
Behavioral/Cognitive

Choice for Drug or Natural Reward Engages Largely
Overlapping Neuronal Ensembles in the Infralimbic
Prefrontal Cortex
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Cue-reward associations form distinct memories that can drive appetitive behaviors and are involved in craving for both drugs and
natural rewards. Distinct sets of neurons, so-called neuronal ensembles, in the infralimbic area (IL) of the medial prefrontal cortex
(mPFC) play a key role in alcohol seeking. Whether this ensemble is specific for alcohol or controls reward seeking in general remains
unclear. Here, we compared IL ensembles formed upon recall of drug (alcohol) or natural reward (saccharin) memories in male Wistar
rats. Using an experimental framework that allows identification of two distinct reward-associated ensembles within the same animal, we
found that cue-induced seeking of either alcohol or saccharin activated ensembles of similar size and organization, whereby these
ensembles consist of largely overlapping neuronal populations. Thus, the IL seems to act as a general integration hub for reward seeking
behavior, but also contains subsets of neurons that encode for the different rewards.
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Introduction
Drinking a beer or rather a cola, we commonly face concurrent
options to satisfy our needs and desires, and decide based on
experience and actual context. However, when such choices

become strongly biased, individuals may risk severe long-term
consequences, for example, developing addiction or substance
use disorders, accounting for a large proportion of global disease
burden (Whiteford et al., 2013). Despite this high burden on the
health care system, little is known about the neurobiological
mechanisms underlying the processing of concurrent reward op-
tions in the brain.

Responses toward appetitive stimuli, including natural and
drug rewards, are prototypical learned behaviors, whereby previ-
ously neutral cues and contexts that are repeatedly paired to
reward consumption acquire incentive-motivational properties
(Flagel et al., 2009). Associative learning can be studied using oper-
ant conditioning, where subjects learn to discriminate between two
options: responding at one lever is associated with reward delivery,
whereas responding at another lever is not (Sanchis-Segura and Spa-
nagel, 2006; Martin-Fardon and Weiss, 2013). The neuronal re-
sponses to appetitive reward associated stimuli are widely studied
in the context of craving, a phenomenon often reported by indi-
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Significance Statement

Cue-reward associations form distinct memories that can act as drivers of appetitive behaviors and are involved in craving for
natural rewards as well as for drugs. Distinct sets of neurons, so-called neuronal ensembles, in the infralimbic area of the mPFC
play a key role in cue-triggered reward seeking. However, it is unclear whether these ensembles act as broadly tuned controllers of
approach behavior or represent the learned associations between specific cues and rewards. Using an experimental framework that
allows identification of two distinct reward-associated ensembles within the same animal we find largely overlapping neuronal popula-
tions. Repeated activation by two distinct events could reflect the linking of the two memory traces within the same neuron.
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viduals suffering from an addiction, and recently included into
the Diagnostic and statistical manual of mental disorders (DSM5.0) as
a criterion for alcohol and substance use disorders (American
Psychiatric Association, 2013). Interestingly, a comprehensive
meta-analysis of functional neuroimaging experiments on cue
responsivity to natural and drug stimuli in humans found largely
overlapping activated neural substrates, including the mPFC
(Noori et al., 2016). Similarly, functional neuroimaging in rats
found widely shared neuronal networks recruited by alcohol and
saccharin rewards (Dudek et al., 2015).

The mPFC is involved in executive functions (e.g., self-control,
value attribution, and decision making) both in rodents and pri-
mates, and plays a key role in the control of associative reward
conditioning (Heidbreder and Groenewegen, 2003; Wood and
Grafman, 2003; Dalley et al., 2004; Rushworth et al., 2011). It is
also particularly sensitive to alcohol-induced long-term damage
(Zahr et al., 2011; Meinhardt et al., 2013; Heilig et al., 2017).
Within the mPFC, memories about specific contingencies of re-
ward availability are thought to be physically allocated to neuro-
nal ensembles (Suto et al., 2016). These engrams in discrete and
sparse neuronal populations show coordinated spatiotemporal
activity that can be reliable reactivated upon recall (Hebb, 1949;
Tonegawa et al., 2015; Holtmaat and Caroni, 2016). Neuronal
ensembles can be identified in vivo via the neuronal activity
marker cFos (Morgan and Curran, 1991; Cruz et al., 2013). Pre-
vious research demonstrated a causal link of a neuronal ensemble
in the infralimbic subregion (IL) of the mPFC with conditioned
alcohol seeking by chemogenetic ablation of cFos-responsive
neurons (Pfarr et al., 2015). Similar ensembles have been identi-
fied for cue- or context-induced seeking of other drug or natural
rewards (Bossert et al., 2011; Cruz et al., 2015; Pfarr et al., 2015;
Suto et al., 2016; Warren et al., 2016), but different experimental
procedures make a comparison of these studies difficult. It thus
remains elusive whether different reward-paired cues recruit dif-
ferent neuronal ensembles in the IL or whether the activated
ensembles are, at least partially, overlapping.

Here, we compare IL neuronal ensembles engaged in drug and
natural reward seeking. Toward this aim, we developed a new
concurrent operant self-administration protocol for two differ-
ent rewards: alcohol as a drug and a sweet saccharin solution as a
natural reward. This procedure enables direct comparison of cue-
induced neuronal ensembles within the same animal, whereby
distinction of two separately activated cell populations in the rat
brain was achieved using double-cFos mRNA FISH method for
the simultaneous detection of different cFos isoforms. We found
that alcohol- and saccharin-associated cues engage largely over-
lapping cFos� neuronal ensembles of similar size and organiza-
tion. Our results support the hypothesis that within the IL two
distinct memory traces are maintained in discrete populations of
neurons. However, both memory traces are strongly linked via
encoding in overlapping ensembles.

Materials and Methods
Animals
A total of 72 male Wistar rats (Charles River, initial weight 250 –300 g)
were used in the experiments. The rats were housed in groups of 4 under
a 12 h light/dark cycle with food and water available ad libitum in the
home cages. Behavioral testing was performed during the dark phase of
the light/dark cycle from 6:00 A.M. to 6:00 P.M., 5 d per week. All exper-
iments were conducted in accordance with the European Union guide-
lines for the care and use of laboratory animals and were approved by the
local animal care committee (Regierungspräsidium Karlsruhe, Karlsruhe,
Germany).

Experimental design
Male Wistar rats were trained on an operant training protocol to
concurrently self-administer 10% (v/v) ethanol or saccharin (Sigma-
Aldrich) solutions. To yield similar numbers of lever presses for both
rewards, the concentration of the saccharin solution was adjusted in the
different experiments to match the average performance on the alcohol
lever for each batch of animals. After reaching comparable baseline re-
sponse rates for both rewards, animals underwent a progressive ratio
(PR) schedule (Hodos, 1961) to test their motivation for ethanol and
saccharin. This was followed by random self-administration sessions for
ethanol and saccharin until a stable baseline was reached. Then, all ani-
mals underwent five extinction sessions and one cue-induced reinstate-
ment session for each reward separated by 3 d in a counterbalanced
manner (see Figs. 1A, 2A, 3A).

Behavioral procedures
Operant conditioning training. All reward-seeking experiments were
performed in standard operant chambers (MED Associates) enclosed in
ventilated sound-attenuating cubicles as described previously (Mein-
hardt et al., 2013; Pfarr et al., 2015). In brief, responses at the appropriate
(active) lever led to the delivery of �30 �l of reward (ethanol or saccharin
solution), presented in a liquid receptacle next to the lever. Correct lever
responses activated a light stimulus placed above the response lever.
Ethanol and saccharin self-administration training and testing sessions
were performed 3 h after beginning of the dark phase of the light/dark
cycle at 5 d per week (Sanchis-Segura and Spanagel, 2006). Animals were
trained to self-administer 10% (v/v) ethanol in daily 30 min sessions
without prior sucrose- or saccharin-fading procedures. During the first
3 d of training, the animals were kept water-deprived for 18 h per day.
The animals were trained to associate the availability of ethanol with the
presence of specific discriminative stimuli, using a combination of dis-
criminative (olfactory) and contingent (visual) cues (Ciccocioppo et al.,
2002, 2003; Meinhardt et al., 2013; Pfarr et al., 2015). Two odors (orange
oleum Aurantii Dulcis g420; lemon grass oil w861, Caelo) served as ol-
factory contextual stimuli to predict the presence of ethanol and saccha-
rin, respectively. Four to six drops of either pure odor solution were
applied to the bedding material of the operant chamber before the start of
each session, ensuring the presence of the stimulus throughout the whole
session. In addition, a discrete visual stimulus (5 s blinking light) was
presented after responses at the correct, rewarded lever (ethanol � left
lever and left cue-light, saccharin � right lever and right cue-light). The
5 s period of blinking light presentation served as a “time out,” during
which responses were recorded but did not lead to reward delivery. All
animals underwent 9 ethanol training sessions, during which only the
active lever was presented. During the following 4 training sessions, the
inactive lever was also presented and the animals learned to discrimi-
nate between active and inactive lever for the ethanol-associated cues.
The same procedure was repeated for saccharin cue-conditioning.

PR test. Following acquisition of concurrent ethanol and saccharin
self-administration, the animals’ motivation to self-administer ethanol
(EtOH) and saccharin was tested on a 30 min PR schedule. Under these
conditions, an increasing number of lever presses during one trial (1, 2, 4,
6, 8, 10, 12, 14. . .) was required to receive 1 drop of either 10% (v/v)
EtOH or 0.025% (w/v) saccharin solution (Richardson and Roberts,
1996). Trials were aborted if the animals stopped responding for 2 min.
PR tests were performed with both rewards in a counterbalanced design
in two independent sessions separated by 3 d. The breakpoint was calcu-
lated using the highest completed response requirement during the 30
min PR session.

Self-administration baseline and extinction training. All animals under-
went 8 randomized concurrent self-administration sessions to reach a
stable baseline for each reward. Thereafter, all animals were subjected to
daily extinction sessions (30 min) for 5 d. This was sufficient to reach an
extinction criterion of �10% of baseline activity at the active lever per
session. During extinction sessions, both levers were available without
presentation of the olfactory conditioned stimuli. Responses at the pre-
viously active lever activated the respective syringe pump, which, how-
ever, did not result in reward delivery or presentation of the discrete
visual conditioned stimulus (blinking light).
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Cue-induced reinstatement test. The animals were presented with the
same conditioned stimuli as during the conditioning phase. Responses at
the active lever resulted in the presentation of the visual conditioned
stimulus and activation of the syringe pump, but not in reward delivery.
Reinstatement for both rewards was performed in two independent ses-
sions separated by 3 d. Next, the animals were subjected to additional
reinstatement sessions without further training sessions (see Figs. 2A,
3A). Of note, in Experiment 2, the last two reinstatement sessions were
only 5 min long and separated by 30 min (see Fig. 3A). In a previous study
(Pfarr et al., 2015), we have demonstrated that rats can successfully per-
form several consecutive cue-induced reinstatement tests over a period
of 2 weeks without noticeable extinction of behavioral responding.

Stereotaxic surgery and retrograde tracing
A total of 28 Wistar rats from Experiment 1 were stereotaxically injected
with the retrograde tracer cholera toxin B coupled to fluorescent dyes
Alexa-488 and Alexa-647 (Thermo Fisher). Animals were anesthetized
with isoflurane and mounted in a stereotaxic frame (David Kopf Instru-
ments). Approximately 1 �l of cholera toxin B solution (1 mg/ml in PBS)
was injected into two of the following target regions using the denoted
coordinates relative to bregma and midline (anteroposterior, mediolat-
eral, dorsoventral, mm as follows): prelimbic area (PrL), 3, � 0.5 mm,
�4; IL, 3, � 0.5, �5.5; NAc, 1.6, �0.9, �7.5; VTA, �5.3, � 0.8, �9.5.
Animals recovered from anesthesia within minutes and were maintained
group housed to recover for 5 d before further behavioral testing. Injec-
tion sites were verified postmortem using a DM6000B microscope (Leica
Microsystems) equipped with a 10� HC PL APO dry objective (NA: 0.4).

Immunohistochemistry
Animals were transcardially perfused with 100 ml PBS followed by
100 ml of 4% PFA in PBS, 90 min after the beginning of the final cue-
induced reinstatement sessions, the time point of maximal cFos protein
expression (Sheng and Greenberg, 1990). Brains were removed and post-
fixed overnight at 4°C in fixative solution (4% PFA in PBS). PFA was
removed by 3 washes in PBS before the brain was cut into 70-�m-thick
slices on a vibratome (VT1000S, Leica Microsystems). Slices were stored
in cryoprotectant solution (1� phosphate buffer: 40% (v/v), glycerole:
30% (v/v), ethylene glycol: 30% (v/v) at �20°C until further usage.

Antibody stainings were performed on cryoprotected, fixed brain slices
containing the mPFC. Slices were washed three times in TBS (0.025 M Tris-
Hcl, 0.5 M NaCl) to remove cryoprotectant solution before blocking for
1 h in TBS supplemented with 0.2% Triton X-100, 7.5% normal goat
serum, and 2.5% BSA. Primary antibodies directed against NeuN (Mil-
lipore, catalog #MAB377, RRID:AB_2298772, mouse, monoclonal) and
cFos (Cell Signaling Technology, catalog #2250, RRID:AB_2247211, rab-
bit, monoclonal) were applied in blocking solution at 1:250 and 1:500
dilutions, respectively. Slices were incubated at 4°C overnight and washed
three times with TBS. Appropriate Alexa-405- and Alexa-568 dye-coupled
secondary antibodies (Thermo Fisher) were applied at 1:1000 dilutions in
TBS containing 0.2% Triton X-100 for 1 h at room temperature. Finally,
slices were rinsed three times with TBS and mounted in Mowiol.

Stained mPFC sections were examined by confocal microscopy using a
TCS SP5 microscope (Leica Microsystems) equipped with a 63� HCX
PL APO (1.45 NA) objective. Four image stacks were acquired at random
positions in the IL of each hemisphere (image resolution: 512 � 512
pixels; voxel size: 0.459 � 0.459 � 2.519 �m; image dimensions: x, y �
234.32 �m, z � 2. 52 �m). Three slices were examined per animal.

Data were analyzed in a semiautomated way. Custom-written
MATLAB (RRID:SCR_001622, The MathWorks) procedures were used
to determine the number of objects recorded in each imaging channel
(NeuN, cFos, two tracers) and the number of objects positive for cFos.
Therefore, all channels were first smoothed by a 2D Gaussian filter (� �
3 pixels, 1 pixel � 0.459 �m) before the intensities of all channels were
binarized. The threshold for the binarization was chosen such that 95%
of the NeuN signal and the 98% of the cFos signal and of both tracer
signals were defined as background pixels. Thresholds were calculated for
each frame individually to compensate for decreasing intensities deeper
in the tissue. The NeuN signal was eroded by removing two pixels from

the edge of the signal. A connected components analysis with a connec-
tivity of 26 was performed for each channel. Connected components that
did not reach a certain size (500 voxels for NeuN and cFos, 750 voxels for
tracer channels) were excluded from analysis as they are likely to not
represent true signals. The center of mass of each connected component
in each channel was determined. Colocalization between cFos signals and
objects in the other three channels was assigned by close proximity anal-
ysis (range: 10 �m) based on the centers of mass. The results of the
colocalization analysis were confirmed by manual inspection.

FISH
To distinguish two sets of cFos � neurons triggered by stimuli that are
timely separated, we used a double-FISH method that is based on the
different temporal profiles of nascent (unspliced) and mature (spliced)
cFos mRNA species. Upon a stimulus, cFos mRNA is rapidly induced
within a few minutes, but this nascent form has a rapid turnover and is
quickly spliced. Thus, in our approach, neurons active during the first
reinstatement are labeled by mature cFos mRNA, whereas those activated
by the second reinstatement are marked by nascent cFos mRNA (Lin et
al., 2011).

Rats were rapidly decapitated 5 min after the last cue-induced rein-
statement session, brains were removed, frozen in isopentane (�50°C),
and kept at �80°C until further processing. Brain slices of 20 �m thick-
ness were cut on a cryostat and thaw-mounted onto Super Frost Plus
slides (Thermo Fisher). FISH analysis was performed using the RNAs-
cope Multiplex Fluorescent Reagent Kit (Advanced Cell Diagnostics;
Probes Rn-Fos-O1-C2, Rn-Fos-Intron1-C3, Rn-Bcl11b, and Rn-Rgs8-
C3) according to the manufacturer’s instructions (freshly frozen tissue).

Brain sections containing the mPFC were examined by confocal mi-
croscopy (see above). Three images were acquired at random positions in
the IL of each brain slice. Two slices were examined per animal. For layer
specific cFos expression, three images were then taken per layer in each
brain slice.

Data were analyzed for colocalization of FISH signals in both channels
using the cell counter macro of ImageJ (Fiji, RRID:SCR_002285). Spec-
ificity of FISH signal was verified by colocalization with DAPI. In case of
double labeling for spliced and unspliced cFos mRNA, the scattered signal
pattern prevented semiautomated analysis. This dataset was manually
analyzed as follows: first, the fraction of DAPI-positive cells expressing
spliced cFos was calculated per animal. Then, expression of unspliced
cFos mRNA was measured as mean gray value per cell, based on manually
determined regions of interest using ImageJ. To discriminate basal from
activity induced expression of unspliced cFos, gray values were ranked
and the fraction of cells showing the highest unspliced cFos mRNA ex-
pression, identical to the fraction of spliced cFos mRNA, were used for
colocalization analysis as described below.

Statistical analysis
Data are expressed as mean � SEM. Behavioral data were analyzed using
two-tailed paired t test or two-way repeated-measures ANOVA followed
by Newman-Keul’s post hoc test, where appropriate (Statistica 10, RRID:
SCR_015627, Statsoft). Animals were excluded from analysis if they ei-
ther failed to discriminate the active lever during self-administration or
they did not show significant (	15 lever presses in 30 min) reinstatement
behavior in response to either of the cues. Immunohistochemistry and
FISH data were analyzed by two-tailed unpaired t test and two-way
ANOVA using GraphPad Prism 5 (RRID:SCR_002798). The � level for
significant effects was set to 0.05. In case of colocalization of spliced and
unspliced cFos mRNA, statistical significance of colocalization was tested
by shuffle test using custom-written IGOR macros (100,000 repetitions,
RRID:SCR_000325, Wavemetrics). Therefore, the thresholded signal of
unspliced cFos (see above) and the signal of mature cFos were binarized
and analyzed for colocalization.

Results
Setup of concurrent operant self-administration protocol
To directly compare reward-seeking behavior for natural (non-
drug) and drug rewards, we established an operant protocol for
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the concurrent self-administration of EtOH and saccharin solu-
tions (Fig. 1A). Although saccharin is an artificial sweetener, we
refer to it as a natural reward due to its sweet taste. After self-
administration training for 10% alcohol, 16 male Wistar rats
were trained to self-administer 0.04% saccharin solution. Given
the high reinforcement value of a standard 0.2% saccharin solu-
tion (in a typical experiment rats can respond 	200 times per
session under a fixed ratio 1 schedule), the concentration was
adjusted to match the performance of the rats in the ethanol
self-administration sessions, thereby counteracting potential biases
in neuronal ensemble properties resulting from mere differences
in motor activity. After animals had learned the contingencies for
EtOH and saccharin rewards, their motivation for each reward
was tested under a PR schedule (Fig. 1D). Thus, the animals had
to make an increasing number of lever responses to receive the
same amount of reward. Interestingly, the animals showed a sig-
nificantly lower breakpoint for saccharin compared with EtOH
(t(1,12) � �4.38, p � 0.0009, n � 13, two-tailed paired t test; Fig.
1D), although there was no difference in baseline self-admini-

stration between alcohol and saccharin (Fig. 1B; for full statistics,
see Table 1). This indicates that, despite similar self-admini-
stration of both rewards, alcohol is more rewarding. After further
alternations between the two rewards, rats continued with extinc-
tion training. Five days of extinction training was equally effective
for both rewards (�10% of baseline lever presses) with no signif-
icant difference between the previously rewarded alcohol- or
saccharin-paired levers (Fig. 1B; Table 1). Next, all animals un-
derwent counterbalanced cue-induced reinstatement sessions
in which the previously acquired reward-associated condi-
tioning cues (odors) were presented but not rewarded. Success-
ful reinstatement behavior resulted in significantly increased
numbers of presses at the previously reward-paired lever (Fig. 1B;
Table 1). Three animals were excluded from the analysis because
they failed to match the criteria for successful reinstatement (	15
lever presses in 30 min). Consistent with the PR test, rats pressed
significantly more at the alcohol- versus saccharin-paired lever,
reflecting the somewhat higher motivation for the 10% EtOH
solution over the 0.04% saccharin solution. Rats showed signifi-

Figure 1. Two-reward operant conditioning task for concurrent alcohol and saccharin seeking. A, Timeline for ethanol and saccharin self-administration (SA), progressive ratio (PR), extinction
training (EXT), and counterbalanced cue-induced reinstatement (RE) of alcohol (EtOH) and saccharin (Sac) seeking. B, C, Quantification of lever presses during baseline (BL) self-administration, EXT,
and RE. D, PR test. *p � 0.05, **p � 0.01, ***p � 0.001. n � 13. For detailed statistics, see Table 1.

Table 1. Statistics of two-reward operant experiment: results for repeated-measures ANOVA and Newman–Keuls post hoc testa

Lever

Repeated-measures ANOVA

Newman–Keuls post hoc test

t test (comparison
active/inactive)Within-group comparison

Between reward
comparison

Test df Effect F p Reward Test p Test p Test p

Active BL, EXT 1,24 reward 0.136 0.716 EtOH
Test-session 53.099 0.0001 EtOH BL, EXT 0.0002 BL 0.559 BL 0.0002
interaction 0.214 0.648 Sac BL, EXT 0.0002 EXT 0.939 EXT 0.273

EXT, RE 1,24 reward 4.194 0.052
Test-session 61.623 0.0001 EtOH EXT, RE 0.0001 RE 0.0001
interaction 3.851 0.061 Sac EXT, RE 0.001 RE 0.007

Inactive BL, EXT 1,24 reward 3.242 0.084 Saccharin
Test-session 51.616 0.0001 EtOH BL, EXT 0.0001 BL 0.01 BL 0.0012
interaction 3.873 0.06 Sac BL, EXT 0.001 EXT 0.72 EXT 0.273

EXT, RE 1,24 reward 1.544 0.225
Test-session 43.587 0.0001 EtOH EXT, RE 0.002 RE 0.0012
interaction 1.419 0.245 Sac EXT, RE 0.0001 RE 0.1

aComparison between active and inactive lever was done using two-tailed paired t test. BL, Self-administration baseline; EXT, extinction; RE, cue-induced reinstatement; EtOH, ethanol; Sac, saccharin.
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cant differences at the inactive lever between the ethanol and
saccharin conditions, but this effect was inconsistent (Fig. 1C;
Table 1) and did not reoccur in the other experiments (Figs.
2B,C, 3B). Still, animals pressed the active lever far more often
than the inactive one, independent of the reward presented (Fig.
1B,C; Table 1), showing that they had learned the behavioral
contingencies. In summary, we have established an experimental
paradigm that allows us to investigate the neurobiological mech-
anisms underlying alcohol and natural reward-seeking behavior
within the same animal.

Saccharin and ethanol seeking are encoded in the IL by
neuronal ensembles of similar size
Although neuronal ensembles involved in seeking for various
rewards have been identified in several studies (Dayas et al., 2007;

Koya et al., 2009; Bossert et al., 2011; Cruz et al., 2014; Pfarr et al.,
2015; Suto et al., 2016; Warren et al., 2016), differences in the
behavioral protocols or batch and strain differences make a com-
parison of these studies difficult. To overcome such limitations
and to directly compare natural and drug reward seeking, we used
a two-reward operant conditioning procedure for ethanol and
saccharin with matched behavioral performance followed by ex-
tinction, and upon reinstatement for either reward, detection of
the cFos response in the IL. A cohort of 32 Wistar rats was trained
on the two-reward operant paradigm. The behavioral perfor-
mance for self-administration, extinction, and cue-induced rein-
statement in two counterbalanced sessions for the EtOH and
saccharin conditions is shown in Figure 1B. Four rats were ex-
cluded because they failed to reach the criterion for successful
reinstatement (	15 lever presses in 30 min). Full statistics are

Figure 2. Similar size of IL neuronal ensembles involved in ethanol and saccharin seeking. A, Experimental timeline for ethanol (EtOH, black) and saccharin (Sac, white) self-administration (SA),
extinction (EXT), counterbalanced cue-induced reinstatement (RE1�2) of ethanol, and saccharin seeking, followed by retrograde tracer injections and the final cue-induced reinstatement for either
ethanol or saccharin (RE3). B, C, Active and inactive lever presses for ethanol and saccharin self-administration baseline (BL), EXT and RE (B) RE1 � 2 (n � 28), and (C) RE3 (n � 14/reward).
D, Representative images of NeuN and cFos immuno double-labeling in the IL after ethanol and saccharin reinstatement (RE3). Arrows indicate colocalization. E, Quantification of cFos and NeuN
double-labeled neurons in the IL (n � 14/reward). Results are expressed as the fraction of double-labeled neurons. Data mean � SEM. *p � 0.05. For detailed statistics, see Table 2.
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listed in Table 2. Notably, despite matched self-administration
performance for both rewards, we found a small but significant
increase in the reinstatement response for ethanol compared with
saccharin. Before the final reinstatement test, animals were ranked
based on their previous reinstatement performance and equally split
into two groups. Five days after injections of retrograde tracers (see
below), the rats successfully underwent the final cue-induced rein-

statement for either EtOH or saccharin seeking (n � 14/reward;
Fig. 2C; Table 2). After the session, rats were killed and the num-
ber of IL neurons activated during the final reinstatement session
was assessed by double-labeling immunohistochemistry for NeuN
(neuronal marker) and cFos. We found no difference in the frac-
tion of cFos-expressing neurons induced by either saccharin or
EtOH seeking (saccharin: 15.32 � 0.63%, ethanol: 14.9 � 0.58%,

Figure 3. Largely overlapping IL ensembles involved in ethanol and saccharin seeking. A, Experimental timeline for ethanol (EtOH) and saccharin (Sac) self-administration (SA), extinction (EXT),
and counterbalanced cued reinstatement sessions (RE1 � 2) and a final session (RE3 � 4, n � 14) for activation of ethanol and saccharin ensembles in the same animal. B, Active and inactive lever
presses (mean � SEM) for ethanol and saccharin self-administration baseline (BL), EXT and RE1 � 2 (n � 24). C, Breakpoint analysis (PR) for the ethanol and saccharin rewards (n � 24). D, Lever
presses (mean � SEM) for EtOH and saccharin in RE3 � 4 (n � 14). E, Representative images of double cFos ISH for DAPI counterstaining, spliced and unspliced cFos. Arrows indicate a
double-positive cell. Triangles represent a single-positive cell for unspliced cFos. Asterisks indicate single-positive cell for spliced cFos only. F, Venn diagram indicating the size of saccharin and
ethanol ensembles in relation to total cell number (DAPI). G, Quantification of overlay between both ensembles (mean � SEM). **p � 0.01, ***p � 0.001. For detailed statistics, see Results and
Table 3.
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t(1,26) � 0.49, p � 0.63, n � 14/reward, two-tailed, unpaired t test;
Fig. 2D,E). Thus, the IL neuronal ensembles reacting to either a
drug or a natural reward cue are similar in size.

The neuronal ensembles of saccharin and ethanol seeking in
the IL are largely overlapping
Despite showing the number and localization of activated neu-
rons, the previous experiment could not determine whether the
ethanol and saccharin ensembles are comprised of shared or dis-
tinct populations of neurons. This question can only be answered
by assessing the cFos response associated with the respective be-
havior within the same animal. Toward this aim, we trained 24
rats on the two-reward operant paradigm. Behavioral perfor-

mance for self-administration, extinction, and cue-induced rein-
statement in two counterbalanced sessions for the EtOH and
saccharin conditions was similar to the first experiment (Fig. 3B;
for full statistics, see Table 3). The specific motivation of the
animals for each reward was assessed in two PR tests performed
during self-administration training. We observed a significantly
higher break point for the EtOH compared with the saccharin
reward (t(1,46) � 3.122, p � 0.0031, two-tailed, paired t tests; Fig.
3C) as well as significantly more lever presses for the ethanol
reward (55.71 � 5.29) compared with saccharin (35.04 � 3.32)
(t(1,46) � 3.312, p � 0.0018, paired t test; data not shown). Rats
also responded significantly more for the ethanol condition in the
reinstatement tests (Fig. 3B). Thus, despite matched self-admini-

Table 2. Statistics of Experiment 1: results for repeated-measures ANOVA and Newman–Keuls post hoc testa

Lever

Repeated-measures ANOVA

Newman–Keuls post hoc test

t test (comparison
active/inactive)Within-group comparison

Between-group
comparison

Test df Effect F p Reward Test p Test p Test p

Active RE 1 � 2 BL, EXT 1,54 reward 0.01 0.917 EtOH
Test-session 107.94 0.0001 EtOH BL, EXT 0.0001 BL 0.89 BL 0.0001
Interaction 0.008 0.928 Sac BL, EXT 0.0001 EXT 0.99 EXT 0.889

EXT, RE1 � 2 1,54 reward 3.468 0.068
Test-session 205.14 0.0001 EtOH EXT, RE1 � 2 0.0001 RE1 � 2 0.0001
interaction 3.246 0.077 Sac EXT, RE1 � 2 0.0001 RE1 � 2 0.01

Inactive RE 1 � 2 BL, EXT 1,54 reward 0.098 0.755 Saccharin
Test-session 159.09 0.0001 EtOH BL, EXT 0.0002 BL 0.54 BL 0.0001
interaction 0.422 0.518 Sac BL, EXT 0.0001 EXT 0.93 EXT 0.889

EXT, RE1 � 2 1,54 reward 0.029 0.865
Test-session 41.168 0.0001 EtOH EXT, RE1 � 2 0.0002 RE1 � 2 0.0001
interaction 0.078 0.78 Sac EXT, RE1 � 2 0.0002 RE1 � 2 0.75

Active RE 3 BL, EXT 1,26 reward 1.226 0.278 EtOH
Test-session 68.683 0.0001 EtOH BL, EXT 0.0001 BL 0.12 BL 0.0001
interaction 1.334 0.259 Sac BL, EXT 0.0002 EXT 0.99 EXT 0.586

EXT, RE3 1,26 reward 9.576 0.005
Test-session 315.38 0.0001 EtOH EXT, RE3 0.0001 RE3 0.0001
interaction 13.967 0.0009 Sac EXT, RE3 0.0001 RE3 0.0001

Inactive RE 3 BL, EXT 1,26 reward 2.367 0.136 Saccharin
Test-session 107.27 0.0001 EtOH BL, EXT 0.0001 BL 0.02 BL 0.0026
interaction 3.275 0.082 Sac BL, EXT 0.0001 EXT 0.91 EXT 0.586

EXT, RE3 1,26 reward 1.16 0.291
Test-session 37.699 0.0001 EtOH EXT, RE3 0.0002 RE3 0.0003
interaction 1.101 0.304 Sac EXT, RE3 0.004 RE3 0.14

aComparison between active and inactive lever was done using two-tailed paired t test. BL, Self-administration baseline; EXT, extinction; RE, cue-induced reinstatement; EtOH, ethanol; Sac, saccharin.

Table 3. Statistics of Experiment 2: results for repeated-measures ANOVA and Newman–Keuls post hoc testa

Lever

Repeated-measures ANOVA

Newman–Keuls post hoc test

t test (comparison
active/inactive)Within-group comparison

Between-group
comparison

Test df Effect F p Reward Test p Test p Test p

Active BL, EXT 1,46 reward 1.547 0.219 EtOH
Test-session 146.81 0.0001 EtOH BL, EXT 0.0001 BL 0.07 BL 0.0001
interaction 1.771 0.189 Sac BL, EXT 0.0001 EXT 0.99 EXT 0.949

EXT, RE 1 � 2 1,46 reward 5.551 0.023
Test-session 176.80 0.0001 EtOH EXT, RE1 � 2 0.0002 RE1 � 2 0.0001
interaction 6.788 0.012 Sac EXT, RE1 � 2 0.0001 RE 0.0009

Inactive BL, EXT 1,46 reward 0.219 0.642 Saccharin
Test-session 16.127 0.0002 EtOH BL, EXT 0.006 BL 0.48 BL 0.0001
interaction 0.336 0.565 Sac BL, EXT 0.049 EXT 0.95 EXT 0.949

EXT, RE 1 � 2 1,46 reward 0.394 0.533
Test-session 7.285 0.009 EtOH EXT, RE1 � 2 0.195 RE1 � 2 0.0001
interaction 0.707 0.405 Sac EXT, RE1 � 2 0.073 RE 0.31

aComparison between active and inactive lever was done using two-tailed paired t test. BL, Self-administration baseline; EXT, extinction; RE, cue-induced reinstatement; EtOH, ethanol; Sac, saccharin.
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stration performance, ethanol seems more rewarding than the
diluted saccharin solution under the present conditions.

To elicit two distinct neuronal responses (one associated with
ethanol and one with saccharin seeking), rats were subjected to a
final session comprised of two brief 5 min reinstatement tests, 30
min apart, and counterbalanced for the two sets of cues. Fourteen
rats reinstated successfully for both rewards under these condi-
tions (Fig. 3D). No differences in first versus second reinstate-
ment for each reward were found (EtOH: t(1,12) � 0.73, p � 0.46;
saccharin: t(1,12) � 0.07, p � 0.95, two-tailed, unpaired t test);
thus, responses for each reward were pooled for the analysis. In sum-
mary, the data show that rats are able to discriminate between the
two reward contingencies even under the brief access conditions.

To distinguish two sets of cFos� neurons triggered by stimuli
30 min apart, we used a double-FISH method that is based on the
different temporal profiles of nascent (unspliced) and mature
(spliced) cFos mRNA species. Upon a stimulus, cFos mRNA is
rapidly transcribed within a few minutes, but this nascent form
has a rapid turnover and is quickly undergoing splicing (Jurado et
al., 2007). Lin et al. (2011) demonstrated that the intron contain-
ing cFos mRNA can be detected in the brain within 5 min after a
behavior task, whereas solely mature cFos mRNA can be detected
30 min after. This time course was adopted here. The advantage
of detecting two cFos isoforms is that both cFos RNA species are
subject to the same underlying induction kinetics, which is not
the case with other immediate early genes (e.g., arc and homer1a)
(Bottai et al., 2002; Vazdarjanova et al., 2002). Thus, neurons
active during the first reinstatement are labeled by mature cFos
mRNA, whereas those activated by the second reinstatement are
marked by nascent cFos mRNA (Fig. 3E). We found no significant
differences in the proportion of mature cFos mRNA-expressing
cells reflecting the first EtOH or saccharin reinstatement (25 �
1% vs 23 � 2%, respectively, t(1,12) � 0.715, p � 0.488, two-tailed,
unpaired t test). The proportion of cFos� cells is higher compared
with the first experiment (�15%), which is to be expected given
the higher sensitivity of FISH compared with immunohisto-
chemical detection (Laiho et al., 2016). There was also no differ-
ence in the nascent cFos populations (t(1,12) � 0.63, p � 0.54).
Colocalization analysis revealed �50% overlap between mature
and nascent cFos� cells regardless of the order of the two succes-
sive cued reinstatement tests (t(1,12) � 1.190, p � 0.257; Fig.
3F,G). Next, we determined whether the observed mature and
nascent cFos� cells belonged to the same ensemble or whether they
constitute separate, reward-specific ensembles. Therefore, we used
bootstrap analysis, which allows the detection of ensembles in
environments that are intrinsically noisy, due to background ac-
tivity (e.g., Hamm et al., 2017). Bootstrap analysis confirmed that
the distribution of cells expressing either one, both, or none of the
cFos transcripts obtained experimentally is significantly different
from a randomly sampled population, and that the order in
which the cues were presented did not influence the results (Fig.
4). The bootstrap analysis further allows us to conclude that the
two reinstatement cues activate distinct ensembles that are over-
lapping. If both cues would recruit the same ensemble and the
distributions of single and double-positive cells found in our
experiments would be subpopulations of this single ensemble
that have been observed by chance (e.g., due to factors introduced
by our experimental design or the detection method), the ob-
served number of double-positive cells should lie right within the
random distribution generated by the bootstrap analysis. Because
this is clearly not the case (Fig. 4, black line and distribution), we
are confident that reinstatement with two different cues actually
recruits two distinct but overlapping ensembles.

Together, the brief two-reward operant protocol in combina-
tion with double-cFos FISH analysis is suitable for the detection
of distinct, neuronal ensembles within the same animal. Within
the IL, the neuronal ensembles involved in reward-seeking be-
havior for ethanol and saccharin are distinct but overlapping,
each consisting of a subpopulation of cells that are broadly acti-
vated by both reward-paired cues and a fraction of cells that is
specific for each reward.

Further characterization of the neuronal ensembles involved
in saccharin and ethanol seeking
We reported previously that the cFos� cells found after cued
reinstatement of ethanol seeking are nearly exclusively neurons,
of which the majority belongs to the glutamatergic class (Pfarr et
al., 2015). Here, we were interested in the functional organization
of the glutamatergic neurons comprising the similar ethanol and

Figure 4. Bootstrap analysis confirms that neuronal IL ensembles activated by cue-induced
reinstatement of ethanol (EtOH) and saccharin (Sac) seeking, detected by FISH against different
cFos mRNA species are highly nonrandom, independent of the order of cues presented for
reinstatement. A, B, Histograms of random distributions of cells expressing one, both, or none
of the cFos mRNA obtained by 100,000 shuffles. Vertical and dashed lines indicate the fractions
of cells experimentally determined. C, Quantification of cells expressing one, both, or none of
the cFos mRNA species, according to the reward reinstated first.
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saccharin ensembles. First, we asked whether the two cFos� neu-
ronal populations segregate in their anatomical projection tar-
gets. Rats that had received injections of the retrograde tracer
cholera toxin B into relevant target areas (Fig. 2A) were assessed
for ipsilateral (NAc, VTA, PrL) or contralateral (IL) colabeling of
the tracer with cFos immunoreactivity (Fig. 5A,C). Given the
extensive connectivity of the IL with 	60 outgoing projection
(Hurley et al., 1991; Vertes, 2004; Noori et al., 2017), our finding

suggests the existence of a wide network of axon collaterals, at
least between the four selected projection targets. Also notable,
we found significantly more colabeling of IL neurons activated by
the saccharin cue compared with EtOH consistently for all targets
(two-way ANOVA for reward � target: reward effect F(1,27) �
6.69, p � 0.018; region effect F(1,27) � 0.57, p � 0.64; interaction
F(1,27) � 0.16, p � 0.92; Fig. 5C). Given that the overall number of
neurons activated by the EtOH or saccharin cues was not differ-

Figure 5. Differences in activated IL projections during ethanol and saccharin seeking behavior. A, Representative images of retrograde tracer signals and cFos immunolabeling in the IL. Top to
bottom, Colocalization of cFos with retrograde tracer signals from contralateral IL (cIL), ipsilateral prelimbic cortex (PrL), nucleus accumbens (NAc) and ventral tegmental area (VTA). Arrows indicate
colocalization. B, Black dots represent injection placements for ethanol (EtOH). Red circles represent injection placements for the saccharin (Sac) group. Injection sites were verified in contralateral
IL and PrL 3.0 mm anterior to bregma, Nac 1.6 mm anterior to bregma, and VTA �5.3 posterior to bregma. Adapted from Paxinos and Watson (1998). C, Quantification of the fraction of cFos � tracer
neurons (mean � SEM) of activated IL projections during ethanol and saccharin seeking. *p � 0.05.
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ent (Fig. 2E), this finding suggests that ethanol seeking may en-
gage a wider network of IL projections from areas not examined
in this study, or that a single neuron activated by saccharin cues
projects into several of the examined target areas.

Previous research found that both superficial and deep pyra-
midal neurons of the IL are projecting to distinct cortical and
subcortical targets (Gabbott et al., 2005). Therefore, we examined
the layer distribution of the neurons activated by either the eth-
anol or the saccharin cues. The laminar structure of the mPFC
differs from that of most other cortical regions inasmuch it lacks
a layer IV, and thus clear definition of input and output layers
(Uylings et al., 2003; Riga et al., 2014). We used double-labeling

FISH of mature cFos mRNA with the layer-specific expression of
Bcl11b (layer 5/6) and RGS8 (layer 2/3) mRNA (Molyneaux et al.,
2007). No differences in layer distribution of the EtOH and sac-
charin cue-activated neurons were found (Fig. 6), further dem-
onstrating the similar organization of the two ensembles.

Discussion
The data presented here provide novel insight into the organiza-
tion of memory processing within the infralimbic cortex, a sub-
region of the mPFC with highly integrative function supporting
decision making. Our key finding is that two discrete contextual
memories on the availability of alcohol or a natural reward are

Figure 6. Laminar distribution of cFos mRNA expression. A, Representative images of FISH for spliced cFos mRNA (green), layer 2/3 marker RGS8 (magenta), and DAPI (blue). Expression of the
layer marker was used to confirm image acquisition within the correct layer of the IL. B, Schematic of laminar structure of the IL. Magenta represents the analyzed region (layer 2/3). C, Quantification
of the ratio of spliced cFos-expressing cells in layer 2/3 of the IL after cue-induced reinstatement of ethanol (EtOH, n � 7) or saccharin (Sac, n � 7) seeking. D, Representative images of FISH for
spliced cFos mRNA (green), the layer 5/6 marker Bcl11b (magenta), and DAPI (blue). E, Schematic of laminar structure of the IL. Magenta represents the analyzed region (layer 5/6). F, Quantification
of the ratio of spliced cFos-expressing cells in layer 5/6 of the IL after cue-induced reinstatement of ethanol (EtOH, n � 7) or saccharin (Sac, n � 7) seeking.
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processed by largely overlapping neuronal ensembles of similar
size and composition. Identification of the two cFos� neuronal
ensembles within the same animal was possible using a novel
operant protocol for concurrent self-administration of two re-
wards in combination with double-FISH for separate detection of
nascent and mature cFos transcripts.

The dual-reward behavioral procedure
The behavioral procedure used here is a modification of a train-
ing protocol for the conditioned self-administration, extinction,
and reinstatement of responding to alcohol that is widely applied
as a model of relapse in alcohol use disorder (Spanagel, 2000;
Crombag and Shaham, 2002; Epstein et al., 2006; Sanchis-Segura
and Spanagel, 2006; Martin-Fardon and Weiss, 2013; Marchant
et al., 2015). Alcohol is a weak reinforcer compared with saccha-
rin in rodents. Indeed, rats will nearly always choose saccharin over
most drugs of abuse in choice paradigms (Lenoir et al., 2007; Mad-
sen and Ahmed, 2015). Taking into account this in combination
with the much higher response rates for a standard 0.2% saccha-
rin solution during operant self-administration, we used a sac-
charin solution that was diluted to match the behavioral
performance obtained with alcohol. The availability of both re-
wards was predicted by a discriminant odor and a response-
contingent light cue. Although the two sets of cues are similar, the
rats were able to discriminate between the contingencies for al-
cohol and saccharin as demonstrated by breakpoint and rein-
statement tests. Despite similar self-administration rates for both
rewards, rats show higher motivation for seeking of alcohol. The
response bias for alcohol is seen consistently across all experi-
ments (Figs. 1, 2, and 3), and would not be expected if rats simply
generalize lever pressing behavior. In summary, the present be-
havioral paradigm provides a robust protocol for investigating
the neural mechanisms underlying alcohol and natural reward-
seeking within the same animal.

Detection of reward-associated IL ensembles
The functional ensemble that is activated within the IL was de-
fined by spatiotemporal coordinated cFos expression upon recall
of reward memories. For alcohol seeking as the only reward op-
tion, we previously demonstrated that the population of cells
showing cFos induction comprises �11% of IL neurons, most of
which belonging to the glutamatergic class, �10% were GABAe-
rgic neurons with no detectable participation of glial cells (Pfarr
et al., 2015). Here, we used two distinct methods to detect cFos�

neurons: immunostaining and mRNA FISH. The ensemble size
estimated by our cFos immunostaining approach was somewhat
larger as in our previous study (11% vs 15%) (Pfarr et al., 2015),
and comprises distinctly more IL neurons than reported after
similar experiments with cocaine or heroin (Koya et al., 2009;
Bossert et al., 2011; Cruz et al., 2014) as well as with natural
rewards (Suto et al., 2016; Warren et al., 2016). The ensembles
reported in these studies comprise �3%-6% of neurons within
the brain region. It can be speculated that the complex and largely
similar contingencies (e.g., contextual and visual cues, positive
valence and shared properties of the rewards, etc.) engage a wider
network compared with experiments with highly distinct predictive
cues and could thus contribute to the overlap of both ensembles.
Also, a general motivation to obtain a reward may be represented in
the ensemble overlap. However, the specific rewards are highly dif-
ferent in nature, both in their sensory perception (taste, smell) and
the internal states they produce, and therefore perceived as different
by the animal. This is supported by the consistent differences in
responding under PR and reinstatement conditions. Such reward-

specific properties may be encoded by the nonoverlapping parts of
the respective cFos� ensembles.

Furthermore, our results are supported by a study demon-
strating that exploration of two different environmental contexts
induced similar large and intersecting populations of cFos� neurons
as observed here (Cai et al., 2016). Using ISH, the population of
cFos� neurons in our experiment was even larger, emphasizing the
impact of methodological factors, such as sensitivity on the size of a
distinct detected ensemble and, therefore, the advantage of the pres-
ent within-subject double-cFos FISH approach.

cFos expression and behavioral output
Notably, neither the number of cFos� neurons in the IL nor the
intensity of their cFos expression was correlated with the behav-
ioral performance (i.e., the number of operant responses) (data
not shown). This is not surprising given the pleiotropic regula-
tion and function of this gene. For one thing, cFos is involved in
maintaining basal, nonstimulated activity of neurons as demon-
strated by local acute antisense interference in the brain of adult
rats (Sommer et al., 1996; Strömberg et al., 2004). Otherwise and
relevant in the present context, stimulus-induced gene expression of
cFos provides an important mechanism of synapse-to-nucleus com-
munication. This process is rapid (increased expression can be de-
tected within a few minutes) and linear correlated to the amount of
firing from the neurons (Chawla et al., 1998; Dai et al., 2009).
However, the study by Chawla et al. (1998) also showed that the
signals for shaping the kinetics of cFos expression are not only
related to electrical activity of neurons. Specifically, BDNF, a neu-
rotrophic factor with a recently demonstrated role within corti-
costriatal circuits in controlling alcohol consumption (Darcq et
al., 2015; Heilig et al., 2017), seems to regulate cFos in a nonlinear
all-on/off fashion. Thus, cFos represents a class of highly dynam-
ically and complex regulated coincidence detectors that integrate
various external and internal signals.

Nevertheless, the functional importance of the cFos expres-
sion for behavioral output has been established. Specific chemo-
genetic ablation of cFos� IL neurons, which were activated by the
same set of alcohol-predicting cues as used here, resulted in ex-
cessive seeking responses (Pfarr et al., 2015). The action of this IL
ensemble was distinct from activated cells in the neighboring prelim-
bic region, but also from IL cells activated by stress induced reinstate-
ment of alcohol seeking, demonstrating some specificity for the
distinct contingencies encoded by these neurons. Several studies
have identified functional neuronal ensembles within the rat
mPFC critically involved in drug and reward seeking behavior
(Bossert et al., 2011; Cruz et al., 2015; Pfarr et al., 2015; Suto et al.,
2016; Warren et al., 2016), whereby the functional output of these
IL ensembles was inconsistent (i.e., either initiation or suppres-
sion of reward seeking was found), indicating that one or more
cue- or reward-related functional ensembles coexist in the mPFC
(Schwindel and McNaughton, 2011). Furthermore, in vivo mul-
tiarray recording experiments demonstrated that neurons in the
mPFC, including the IL, can signal contextual information that
promotes reward seeking in response to discriminative stimuli,
regardless of whether this involves initiation or suppression of
neural activity (Moorman and Aston-Jones, 2015).

Role of the IL in response selection
How to explain these apparently conflicting results? The mPFC is
among the most highly connected regions of the rat brain (Noori
et al., 2017). Specifically, the IL has 	60 established projection
areas and receives projections from �40 regions. Such a high
connectivity hub is expected to need large capacity for informa-
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tion processing, which may also be reflected in the size of the
cFos� ensembles and the extent of their shared neuronal popu-
lations. Together, these observations make it unlikely that a dis-
tinct memory trace, such as the properties of a given reward, is
represented in the IL. Hence, our data do not support a distinct
control function for governing conditioned appetitive and aver-
sive behaviors as proposed in a PrL-Go/IL-NoGo model (Peters
et al., 2009). A more complex model of functional compartmen-
talization of the mPFC proposes that the prelimbic subdivision is
mainly involved in the learning of rules, whereas the IL supports
flexibility of this response and the ability to shift toward new strate-
gies when contingencies change (Heidbreder and Groenewegen,
2003; Seamans et al., 2008). Thus, the different outcomes in IL lesion
experiments reported in the literature may be better explained by
a role of this region in the momentary assessment of information
passing through, as a brief state. Thereafter, responses may be
executed or withheld for which the subject has already been proce-
durally, contextually, and emotionally conditioned. In humans,
meditation training aims to access and extend such metacognitive/
metaemotional states of self-awareness for reducing cue-induced
drug craving and to relief stress and pain. Interestingly, neuroimag-
ing studies of such mindfulness-based therapies repeatedly found
distinct activation of the subgenual cingulate cortex, the human ho-
molog of the IL (Tang et al., 2009; Tang and Tang, 2013; Westbrook
et al., 2013; Zeidan et al., 2015).

Together, we provide a novel experimental framework for the
study of neuronal ensembles involved in reward seeking. By com-
bining a two-reward operant conditioning task with double-cFos
FISH detection, we were able to directly compare the cellular
response to two distinct reward seeking events. Thereby, we dem-
onstrated that seeking for natural and drug rewards is encoded in
the IL by distinct but largely overlapping ensembles, a finding
that is in agreement with the integrator function of the mPFC.
When preferences for two rewards is fairly matched, the respec-
tive information is apparently processed by highly similarly
organized ensembles in the IL. Whether this changes under con-
ditions of strong response biases, such as in addictive disorders,
should be addressed in further studies.
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