above chance using both self-selected and instructed
rules, regardless of which task rule (RS vs RB) was in effect (t tests
vs 0.5, all p � 0.0001, corrected for 8 multiple comparisons; Fig.
1B). In self-selected trials, both monkeys exhibited session-by-
session rule biases that correlated strongly with session-by-
session fluctuations in accuracy when using each rule (Monkey S:
n � 65 sessions, r(63) � 0.531, p � 0.0001; Monkey M: n � 30
sessions, r(28) � 0.670, p � 0.0001; Fig. 1C), consistent with pur-
poseful rule selection for maximizing reward (Abzug and Som-
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mer, 2018). Last, both monkeys had strong congruency effects
and weak or nonexistent switching costs (for analyses, see Abzug
and Sommer, 2018), consistent with results of previous studies of
rule use in monkeys (Washburn, 1994; Stoet and Snyder, 2003;
Avdagic et al., 2014). The monkeys therefore performed the task
as expected, making serial decisions in a directed, rational way.

Selectivity of SEF neurons: general
The dataset consisted of 155 neurons recorded from the left SEF
of the monkeys as they performed the serial decision-making task
(Monkey S: 65 neurons; Monkey M: 90 neurons). Preliminary
analyses demonstrated that three task variables, the direction of
the rule-selecting saccade, the rule, and the trial outcome, mod-
ulated activity in significant fractions of the neurons (see “Pre-
liminary screening” section in Materials and Methods). Of the
task variables that did not show evidence of modulating SEF ac-
tivity, the most striking negative result was for condition (self-
selected vs instructed rules): no neuron in any epoch showed a
main effect for this variable. Implications of this finding are ad-
dressed in the Discussion.

To study the effects of direction of rule-selecting saccades,
rules, and trial outcomes in detail, we used a three-way ANOVA
(p � 0.05 criterion) on SEF firing rates to look for main effects of
the three variables and their two-way interactions. In this analy-
sis, main effects quantify the selectivity of neural activity to each
task variable, whereas interactions identify mixed selectivity to
the variables. We found that many neurons exhibited selectivity
and mixed selectivity for these task-relevant variables throughout
the various task epochs (Fig. 2). There were three general patterns

in the results. First, each task variable was encoded by a significant
proportion of neurons in every epoch of the task (bars above
dashed line in Fig. 2). Second, the task variables were encoded
through main effects (black bars) as well as mixed selectivity with
other task variables (white bars). Third, substantial proportions
of neurons encoded the task variables through both main effects
and mixed selectivity (gray bars). Therefore, the SEF neurons
exhibited diverse patterns of selectivity and mixed selectivity for
direction of the rule-selecting saccade, rule, and trial outcome.
Analyses specific to each of these task variables are presented
next.

Selectivity of SEF neurons for saccade direction
Building on the first task variable that modulated SEF activity, the
direction of rule-selecting saccades, we analyzed the presence and
properties of this modulation across our population of neurons
(using firing rate epoch sac1; Fig. 3A). For comparison, we ap-
plied the same analyses to activity during the other two saccades
in the task: the return saccade (using epoch refix; Fig. 3B) and the
rule-implementing saccade (using epoch sac2; Fig. 3C). Of the
155 neurons analyzed, 45 individual neurons demonstrated di-
rectional selectivity for rule-selecting saccades (Fig. 3A; � 2 test,
�(1)

2 � 31.15, p � 0.0001). Similarly, 42 neurons demonstrated
directional selectivity during the return saccade (Fig. 3B; � 2 test,
�(1)

2 � 27.56, p � 0.0001), and 22 neurons were directionally
selective in both epochs. Directional preferences (calculated as
the sign of the direction selectivity index) were approximately
equally distributed between contraversive and ipsiversive (Fig.
3A,B, pie charts).

Figure 2. Summary of task-related activity modulations. Each set of graphs show the proportions of SEF neurons that exhibited significant main effects, mixed selectivity, or both for saccade
direction (top), rule (middle), and trial outcome (bottom) in each task epoch. Dashed line represents the corrected significance cutoff for n � 155 neurons (18/155 neurons or a proportion of
0.116, determined by � 2 test). Dotted line represents the uncorrected significance cutoff � � 0.05. Note the different y-axis scale for trial outcome during the postrew epoch (gray
background).
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In contrast, directional selectivity for rule-implementing sac-
cades occurred in only 11 neurons, failing to exceed the expected
false positive level (Fig. 3C; � 2 test, �(1)

2 � 0.50, p � 0.477). For
these 11 neurons, directional preferences were split between con-
traversive and ipsiversive (Fig. 3C, pie chart). The strength of
these preferences, measured as mean directional bias (absolute
value of the direction selectivity index; Fig. 3A–C, histograms),
was weak (0.089 � 0.010), significantly lower than the directional
bias of modulation for rule-selecting saccades or return saccades
(0.209 � 0.019 and 0.176 � 0.017, respectively; Wilcoxon rank-
sum tests, U � 19471, Z � 4.69, p � 0.0001 for both).

The same results held for the subset of recordings (44/68 ses-
sions) for which the vectors of all three types of saccades were
closely matched due to similar locations of rule targets (horizon-
tal meridian at 10° eccentricity) and decision targets (horizontal
meridian at 8° eccentricity). For the 95 neurons recorded in these
44 sessions, directional selectivity was found in a significant pro-
portion of neurons for rule-selecting saccades (32/95 neurons, � 2

test, �(1)
2 � 24.47, p � 0.0001) and return saccades (32/95 neu-

rons; � 2 test, �(1)
2 � 24.47, p � 0.0001), but not for rule-

implementing saccades (10/95 neurons; � 2 test, �(1)
2 � 1.81,

p � 0.179). Again, the mean directional bias during rule-imple-
menting saccades (0.090 � 0.010) was significantly weaker than
during both rule-selecting and return saccades (0.263 � 0.029
and 0.221 � 0.026, respectively; Wilcoxon rank-sum tests, U �
6978, Z � 4.65, p � 0.0001 for both).

Figure 4 shows data from an example neuron with saccade-
related activity from this subset of 95 neurons. Its activity was
directionally selective for rule-selecting saccades (Fig. 4, left) and
return saccades (Fig. 4, middle), but not for rule-implementing
saccades (Fig. 4, right), even though the directions of all the sac-
cades were identical (horizontal left and right) and amplitudes
were comparable (means 9.97 � 0.041° for rule-selecting sac-
cades, 9.78 � 0.040° for return saccades, and 7.78 � 0.014° for
rule-implementing saccades). Across the 44 sessions in which the
95 neurons were recorded, the distributions of saccade ampli-
tudes were 9.58 � 0.093° for rule-implementing saccades, 9.31 �
0.093° for return saccades, and 7.55 � 0.061° for rule-imple-
menting saccades, calculated using mean amplitudes from each
session. Although these distributions were significantly different
(one-way repeated-measures ANOVA on mean saccade ampli-
tude, main effect of saccade type, F(2,86) � 2295, p � 0.0001), the
effect sizes were very small (rule-implementing saccades were
only 2.03° shorter than rule-selecting saccades and 1.76° shorter
than return saccades) compared with the large sizes of SEF re-
sponse fields that typically span a quadrant or more, when they
can be delimited at all (Schlag and Schlag-Rey, 1987; Russo and
Bruce, 1996; Schlag-Rey et al., 1997). Therefore, whereas we can-
not rule out an effect of saccade vector on decreased directional
selectivity for rule-implementing saccades, the more prominent
difference was contextual: rule-implementing saccades were used
for perceptual discrimination, but the other saccades were not.

Selectivity of SEF neurons for rules
As demonstrated with the three-way ANOVA analysis and as
shown in Figure 2 (middle), a main effect of rule (alone or with
mixed selectivity) was found in a significant proportion of SEF
neurons only during the percstim epoch (20/155 neurons, � 2 test,
�(1)

2 � 5.65, p � 0.017), when the stimuli for the visual discrim-
ination were presented. This was the point in the task when the
monkey had to integrate the rule with the trial-specific decision
targets to generate its decision and the appropriate motor plan. A
representative neuron is shown in Figure 5A. In the 20 neurons
with rule selectivity during the percstim epoch, rule preferences
(sign of the rule selectivity index) were equally distributed (Fig.
5B, pie chart) and rule biases (absolute value of the rule selectivity
index) were modest, averaging 0.110 � 0.018 (Fig. 5B, histo-
gram). Task rules were not encoded by a significant proportion of
neurons in any other epoch, including during the sac1 epoch
when the rule was selected (14/155 neurons, � 2 test, �(1)

2 � 1.76,
p � 0.185) or during the refix epoch when the rule needed to be
held in memory (14/155 neurons, � 2 test, �(1)

2 � 1.76, p � 0.185).
Therefore, the analysis provided no evidence for continuous en-
coding from rule selection to application in the SEF neuronal
population; rules were represented only when they were needed,
at the time of decision target presentation.

Although there was a lack of continuous signaling from rule
selection to implementation, another form of continuity would
be if individual neurons participated similarly in both events. To
test this, we focused on the 45 neurons with significant direc-
tional selectivity during the sac1 epoch. We found that the mag-

Figure 3. Directional selectivity for saccades in the SEF neurons. Pie charts show numbers of
directionally selective neurons and their laterality (Ipsi, ipsilaterally selective; Contra, contralat-
erally selective) and nonselective (NS) neurons. Histograms show magnitudes of the neurons’
significant (black) or nonsignificant (white) directional biases. Results shown separately for
rule-selecting saccades (activity in sac1 epoch; A), return saccades (refix epoch; B), and rule-
implementing saccades (sac2 epoch; C).
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nitude of that selectivity was correlated with the magnitude of the
neurons’ rule selectivity in the later percstim epoch across these
neurons (Spearman’s r(43) � 0.355, p � 0.017). As an internal
control, we repeated the test for the same neurons using the mag-
nitude of directional selectivity during the sac2 epoch, but that
correlation was not significant (Spearman’s r(43) � 0.202, p �
0.183). Because data from the percstim epoch were tested twice,
significance levels were corrected to p � 0.025. Also, for these anal-
yses, we used the absolute values of the numerators of the rule and
direction selectivity indices to minimize the contributions of
condition-invariant neuronal properties (e.g., dynamic range) and
focus on condition-dependent changes in firing. The sac1-percstim
correlation of selectivity measures suggests that individual SEF neu-
rons contribute serially to rule selection and implementation, al-
though they encode different signals at each stage (saccade direction
then rule).

Last, given that both monkeys were behaviorally biased to-
ward selecting the rule that was more likely to result in reward
(Fig. 1C; Abzug and Sommer, 2018), we investigated whether
neural activity during a trial could predict a monkeys’ future rule
selections. No epochs of SEF activity, however, were associated

with rule selection during the subsequent trial (maximum across
task epochs � 8/155 neurons, � 2 test, �(1)

2 � 0, p � 1.0), even
when restricting the analysis only to subsequent self-selected tri-
als (maximum 11/155 neurons, � 2 test, �(1)

2 � 0.50, p � 0.478).
Although this does not rule out a contribution of SEF to biases in
rule selection that track performance, a key indicator of rational
serial decision-making behavior (Abzug and Sommer, 2018), at
the single-neuron level, we found no evidence for such signals.

Selectivity of SEF neurons for trial outcome
In our task, the three-way ANOVA analysis revealed a main effect
of trial outcome (alone or with mixed selectivity) in a significant
proportion of SEF neurons starting from the appearance of the
decision targets through reward (Fig. 2); specifically, in the perc-
stim epoch (20/155, � 2(1) � 5.65, p � 0.017), sac2 epoch (27/
155, � 2(1) � 11.63, p � 0.0006), prerew epoch (18/155, � 2(1) �
4.20, p � 0.04), and postrew epoch (83/155, �(1)

2 � 87.50, p �
0.0001). Many of the neurons encoded trial outcome prospec-
tively during the percstim, sac2, and prerew epochs, even though
the animal had not yet received feedback. Such neurons were
approximately equally likely to fire more during correct trials and

Figure 4. Activity of an example SEF neuron conditioned on saccade direction, around the times of the rule-selecting saccade (left), the refixation saccade (center), and the rule-implementing
saccade (right). Spike density functions used Gaussian kernels of � � 20 ms (MacPherson and Aldridge, 1979). The neuron exhibited perisaccadic modulations for all three saccades, but the
modulations were directionally sensitive only for rule-selecting and refixation saccades. Shaded error bars are SEM across trials within each condition.

Figure 5. Selectivity for task rules in the SEF neurons. A, Activity of an example SEF neuron conditioned on task rule during the percstim epoch. The neuron fired more when the size rule RS was
in effect, with the difference in firing emerging 
300 ms after decision target onset. Conventions are as in Figure 4. B, Pie chart showing the numbers of rule selective neurons and their preference
(rule RS, rule RB, or NS, nonselective). Histogram shows magnitudes of the neurons’ significant (black) or nonsignificant (white) rule selectivity biases.
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error trials (signs of the outcome selectivity index in each epoch;
pie charts in Fig. 6A–C). In contrast, neurons that encoded trial
outcome after feedback, in the postrew epoch, were significantly
more likely to fire more after correct trials (i.e., firing more in
response to reward; n � 56 neurons) than error trials (i.e., firing
more in response to the lack of reward; n � 27 neurons; �(1)

2 �
20.26, p � 0.0001; pie chart in Fig. 6D).

During the percstim epoch, when the subject could integrate
rule information with the decision targets and begin to formulate
its decision, neuronal firing rates for outcome-sensitive neurons
began to diverge 100 –200 ms after target onset, with activity in
the correct-preferring neurons (Fig. 7A) diverging slightly before
activity in the error-preferring neurons (Fig. 7B). Both sets of
neuronal modulations were caused by increases in firing for the
preferred outcome (whereas firing rates for the nonpreferred
outcome remained approximately constant). In contrast, most
neurons that encoded trial outcome after feedback showed mod-

ulated firing rates predominantly on error trials regardless of
whether the neuron preferred correct trials (Fig. 8A; correct pref-
erence manifested as a decrease in firing for error trials) or errors
(Fig. 8B; error preference manifested as an increase in firing for
error trials).

To determine whether this outcome encoding was truly being
driven by prospective/detected outcome or could be explained by
the sensory characteristics of the decision target, we first ran the
following multiple linear regression on neuronal firing rate in
each epoch:

y � 	0 � 	1R � 	2�S � 	3��S� � 	4�B � 	5��B�

� 	6R�S � 	7R��S� � 	8R�B � 	2R��B�

where y is the firing rate, R is the rule in effect (0 for RS, 1 for RB),
�S is the difference in size between the decision targets, and �B is
the difference in brightness between the decision targets (see “Se-
rial decision-making task” section in Materials and Methods for
details). We included the unsigned differences in the model (i.e.,
��S� and ��B�) to compensate for the potential encoding of task
difficulty. We also included interactions of all terms with the rule
R in case sensory variables were encoded in a functional manner
(e.g., larger difference in the chosen/unchosen dimension) in ad-
dition to a purely sensory manner (e.g., larger difference in the
size/brightness dimension). We then took the residuals of this
model, which represent the portion of neural activity unac-
counted for by the sensory and sensory-related variables con-
tained therein, and investigated whether those residuals encoded
trial outcome.

As with our previous results, we found that a significant pro-
portion of SEF neurons encoded trial outcome in those same
epochs even after controlling for other potential explanatory
variables: percstim (23/155, �(1)

2 � 8.06, p � 0.0045), sac2 (28/
155, �(1)

2 � 12.57, p � 0.0004), prerew (20/155, �(1)
2 � 5.65, p �

0.017), and postrew (104/155, �(1)
2 � 128.83, p � 0.0001). This

was not the case for any of the other task epochs (all p 
 0.13).
We also analyzed the population dynamics for outcome

encoding throughout the trial (Fig. 9) by calculating the multidi-
mensional distance between population firing rates in 155-
dimensional space (see “Population dynamics” section in
Materials and Methods for details). During the first half of the
trial (Fig. 9, baseline through refix epochs), trial outcome signals
were insignificant except for very brief periods (27 ms at the
longest). Trial outcome signals became prominent, however, af-
ter decision target onset (Fig. 9, percstim epoch), including a
stretch of continuous, significant signal for 102 ms. The timing of
that signal, from 205–307 ms after decision target onset, reflected
the temporal interval for outcome encoding shown in Figure 7.
Trial outcome encoding emerged again when the rule implemen-
tation saccade was made (Fig. 9, sac2) and leading up to feedback
(Fig. 9, prerew). After feedback (delivery or withholding of re-
ward), the trial outcome signal became extremely strong and
long-lasting (Fig. 9, postrew; note change of y-axis scale).

Persistent effect of past trial outcomes
Immediately after feedback, in the postrew epoch, approximately
half of the SEF neurons encoded trial outcome (Fig. 10A; 83/155
neurons, �(1)

2 � 87.50, p � 0.0001). How long did that signal
persist? We analyzed this for each neuron using five-way
ANOVAs on firing rates in each epoch as a function of the out-
comes of the current trial “n” (to control for outcome effects
described above) and the four previous trials (n 	 1 through n 	
4). A main effect of a previous trial (p � 0.05 criterion) indicated

Figure 6. Selectivity for trial outcomes in the SEF neurons. Pie charts show numbers of
outcome selective neurons and their preference (correct trials, error trials, or NS, nonselective).
Histograms show magnitudes of the neurons’ significant (black) or nonsignificant (white) out-
come selectivity biases. Results shown separately for the percstim epoch (A), the sac2 epoch (B),
the prerew epoch (C), and the postrew epoch (D).
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that its outcome influenced the neuron’s activity in the tested
epoch. We found that, for many SEF neurons, selectivity for past
trial outcomes lasted into and through the subsequent trials (Fig.
10B). At the start of trial n, 38/155 neurons encoded the outcome
of trial n 	 1 during the baseline epoch (�(1)

2 � 22.97, p � 0.0001)
and 19/155 during initial fixation (fpacq epoch; �(1)

2 � 4.91, p �
0.027). Then, the proportion dropped below the false-positive
level (0.116, cf. Fig. 2, dashed line) for the rest of the trial. During
the baseline epoch, a significant proportion of neurons even en-
coded the outcome of trial n 	 2 (20/155, �(1)

2 � 5.65, p � 0.017),
but after that, the persistence of the signal ceased. As with pro-
spective and proximate outcome-encoding neurons, neurons
that encoded past trial outcomes could prefer either previous
correct trials (Fig. 11A) or error trials (Fig. 11B). In our task,
therefore, SEF activity was influenced by previous trial outcomes,
with the outcome signal returning transiently even after an inter-
vening trial.

Mixed selectivity in the SEF population
Given the patterns of direction, rule, and outcome selectivity
observed in our SEF population, we then investigated whether
the mixed selectivity might represent behaviorally relevant inter-
actions. Specifically, we were interested in the interaction be-
tween rules and outcomes because this mixed selectivity could
provide the teaching signal necessary to dynamically modulate
rule selections to maximize rewards. We found that a significant
proportion of SEF neurons encoded the interaction between the
rule and anticipated outcome during both the percstim epoch
(25/155, �(1)

2 � 9.80, p � 0.002) and prerew epoch (21/155, �(1)
2 �

6.43, p � 0.012). However, the SEF population did not encode
the interaction between the rule and outcome after the outcome
was observed (postrew epoch: 17/155, �(1)

2 � 3.52, p � 0.06;
baseline epoch of next trial: 12/155, �(1)

2 � 0.86, p � 0.36). Like-
wise, the interaction between rule and outcome was not encoded
during the subsequent trial’s sac1 epoch, when it could have

Figure 7. Population-averaged trial outcome selectivity during the percstim epoch. A, SEF neurons that fired preferentially on correct trials during the percstim epoch (n � 8) exhibited phasic
modulations 100 –300 ms after appearance of the decision targets. B, In contrast, neurons that fired preferentially on error trials during the percstim epoch (n � 12) showed more tonic modulations
beginning 
150 ms after appearance of the decision targets and, in some cases, lasting throughout the remainder of the trial. Conventions are as in Figure 4 except that shaded error bars are SEM
across neurons within each subpopulation.

Figure 8. Population-averaged trial outcome selectivity during the postrew epoch. A, SEF neurons that fired preferentially on correct trials during the postrew epoch (n � 56) showed, on
average, a cessation of firing 
300 ms after the absence of reward in error trials. B, Neurons that fired preferentially on error trials during the postrew epoch (n � 27) showed, on average, an
elevation in firing after absence of reward in error trials. Shaded error bars are SEM across neurons within each subpopulation.
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Figure 9. Population dynamics of trial outcome encoding. Time courses calculated using the multidimensional distance (Stokes et al., 2013) between neuronal trajectories on correct and error
trials. Distances (solid black lines) were significant when they exceeded the 99% confidence interval (gray shaded area) of the null distribution (see “Population dynamics” section in Materials and
Methods for more details). Significant, strong trial outcome signals appeared after onset of the decision targets (percstim), persisted during (sac2) and after (prerew) the rule-implementing
saccades, and peaked after feedback (postrew; for this, note the different y-axis scale).

Figure 10. Persistent effect of past trial outcomes in the SEF neurons. A, A large proportion of neurons encode trial outcome immediately after feedback delivery (postrew epoch). B, This
outcome-encoding persisted in 38/155 neurons ( p � 0.0001) at the start of the subsequent trial (baseline and fpacq epochs, trial n 	 1). The number of neurons encoding trial outcome dropped
toward chance (proportion � 0.116) during the remainder of the trial, but rebounded again during the baseline period of the next trial (baseline epoch, trial n 	 2; 20/155 neurons, p � 0.017).
Beyond that, effects of past trial outcomes became nonsignificant.
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potentially served to guide optimal rule selection (11/155, �(1)
2 �

0.50, p � 0.48).

Discussion
We recorded from neurons in the SEF while monkeys performed
a serial decision-making task requiring them to use selected or
instructed rules to perform a visual discrimination. The neurons
exhibited malleable directional selectivity and, supporting our
first hypothesis, activity related to key events of the task: “just-in-
time” encoding of task rules and robust encoding of trial out-
comes both before and after feedback was delivered. We found no
evidence, however, for our second hypothesis of sustained activ-
ity between the two decisions of the task. SEF neurons appear to
be engaged with the task of selecting then applying rules in tem-
porally discontinuous and somewhat unexpected ways.

Directional selectivity
Prior studies reported that directionally selective activity in SEF is
task dependent (Mann et al., 1988; Olson and Gettner, 1995,
1999; Purcell et al., 2012). Furthermore, inactivation of SEF tends
to lead to spatially balanced, bilateral deficits (Schiller and Chou,
1998; Sommer and Tehovnik, 1999), in contrast to the strong
contralateral impairments observed for inactivation of the
nearby FEF (Sommer and Tehovnik, 1997; Schiller and Chou,
1998; Dias and Segraves, 1999; Chafee and Goldman-Rakic,
2000). We found that the directional selectivity of SEF saccade-
related activity changed within our task depending on the pur-
pose of the saccade. The occurrence and strength (bias) of
directional selectivity was much greater for saccades that selected

rules and returned to fixation than for saccades that reported a
perceptual discrimination. Together, the prior and current re-
sults suggest that SEF does not play a role in the spatial encoding
of targets when a visual discrimination needs to be performed,
such as in the second stage of our task or when finding the target
during visual search (Purcell et al., 2012), unlike the FEF with its
more spatially dependent activity (Bruce and Goldberg, 1985;
Schall and Hanes, 1993; Thompson et al., 1996). One possibility is
that the SEF is involved in other cognitive or oculomotor pro-
cesses during these discriminations; indeed, our SEF population
encoded other task variables in the epochs during and surround-
ing the rule-implementing saccade. Neurons that were direction-
ally selective during rule selection, in particular, showed a
correlation between that selectivity and later rule selectivity dur-
ing rule implementation. If this correlation reflects a causal, serial
link, then this implies a mechanism in which directional selectiv-
ity in the first decision contributes to rule retrieval for the second
decision. It is not obvious how that would work, but it empha-
sizes the potential complexity of neural processes that may link
serial decisions.

Rule selectivity
We found that our SEF neural sample encoded task rules “just-
in-time,” only when the rules were needed to make a decision,
and not at the time that the rules were selected or instructed. Two
other studies found significant rule-related in activity in SEF
(White and Wise, 1999; Olson and Gettner, 2002). In one study,
the authors did not report how SEF rule-related activity varied
across the trial epochs (White and Wise, 1999). In the other, a

Figure 11. Activity patterns of example SEF neurons that encoded past trial outcomes. A, Neuron that fired more after correct trials. B, Neuron that fired more after error trials. Both neurons
showed large modulations in firing rate immediately after feedback delivery (postrew epoch, left). These tonic modulations persisted into the start of the next trial (baseline epoch, trial n 	 1,
center) and were still present at the start of the trial after that (baseline epoch, trial n 	 2, right). Shaded error bars are SEM across trials within each condition.
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single cue simultaneously instructed subjects both which rule to
use (“attend to cue features” vs “attend to cue location”) and
where to look (the features or locations of that cue; Olson and
Gettner, 2002). Our finding that the SEF encodes rules for visual
discrimination at the time when a saccadic report is required is
consistent with behavior of a patient with an SEF lesion who
selectively showed task deficits in reporting decisions with eye
movements but not reaches (Husain et al., 2003; Parton et al.,
2007). More generally, this “just-in-time” representation of the
rule suggests a specific role for the SEF in applying rules. Rather
than maintaining the rule representation, the transient profile of
the signal suggests that the SEF recalls a working memory of the
rule only when context requires the rule to be used.

Neural activity in SEF was selective for rules, but not for how
they were established; we found no modulation for the task con-
dition of self-selected versus instructed. One possible explanation
for this null result is that, because it is the rule that matters for the
upcoming discrimination and not how the rule is established,
task condition may be encoded in a brain region that is more
likely to encode task-irrelevant variables such as PFC (Lauw-
ereyns et al., 2001). Indeed, one human fMRI study reported
differential encoding of rule selection versus rule instruction in
the PFC (Zhang et al., 2013). Another possible explanation stems
from the fact that, in our paradigm, even when rules are in-
structed, the subject still uses a saccade to “select” one of the rule
targets. We designed the task this way to keep the patterns of
stimuli and actions identical across all trials, but it may have
prevented us from identifying activity specifically related to the
selection of rules independent from the selection of saccade
targets.

Prospective and retrospective encoding of trial outcomes
We found robust effects of trial outcome on SEF activity both
before and after feedback delivery. Some SEF neurons encoded
the outcome of the upcoming perceptual decision as early as 200
ms after the decision targets appeared. This prospective outcome
encoding remained even after controlling for sensory features,
objective discrimination difficulty, and other properties, suggest-
ing that SEF neurons are signaling subjective likelihood of receiv-
ing reward. If SEF activity signals when errors will be made,
then why does the animal not correct its chosen-but-not-yet-
implemented decision? We would argue that this prospective SEF
activity represents the expected trial outcome associated with the
selected or instructed rule, marginalized over the upcoming per-
ceptual choice. This is supported by the simultaneous presence of
rule selectivity and prospective outcome encoding during the
percstim epoch and the lack of selectivity for saccade direction
during the rule implementation stage. SEF activity also has been
shown to prospectively encode reward expectations when the
reward probabilities are explicitly provided (So and Stuphorn,
2012) and confidence reports after the perceptual decisions on
which they are based (Middlebrooks and Sommer, 2012). There-
fore, the SEF may be important for the generalized prediction of
future rewards regardless of whether the reward probabilities are
explicitly provided or estimated internally.

We also found that SEF neuronal activity was modulated by
the outcomes of past trials. Some neurons encoded the outcomes
of the previous trial and the trial before that, but only proximal to
the intertrial interval, when visual stimuli relevant for the current
trial had yet to appear. Previous studies of SEF also found activity
related to past trial outcomes (Middlebrooks and Sommer, 2012;
Donahue et al., 2013) and one such study also found that past
outcome encoding was present only during the intertrial interval

(Middlebrooks and Sommer, 2012). Both studies found that en-
coding of past trial outcomes occurred in other cortical regions as
well, including the FEF, PFC, anterior cingulate cortex, and the
lateral intraparietal area (Middlebrooks and Sommer, 2012; Do-
nahue et al., 2013).

Lack of sustained activity between decisions
Our second hypothesis was that, like the sustained activity ob-
served by Middlebrooks and Sommer (2012) that bridged a per-
ceptual decision to a wager on whether it was correct, SEF activity
in our task would link selection of a rule to its implementation for
a perceptual decision. Instead, the activity encoded rules only at
the time they were implemented. If the SEF does not maintain a
trace of the rule once it is established, then where is it stored in
working memory? A likely candidate region is the PFC, which
showed no bridging activity between decisions in the Middle-
brooks and Sommer (2012) study, but does encode rules robustly
(Wallis et al., 2001; Buschman et al., 2012). A demonstration of
sustained activity between rule selection and application in PFC
using our task would provide an intriguing double dissociation
between SEF and PFC, suggesting that they are used for linking
serial decisions in different contexts: the SEF when perceptual
decisions are monitored for later use and the PFC when rules are
set for later perceptual decisions. One framework for describing
this distinction is that SEF would be involved in metacognitive
monitoring and PFC in metacognitive control of perceptual de-
cisions (Nelson and Narens, 1990; Middlebrooks and Sommer,
2012). Another possible interpretation, which agrees with our
finding of prospective outcome encoding, could be that the SEF
generally encodes confidence in decisions (Middlebrooks and
Sommer, 2012; So and Stuphorn, 2016). Because the rules are not
ambiguous in our task, the lack of sustained task-related signals
after a rule is established could reflect constant confidence in
understanding it.

Conclusion
We found that SEF neurons encode key events in a serial
decision-making task that required monkeys to select a rule and
then use it for a visual decision. SEF activity encodes the spatial
attributes of saccades depending on their function, encodes rules
at the time when they can be integrated with visual evidence to
report a decision, and encodes prospective and long-lasting trial
outcome signals. As one of the foundations of continuous behav-
ior, serial decision-making merits further study and it will be
important to investigate the contributions of other candidate
brain areas and how they work with the SEF to create the internal
representations that link cognitive operations over time.
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