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Neurobiology of Disease

Maternal and Early Postnatal Immune Activation Produce
Dissociable Effects on Neurotransmission in
mPFC-Amygdala Circuits

Yan Li,' Galen Missig,' Beate C. Finger,' Samantha M. Landino,' Abigail J. Alexander,' Emery L. Mokler,' James O. Robbins,'
Yunona Manasian,' Woori Kim,' “Kwang-Soo Kim,' Christopher J. McDougle,> ®William A. Carlezon, Jr.,"*
and Vadim Y. Bolshakov'*
Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts 02478 and 2Lurie Center for Autism, Massachusetts General
Hospital, Harvard Medical School, Lexington, Massachusetts 02421

Inflammatory processes may be involved in the pathophysiology of neuropsychiatric illnesses including autism spectrum disorder
(ASD). Evidence from studies in rodents indicates that immune activation during early development can produce core features of ASD
(social interaction deficits, dysregulation of communication, increases in stereotyped behaviors, and anxiety), although the neural
mechanisms of these effects are not thoroughly understood. We treated timed-pregnant mice with polyinosinic:polycytidylic acid (Poly
I:C), which simulates a viral infection, or vehicle on gestational day 12.5 to produce maternal immune activation (MIA). Male offspring
received either vehicle or lipopolysaccharide, which simulates a bacterial infection, on postnatal day 9 to produce postnatal immune
activation (PIA). We then used optogenetics to address the possibility that early developmental immune activation causes persistent
alterations in the flow of signals within the mPFC to basolateral amygdala (BLA) pathway, a circuit implicated in ASD. We found that our
MIA regimen produced increases in synaptic strength in glutamatergic projections from the mPFC to the BLA. In contrast, our PIA
regimen produced decreases in feedforward GABAergic inhibitory postsynaptic responses resulting from activation of local circuit
interneurons in the BLA by mPFC-originating fibers. Both effects were seen together when the regimens were combined. Changes in the
balance between excitation and inhibition were differentially translated into the modified spike output of BLA neurons. Our findings raise
the possibility that prenatal and postnatal immune activation may affect different cellular targets within brain circuits that regulate some
of the core behavioral signs of conditions such as ASD.
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Immune system activation during prenatal and early postnatal development may contribute to the development of autism spec-
trum disorder (ASD). Combining optogenetic approaches and behavioral assays that reflect core features of ASD (anxiety, de-
creased social interactions), we uncovered mechanisms by which the ASD-associated behavioral impairments induced by immune
activation could be mediated at the level of interactions within brain circuits implicated in control of emotion and motivation
(mPFC and BLA, specifically). Here, we present evidence that prenatal and postnatal immune activation can have different cellular
targets in the brain, providing support to the notion that the etiology of ASD may be linked to the excitation/inhibition imbalance
in the brain affecting the signal flow within relevant behavior-driving neural microcircuits. j
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trum disorder (ASD) (Miller etal.,2017). ASD comprises a group
of neurodevelopmental disorders with distinctive behavioral
manifestations and complex underlying mechanisms (Markram
and Markram, 2010). The contribution of genetic factors to some

Introduction
Accumulating evidence suggests that the immune system is in-
volved in neuropsychiatric conditions including autism spec-
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forms of ASD is well established (Abrahams and Geschwind,
2008; Betancur, 2011; O’Roak et al., 2012; Talkowski et al., 2014).
However, environmental factors, including those that trigger im-
mune responses, may also play a role in the etiology of ASD
(Onore et al., 2012; McDougle et al., 2015; Lombardo et al., 2017;
Meltzer and Van de Water, 2017). Several studies have shown
that viral infection during the second trimester of pregnancy is
associated with an increased risk of ASD (Patterson, 2009; At-
ladéttir etal., 2010; Zerbo et al., 2011; Knuesel et al., 2014; Patel et
al., 2017). Consistent with the results of studies in humans, im-
mune system activation in laboratory animals can recapitulate
key aspects of ASD, supporting the notion that immunoactiva-
tion in the brain could lead to the development of functional
abnormalities characteristic of ASD (Smith et al., 2007; Sangha et
al., 2014; Canetta et al., 2016; Choi et al., 2016; Missig et al., 2018).
It is becoming increasingly clear that ASD is a neural network
phenomenon that may reflect dysregulation of functional inter-
actions between brain regions, controlling specific behavioral do-
mains. Typically, aberrant social interactions, communication
deficits, and increases in stereotyped behaviors are considered to
be the primary diagnostic features of ASD, but these signs are
frequently comorbid with other features including enhanced
anxiety. The neurocircuits underlying social interaction and
anxiety-related behaviors are well defined and include the mPFC
and the amygdala (AMG) (Baron-Cohen et al., 1999; Markram
and Markram, 2010). Accordingly, there is increasing interest in
the possibility that ASD-associated behavioral impairments may
be linked to dysfunction within these neural circuits. It has been
demonstrated in genetic and valproic acid exposure models that
the development of ASD-like behavioral signs is associated with
hyperconnectivity within the mPFC (Rinaldi et al., 2008; Sui and
Chen, 2012; Testa-Silva et al., 2012). This could increase activa-
tion of target areas receiving projections from the mPFC, includ-
ing the AMG. Because the AMG is a key component of the brain
circuits underlying anxiety-related behaviors (LeDoux, 2000),
increased mPFC-AMG functional connectivity might contribute
to features of anxiety and social avoidance seen in ASD.
Previous studies have implicated the activity of projections
from the mPFC to the AMG in control of anxiety and fear (Maren
and Quirk, 2004; Pape and Pare, 2010). It remains unknown,
however, whether the development of ASD features is associated
with altered neurotransmission in the mPFC—basolateral AMG
(BLA) pathway. Using optogenetic techniques (Boyden et al.,
2005), we addressed this question in a “two-hit” mouse model
(Harvey and Boksa, 2012; Giovanoli et al., 2013; Missig et al.,
2018), exploring the possibility that early developmental im-
mune activation can increase the prevalence of ASD-associated
dysfunctions (Mrozek-Budzyn et al., 2013; Hadjkacem et al.,
2016). In this model, mice received a maternal immune activa-
tion (MIA) challenge on embryonic day 12.5 (E12.5) with polyi-
nosinic:polycytidylic acid (Poly I:C), a toll-like receptor 3 TLR3
agonist simulating an innate immune response to a virus, with or
without a subsequent postnatal immune activation (PIA) chal-
lenge with lipopolysaccharide (LPS), a TLR4 agonist simulating
an innate immune response to bacteria, on postnatal day 9 (P9)
(Smith et al., 2007; Kawai and Akira, 2008; Reisinger et al., 2015;
Canetta et al., 2016; Choi et al., 2016; Custodio et al., 2017; Patel
et al., 2017). This approach aligns with TLR expression patterns
(Barak et al., 2014) and infection risk factors seen in humans
(Bilbo et al., 2009). We then examined neurotransmission in
mPFC-BLA projections in the treatment groups. We found that
our MIA regimen significantly enhanced glutamatergic synaptic
transmission in mPFC-BLA projections, whereas our PIA regimen
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significantly diminished feedforward inhibition in the same
pathway, suggesting that these immune challenges act upon dif-
ferent cellular targets in the brain.

Materials and Methods

Animal model of maternal and postnatal immunoactivation. The McLean
Hospital Institutional Animal Care and Use Committee approved all
animal procedures in this study. Timed pregnant Jackson Laboratory
mice (C57BL6J) were obtained by housing a female and male pair over-
night. The following morning, pairs were separated and midday was
considered E0.5. Pregnancy was identified by body weight gain and phys-
ical appearance. At E12.5, pregnant dams received an intraperitoneal
injection of either 20 mg/kg Poly I:C (catalog #P9852; Sigma-Aldrich) or
vehicle (sterile PBS). The dosing of Poly I:C and its route of administra-
tion were as in previously published studies (Smith et al., 2007; Choi et
al., 2016; Missig et al., 2018). Dams were monitored for parturition. Male
offspring of these mice (1-5 mice per litter) were used in our experi-
ments. On P9, pups received a subcutaneous injection of 10 mg/kg LPS
from Escherichia coli 0111:B4 (catalog #1.3024; Sigma-Aldrich) or vehicle
(endotoxin-free saline). The optimal dose of LPS and an efficient route of
its administration were determined empirically in previous control stud-
ies (Missig et al., 2018). P9 in rodents corresponds to an ~39- to 40-week
human gestation (term infant) (Semple et al., 2013; Custodio et al.,
2017). Therefore, we used the regimen providing bacterial challenge at
P9 to mimic the environmental challenges that human newborns could
meet very early postnatally.

Microglia immunohistochemistry and quantitative analysis. To confirm
the presence of treatment-induced inflammatory responses in the brain,
we examined brain microglia. Mice were deeply anesthetized with pen-
tobarbital and transcardially perfused with PBS, followed by 4% parafor-
maldehyde. Brains were dissected, postfixed in 4% paraformaldehyde
overnight at 4°C, equilibrated to 30% sucrose, and then cryosectioned.
Sections (30 wm) containing the BLA were permeabilized with 0.3%
Triton X-100, blocked with 1% bovine serum albumin and 2% normal
donkey serum, and then incubated with 1:400 rabbit anti-ionized cal-
cium binding adaptor molecule 1 (IBA-1) antibody (019-19471; Wako
Chemicals) overnight at 4°C. After rinses, sections were incubated in
1:200 anti-rabbit Alexa Fluor 488 antibody for 2 h, stained with DAPI
(0.5 pg/ml), rinsed, and then mounted on slides. Images were obtained
with a 40X objective using a confocal laser-scanning microscope (TCS
SP8; Leica) of the identical portion of the BLA. Five-micrometer z-stacks
were obtained at Nyquist-derived optimal section thickness. All images
were acquired under identical settings and parameters and then exported
to Image] software for analysis. Maximum projections were made and
the total threshold signal per unit area, cell count, soma size, or ramifi-
cations of each image were quantified by semiautonomous methods or
by using a blinded scorer in Image]. The colocalization of DAPI and
IBA-1 immunoreactivity was used to identify individual cells.

Behavioral tests. Effects of MIA or PIA alone on ASD-like behaviors
have been described previously (Smith et al., 2007; Custodio et al., 2017).
To confirm treatment-induced changes in behavior, we used the open
field to quantify anxiety-like responses, considering that anxiety is fre-
quently comorbid with ASD. Mice were placed in the corner of a brightly
lit open field (44 X 44 X 30 cm) and allowed to explore freely for 10 min
while being video recorded. The percentage of time the mouse spent in
the center of the open field and total distance traveled were analyzed
using Ethovision-XT (Noldus Information Technology). The social in-
teraction test (Golden et al.,, 2011; Bagot et al., 2015) consisted of 2
separate 3 min sessions. The first session consisted of a mouse being
placed in a chamber (44 X 44 X 30 cm) that contained an empty metal
wire cage (10 X 8 X 6 cm) at the other end of the arena. In the second
session, an age-matched and sex-matched novel conspecific was placed
in the metal cage, preventing direct physical contact. The duration of
time in the interaction zone was calculated for both the empty cage and
conspecific sessions using automated tracking software (Ethovision XT 7.0;
Noldus Information Technology). Data are presented as the social interac-
tion ratio (mouse/empty interaction zone time) normalized to the Veh_Veh

group.
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Viral constructs. We used adeno-associated virus (AAV) carrying
channelrhodopsin-2(H143R)-eYFP under control of CaMKIla pro-
moter to investigate functional connectivity in the mPFC-AMG circuits.
Vectors were purchased from the viral vector core facility at the Univer-
sity of North Carolina and the titers were ~10.0 X 10'? particles/ml.

Stereotaxic surgery and viral injections. Surgeries were performed using
medical and laboratory aseptic techniques. Male offspring of immuno-
activated mice (8—10 weeks old) were anesthetized with a mixture of
ketamine and xylazine (160 mg/kg and 12 mg/kg body weight, respec-
tively). The surgical procedures and viral injections were performed as
described previously (Cho et al., 2013). Briefly, bilateral craniotomy was
made to target the prelimbic cortex (PL) of the mPFC using the stereo-
taxic coordinates: 1.8 mm rostral to bregma, * 0.4 mm lateral to midline,
and 1.8 mm ventral to the skull surface (Franklin and Paxinos, 2007). The
AAV vector carrying channelrhodopsin-2(H143R)-eYFP was injected
bilaterally into PL at a rate of 0.1 ul/min under control of the syringe
pump (Stoelting). Mice were given 0.1 ml of ketoprofen (Boehringer
Ingelheim) subcutaneously to reduce pain. After surgery, mice were sin-
gle housed for 8 weeks before behavioral or ex vivo electrophysiological
experiments.

Ex vivo electrophysiology and photostimulation. After cervical disloca-
tion and decapitation, brains were removed and coronal slices (300 um)
containing the mPFC or the AMG were obtained using a vibratome in
cold cutting solution containing the following (in mm): 252 sucrose, 1.0
CaCl,, 5.0 MgCl,, 2.5 KCl, 1.25 NaH,PO,, 26 NaHCO3, and 10 glucose
and equilibrated with 95% O, and 5% CO,. Slices were then incubated in
oxygenated artificial CSF (ACSF) containing the following (in mm): 125
NaCl, 2.5 KCl, 2.5 CaCl,, 1.0 MgSO,, 1.25 NaH,PO,, 26 NaHCOj, and
10 glucose at room temperature for at least 1 h before electrophysiolog-
ical recordings. The subnuclei of the AMG were visualized under a Zeiss
microscope coupled with an IR camera (Hamamatsu) and defined based
on the structural landmarks of the internal capsule and the external
capsule. Whole-cell recording were obtained from neurons in the BLA
with patch electrodes (3-5 M() resistance) containing the following (in
mM): 130 Cs-methane-sulfonate, 5.0 KCl, 2.5 NaCl, 1.0 MgCl,, 10
BAPTA, 10 HEPES, 2 MgATP, and 0.1 NaGTP, adjusted to pH 7.2 with
KOH. Qx-314 (5 mm) and spermine (0.5 mm) were added in the internal
solution before the recordings. To assay membrane properties and to
record photostimulation-induced APs in the mPFC (see Fig. 2D), 130
muM K-gluconate was used instead of Cs-methane-sulfonate in the pipette
solution. Neurobiotin (0.2%; Vector Laboratories) was added into the
internal pipette solution to locate the recorded neurons in the AMG.
Synaptic responses were induced by photostimulation of channelrho-
dopsin2 (ChR2)-expressing mPFC projecting fibers in the BLA through a
40X water-immersion objective lens (Carl Zeiss microscope) with a LED
light source (excitation wavelength: 470 nm, 1 ms in duration, Thorlabs).
All whole-cell recordings were performed at 30-32°C in the external
medium. Current were filtered at 1 kHz and digitized at 5 kHz. After
recordings, slices were placed in PBS containing 4% paraformaldehyde
and kept in a refrigerator until histological processing.

To minimize the variability in photostimulation-induced synaptic re-
sponses between experimental groups, the volume of ChR2-encoding
virus infused in the mPFC, coordinates of the PL and the expression time
of ChR2 in the brain were kept constant throughout the study. Before the
recordings, the extent and intensity of ChR2-eYFP expression at the
injection site in acute slices containing the mPFC and ChR2-expressing
fibers in the AMG (projection site) were evaluated under low (10X)
magnification. To assay the effects of immunoactivation on functional
expression of ChR2 in the brain, the amplitude of photostimulation-
induced currents and the reliability of photostimulation-induced APs
were examined in pyramidal neurons in layer V at the ChR2 injection site
in the PL (see Fig. 2C,D).

Pharmacological reagents used in the electrophysiological experiments,
which included NBQX disodium salt, D-AP5, N-(2,6 dimethylphenylcar-
bamoylmethyl)triethylammonium (QX 314) chloride, (-)-bicuculline
methobromide (R&D Systems), and spermine tetrahydrochloride
(Sigma-Aldrich), were prepared as stock solutions in water at 1000- to
5000-fold concentrations and stored at —20°C.
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Histology. Brain slices were washed in PBS (3 X 15 min) and incubated
in 0.1% Triton PBS containing neurotracer fluorescent Nissl stain (di-
luted 40X; Invitrogen) for 1 h at room temperature, and then rewashed
in PBS (3 X 20 min). Sections containing neurobiotin-loaded cells were
incubated in 0.1% Triton PBS containing streptavidin—Alexa Fluor 568
conjugate (20 ug/ml; Invitrogen) for 2 h at room temperature and then
washed in PBS (3 X 20 min). Finally, sections were mounted on the
gelatinized slides, dehydrated, and coversliped. Vectashield mounting
medium (Vector Laboratories) was applied to slices to prevent fluores-
cence fading. Viral vector infusion sites were examined under a Leica
TCS SP8 confocal microscope or a Zeiss Axioskop 2 fluorescent micro-
scope. Mice in which the injection missed the target (PL of the mPFC)
were excluded from the analysis.

Analysis of mPFC projection patterns in the AMG. To detect the effect of
immunoactivation on mPFC projection patterns in different subnuclei
of the AMG, the fluorescence intensity of ChR2-eYFP-expressing fibers
within the subregion were analyzed quantitatively. Confocal fluorescent
images were acquired using a Leica TCS SP8 confocal microscope with a
10/0.40 numerical aperture (NA) objective lens. The settings for aperture
gain, laser intensity, and offset were optimized initially and then kept
constant throughout the acquisition of images from all mice used for the
analysis. Confocal z-stack images of ChR2-eYFP-expressing fibers in the
AMG contained 6—12 images that were captured 5 wm apart. The bound-
aries of the subnuclei of the AMG were defined based on landmark struc-
tures (internal and external capsules) and cellular morphology (Sah etal.,
2003) revealed by fluorescent Nissl and DAPI counterstain. The fluores-
cence intensity on a single focal plane in the channel for ChR2-eYFP was
measured using Image] version 1.51f.

Sholl analysis. To detect the effect of immune activation on neuronal
structure, we reconstructed 32 neurobiotin-filled BLA neurons from all
four experimental groups (eight neurons per group). The recorded and
subsequently reconstructed cells were identified as neurons based on
their accommodating firing patterns (Tsvetkov et al., 2002). Neurobiotin
(6.0 mm) was added to the intrapipette solution. Stained neurons were
scanned with a Leica confocal microscope under 40X/1.30 NA objective
lens. Confocal z-stack images were processed using Image] and then
reconstructed in the NeuronStudio program (version 0.9.92). Because
the program automatically determines the 3D position and branch di-
ameter based on the imaging data, we used the manual tracing tool to
trace each branch analyzed. Specifically, we started the manual tracing
from the beginning of each primary dendrite and moved one node at a
time to form an entire path along a branch in the 2D or 3D window. The
image of a reconstructed neuron in Figure 5A was generated with Neu-
rolucida 360 (MBF Bioscience). The dendritic length, dendritic surface
area, and the number of branch points were measured using Sholl anal-
ysis (Sholl, 1953). Soma size was estimated by its largest projection area of
stack images, measured in Image].

Experimental design and statistical analysis. Mice were randomly as-
signed to experimental groups. In electrophysiological experiments, one
neuron was recorded per a slice. The numbers of mice and recorded
neurons used for the analysis in different experiments are indicated in the
figure legends. Data are reported as means * SEM. The experiments were
conducted using a 2 X 2 factorial design (see Fig. 1A) and results were
analyzed with two-way or three-way ANOVA when appropriate to assess
main effects of either Poly I:C or LPS, as well as of a third factor when it
was present (such as light power density, stimulation frequency, bregma
plane, or distance from soma), and interaction effects, followed by post
hoc Bonferroni’s simultaneous multiple comparisons of each treatment
group to Veh_Veh. When appropriate, Student’s two-tailed paired ¢ test
was used. Statistical analysis was performed with SigmaPlot 13.0 or
Minitab 16. The results of the statistical analysis are presented in the text
or in the figure legends.

Results

Immune activation results in alterations of microglia in the
BLA and leads to ASD-linked behavioral impairments

To investigate whether in utero and/or early life neuroinflamma-
tion could alter the signal flow in the mPFC-AMG circuits and
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Figure 1. Immune activation is associated with activation of microglia in the BLA and ASD-related behavioral dysfunctions. A, Experimental design (see the main text for details). B, Confocal

microscopicimages showingimmunohistochemical staining for IBA-1, a microglial marker, in the BLA in 13-week-old offspring mice from different experimental groups. C, Number of IBA-1-positive
cellsand IR of IBA-1 were increased in the offspring groups receiving the postnatal LPS injections, indicating a robust activation of microglia ~ 12 weeks after the LPS injection at P9 (Veh_Veh group:
n = 6slides from 4 mice; Poly I:C_Veh: n = 8 slides from 4 mice; Veh_LPS: n = 5 slides from 3 mice; Poly I:C_LPS: n = 3 slides from 3 mice). D, Quantitative morphological analysis of microglia
inthe animal models of maternal and postnatal immunoactivation. Left, No difference was seen in the soma size of microglia in the BLA between experimental groups (Veh_Veh group: n = 50 from
4mice; Poly I:C_Veh: n = 59 from 4 mice; Veh_LPS: n = 93 from 7 mice; Poly I:C_LPS: n = 36 from 3 mice). Right, Groups did not differ in the number of microglial ramifications (Veh_Veh group:
n = >50from4mice; Poly:C_Veh:n = 59 from 4 mice; Veh_LPS:n = 93 from 7 mice; Poly I:C_LPS:n = 36 from 3 mice). E, Results of the open-field test. Left, Summary plot showing the percentage
of time spentin the center of the arena. Increased anxiety-like behavior (less time spentin the center) was observed in Veh_LPS and Poly I:C_LPS groups relative to the control Veh_Veh group. Right,
Plot showing the total distance traveled during the open-field test. Numbers of mice tested: Veh_Veh group: n = 28 mice; Poly I:C_Veh: n = 26 mice; Veh_LPS: n = 11 mice; Poly I:C_LPS:n =
17 mice. F, Results of the social interaction test. Left, Mice in Veh_LPS and Poly I:C_LPS groups showed impaired social behavior as they spent less time in the interaction zone with the novel
conspecific mouse relative the control Veh_Veh group. Right, Distance traveled during the social interaction test. Numbers of mice tested: Veh_Veh group: n = 12 mice; Poly I:C_Veh:n = 17 mice;
Veh_LPS: n = 11 mice; Poly I:C_LPS: n = 18 mice. *p << 0.05, **p << 0.01, ***p < 0.001. Error bars are SEM.

produce ASD-relevant behavioral dysfunction, we administered
either Poly I:C (20 mg/kg, IP) or vehicle (PBS) to pregnant female
C57BL/6] mice on day 12.5 of pregnancy as in Smith et al. (2007).

that Poly I:C-induced MIA leads to lasting alterations of micro-
glia in the offspring mice exhibiting characteristics of the micro-
glial hyperactive state (Krstic et al., 2012; Knuesel et al., 2014), we

Subsequently, male offspring from both groups (Poly I:C- or
vehicle-injected mothers) were injected either with LPS (10 mg/
kg; Poly I:C_LPS and Veh_LPS groups) or vehicle on P9.5 (Poly
I:C_Veh and Veh_Veh groups) (Fig. 1A). Poly I:Cbinds to TLR3,
triggering production of type I interferons, whereas LPS activates
TLR4, resulting in release of TNF-« from macrophages (for re-
view, see Lombardo et al., 2017). Poly I:C-induced neuroinflam-
mation in pregnant mice is associated with activation of cytokine
signaling mediated by interleukin-6, which is capable of passing
from a pregnant female through the placenta to the fetal brain
(Lombardo et al., 2017). Because it has been shown previously

performed immunostaining for a microglial marker, IBA-1, in
13-week-old offspring mice. In our analysis, we focused on the
BLA, where prefrontal projection fibers were predominantly
found (see below). We found that both the number of IBA-1-
positive cells and the intensity of IBA-1 (Fig. 1B,C) staining
(immunoreactivity, IR) were increased in the offspring groups
receiving the postnatal LPS injections, indicating an activation of
microglia ~12 weeks after the LPS injection at P9 (Fig. 1C, left:
two-way ANOVA, Poly I.C, F; 1) = 0.356,p = 0.558; LPS, F; 15, =
25.821, p < 0.001; interaction, F(, ;) = 0.241, p = 0.629; post hoc
Bonferroni’s test: p = 0.009 for Veh_Veh versus Veh_LPS and
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p = 0.03 for Veh_Veh versus Poly I:C_LPS; Fig. 1C, right: two-
way ANOVA, Poly I:C, F, 15, = 0.538, p = 0.473; LPS, F; 1) =
17.538, p < 0.001; interaction, F, ;) = 0.108, p = 0.747; post hoc
Bonferroni’s test: p < 0.05 for Veh_Veh versus Veh_LPS or for
Veh_Veh versus Poly I.C_LPS). There were no significant dif-
ferences in microglial soma size or the number of microglial
ramifications between experimental groups (Fig. 1D; soma
size: two-way ANOVA, Poly I.C, F, ,54) = 3.334, p = 0.069;
LPS, F(y 534y = 0.462, p = 0.497; interaction, F(, 534y = 2.339,p =
0.128; number of ramifications: two-way ANOVA, Poly L:C,
Fliasa) = 3.238, p = 0.073; LPS, F( 5y = 1.268, p = 0.261;
interaction, F, 53, = 0.019, p = 0.892).

Accompanying these inflammatory markers, there were group
differences in anxiety and social behavior. Mice in the Veh_LPS
group exhibited increased anxiety-like behavior in the open-field test
(Britton and Britton, 1981; File, 1985; Riccio et al., 2009, 2014).
Specifically, these mice spent less time in the center of the open
field compared with the Veh_Veh group (Fig. 1E), which is com-
monly interpreted as an increased anxiety-like behavioral re-
sponse (Lezak et al., 2017). This effect was not due to decreased
locomotor activity because animals in the Veh_LPS group did
not differ from mice in the control Veh_Veh group in the total
distance traveled (Fig. 1E). Mice in the Poly I:C_LPS group also
showed increased anxiety-like responses (Fig. 1E; time in center
(%): two-way ANOVA, Poly I.C, F(, 55, = 2.291, p = 0.134; LPS,
F(y.78y = 17.052, p < 0.001; interaction, F, g, = 0.008, p = 0.928;
post hoc Bonferroni’s test: p < 0.05 for Veh_Veh versus Veh_LPS
and p < 0.001 for Veh_Veh versus Poly I:C_LPS). In this experi-
mental group, the total distance traveled was increased compared
with Veh_Veh control mice (Fig. 1E; distance traveled: two-way
ANOVA, Poly I:C, F, 4 = 4.293, p = 0.042; LPS, F,, 4, = 3.275,
p = 0.074; interaction, F(, 5y = 0.014, p = 0.906; post hoc Bon-
ferroni’s test: p < 0.05 for Veh_Veh versus Poly I:C_LPS). How-
ever, it is unlikely that slight increases in locomotor activity can
explain the enhanced anxiogenesis in Poly I:C_LPS mice because
enhanced locomotion may slightly blunt anxiety-like responses
rather than promote them due to the fact that more actively
moving mice could randomly cross into the anxiogenic center
more often. In agreement with the role of immune activation in
the development of ASD-linked behavioral dysfunctions, we
also found that social interactions were diminished in our
experimental groups. Mice in both Veh_LPS and Poly I:C_LPS
groups spent less time in the interaction zone with the novel
conspecific mouse (Fig. 1F, left, two-way ANOVA, Poly L:C,
Fiisy = 2.397, p = 0.127; LPS, F 5,y = 10.157, p = 0.002;
interaction, F( s,y = 1.923, p = 0.171; post hoc Bonferroni’s test:
p = 0.014 for Veh_Veh group versus Veh_LPS group and p =
0.004 for Veh_Veh versus Poly I:C_LPS). However, there was no
treatment effect on the distance traveled during the social
interaction test (Fig. 1F, right, two-way ANOVA, Poly I:.C,
Fiisy = 0.161, p = 0.69 LPS, F, 5, = 0313, p = 0.578;
interaction, F(; 54y = 0.109, p = 0.743).

Together, these findings indicate that perinatal immune acti-
vation can trigger long-lasting alterations in brain and behavior.

Projection-specific optogenetic targeting of mPFC-AMG
circuits

To target neuronal projections from mPFC to AMG for the sub-
sequent functional analysis, we expressed ChR2 in the mPFC by
stereotaxically injecting AAV5-CaMKIIa-ChR2-eYFP) in mice
from all four experimental groups (Fig. 2A). Eight weeks after
gene transfer, eYFP-tagged ChR2 was densely expressed at the
injection site (Fig. 2B). Although the tip of an injection pipette
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was placed within the PL mPFC, the ChR2-eYFP-mediated green
fluorescent signal was also observed in the IL mPFC, suggesting
that both IL- and PL-originating projections were activated in
these experiments. We found previously that the IL and PL pro-
jection patterns to the AMG are virtually identical (Cho et al.,
2013). By performing whole-cell recordings from virally trans-
duced neurons, we confirmed the functionality of ChR2 expres-
sion at the mPFC injection site. Delivery of prolonged pulses of
blue light (470 nm) of increasing intensity triggered inward
currents with transient and sustained components in recorded
neurons under voltage-clamp recording conditions at a holding
potential of —80 mV (Fig. 2C). We did not observe differences in
the peak photocurrent amplitude between the groups, indicating
that neither MIA nor PIA had effects on ChR2 expression in the
mPFC [Fig. 2C; three-way ANOVA (Poly I:C X LPS X light power
density); Poly I:C, F; 474y = 0.199, p = 0.651; LPS, F(, 47,y = 0.003,
p = 0.986; interaction, Fs 4,y = 0.227, p = 0.951]. In current-
clamp recordings, short (5-ms-long) pulses of blue light evoked
AP firing, with spikes reliably following higher frequencies of
photostimulation (up to 40 Hz) (Fig. 2D). Consistent with the
lack of the effect of neuroinflammation on the ability of ChR2 to
drive neuronal spiking, the input/output curves for the probabil-
ity of AP firing in response to trains of photostimuli of increasing
frequency did not differ between the experimental groups [Fig.
2D; three-way ANOVA (Poly I.C X LPS X stimulation frequency);
Poly I:C, F;.13) = 0.0003, p = 0.996; LPS, F,, 03, = 2.425, p =
0.122; interaction, F(3 103y = 0.967, p = 0.411].

Consistent with previous reports (Cho et al., 2013), the ChR2-
eYFP-expressing fibers arising from the virally transduced neu-
rons in the mPFC were found predominantly in the BLA (Fig. 3).
We confirmed that mPFC projections form functional synapses
on neurons in the BLA by performing whole-cell recordings from
these cells and triggering the EPSCs in them in voltage-clamp
mode at —80 mV by 1 ms pulses of blue light (Fig. 3A). The
EPSCs at the mPFC-BLA synapses were glutamatergic, as indi-
cated by their sensitivity to NBQX (10 um), an AMPA/kainate
receptor antagonist (Fig. 3A). Synaptic responses were sup-
pressed by tetrodotoxin (TTX, 1 um), a sodium channel blocker,
providing evidence that they were mediated by presynaptic AP
firing (Cho et al.,, 2013). Under these recording conditions, the
glutamatergic EPSCs in mPFC-AMG projections are monosyn-
aptic because they could be rescued by an exogenously applied
blocker of voltage-gated K™ channels, 4-AP, when the EPSCs
were blocked by TTX (Petreanu et al., 2009; Cho et al., 2013; Fig.
3C,D). In agreement with our previous report (Cho et al., 2013),
photostimulation of mPFC fibers induced EPSCs in all recorded
BLA neurons (140 neurons) and in most intercalated cells (ITCs;
81.8%, 27 of 33 neurons (Fig. 3B) (but see Strobel et al., 2015, and
Luchkina and Bolshakov, 2017, for discussion of possible reasons
of why monosynaptic mPFC inputs to ITCs were not detected in
Strobel et al., 2015). ITCs possess very high membrane resistance
(>1.0 GOhm) and thus could be reliably identified in slice re-
cordings (Cho et al., 2013). The synaptic connectivity between
the mPFC and lateral nucleus of the AMG (LA) or lateral subnu-
cleus of the central AMG (CeL) was very sparse (in LA, 25%, 7 of
28 neurons exhibited synaptic responses; in CeL, 20%, 7 of 35
neurons). We found that MIA, PIA, and MIA +PIA failed to af-
fect the fraction of BLA neurons or ITCs (relative to the total
number of recorded cells) in which photostimulation-induced
EPSCs could be observed at the maximum light intensity of 10.5
mW/mm? (Fig. 3B).

We also compared the fluorescence intensity of ChR2-eYFP-
expressing mPFC projections in various parts of the AMG in
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Figure 2.  Optogenetic analysis of mPFC inputs to the BLA in animal models of maternal and postnatal immunoactivation. A, Experimental design for optogenetic activation of mPF(—AMG
projections. A vertical dashed line indicates location of a coronal section shown in B (asin Cho et al., 2013). B, Left, Microscopic image at the low magnification shows the expression of eYFP-ChR2
at the injection site in mPFC (green) merged with an image of fluorescent Niss| stain (red). Right, Confocal image showing expression of eYFP-ChR2 across the cell layers in the PL. aca, Anterior
commissure, anterior part. , Left, ChR2-mediated currents recorded in a pyramidal neuron in layer V of mPFC were evoked by 1 s pulses of blue light (470 nm, blue horizontal bar) of increasing
intensity (0.2—1.7 mW/mm2) in the presence of NBQX (10 m), D-AP5 (50 um), and bicuculline (30 wum). Right, Input/output plots of the photocurrent amplitudes as a function of the light power
densities (mW/mm 2) in slices from different experimental groups (Veh_Veh group: n = 21 neurons from 8 mice; Poly 1:C_Veh: n = 22 neurons from 9 mice; Veh_LPS:n = 17 neurons from 7 mice;
Poly 1:C_LPS: n = 23 neurons from 10 mice). Expression of ChR2 in the mPFC was not affected by immunoactivation. D, Left, Examples of APs recorded in a pyramidal neuron in layer V of mPFC
triggered by trains of 1 ms pulses of blue light at different stimulation frequencies (5—40 Hz, marked by vertical blue bars for the 5 Hz stimulation) in current-clamp mode. Right, Plot of AP firing
reliability at different stimulation frequencies (Veh_Veh group: n = 9 neurons from 4 mice; Poly :C_Veh: n = 8 neurons from 5 mice; Veh_LPS: n = 6 neurons from 4 mice; Poly I:C_LPS:n =7

neurons from 5 mice).

brain slices between all experimental groups along the rostral—
caudal axis at three different bregma levels (Fig. 3 E, F; see Mate-
rials and Methods for the quantification details). Consistent with
the lack of a treatment effect on the functional synaptic connec-
tivity at mPFC projections to LA and CeL, the mean density of
ChR2-eYFP fluorescence in these two AMG subnuclei remained
unchanged [Fig. 3 H,I; LA: three-way ANOVA (Poly I:C X LPS X
bregma plane); Poly I:C, F(, 53y = 0.037, p = 0.849; LPS, F(, 53, =
0.012, p = 0.914; interaction, F, 53y = 0.128, p = 0.88; CeL:
three-way ANOVA (Poly I:C X LPS X bregma plane), Poly I:C,
Fiiss) = 0.138, p = 0.712; LPS, F, 5, = 1.321, p = 0.256; inter-
action, F, 53 = 0.137, p = 0.872]. However, the fluorescence
density was significantly enhanced in the BLA of mice from the
Poly I:C_LPS group [Fig. 3G; BLA: three-way ANOVA (Poly
I:C X LPS X bregma plane); Poly I:C, F(, 55y = 3.57, p = 0.064;
LPS, F(, 55y = 9.178, p = 0.004; interaction, F, 53, = 0.320, p =
0.728; post hoc Bonferonni’s simultaneous multiple comparisons:
p = 0.003 for Veh_Veh versus Poly I:C_LPS], suggesting that the
innervation of BLA by mPFC fibers might be increased in the
MIA+PIA group.

Prenatal MIA but not PIA is associated with synaptic
strengthening at glutamatergic projections from mPFC to
BLA

We examined the effects of immunoactivation on synaptic trans-
mission in the mPFC-BLA projections by performing whole-cell
patch-clamp recordings of the light-induced EPSCs in BLA neu-
rons in brain slices obtained from all experimental treatment
groups (Veh_Veh, Poly I:C-Veh, Veh_LPS or Poly I:C_LPS; see

above for details) (Fig. 4A—C). EPSCs were recorded in voltage-
clamp mode at a holding potential of —80 mV. There were no
treatment-induced alterations in the passive membrane proper-
ties of BLA neurons (Table 1; Gentet et al., 2000). However, we
found that synaptic strength, as quantified by input/output curves
for EPSCs induced by the 1 ms pulses of blue light, was significantly
increased in both Poly I:C_Veh and Poly I:C_LPS groups com-
pared with control Veh_Veh mice [Fig. 4C,D; three-way ANOVA
(Poly I:C X LPS X light power density), Poly I:C, F, 705y =
54.262, p < 0.001; LPS, F(, 795, = 0.049, p = 0.825; interaction,
F(s708) = 0.305, p = 0.91; post hoc Bonferroni’s simultaneous
multiple comparisons: p = 0.003 for Veh_Veh versus Poly I.C_Veh
and p < 0.001 for Veh_Veh versus Poly I:C_LPS]. The lack of a
detectable effect in these experiments on the magnitude of mPF-
C-BLA EPSCs in the Veh_LPS group indicates that the observed
increases in the efficacy of glutamatergic neurotransmission in
mPFC-BLA projections could be specifically attributed to MIA.

We next explored synaptic expression mechanisms of MIA-
triggered synaptic potentiation in mPFC-BLA projections. The
observed synaptic strengthening could be due either to enhanced
probability of neurotransmitter release (P,), increased respon-
siveness to single quanta of glutamate, or both, as well as due to
increases in the number of sites of synaptic transmission (Tsvet-
kov et al., 2002; Zucker and Regehr, 2002; Goussakov et al., 2006;
Cho et al., 2013). We found that the magnitude of the paired-
pulse ratio at the mPFC-BLA synapses, a commonly used mea-
sure of presynaptic function (P,, specifically), was identical in
slices from all experimental groups, indicating that P, at prefron-
tal glutamatergic inputs to BLA remained unaffected by MIA,
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Figure3. mPFC—AMG synaptic connectivity and innervation patterns of the AMG by ChR2-expressing mPFC projection fibers. 4, Light-evoked EPSCs recorded in BLA PNs at —80 mV were blocked
by the AMPA/kainate receptor antagonist NBQX (10 wum). B, Fractions of neurons in the BLA and the dorsal cluster of intercalated cells in the AMG (dITC) in which EPSCs could be observed in response
to photostimulation of mPFC afferents in slices from all groups. In these recordings, the light power density was 10.5 mW/mm 2 BLA: n = 38 neurons from 38 recorded cells in Veh_Veh group, n =
30 neurons from 30 recorded cellsin Poly I:C_Veh group, n = 36 neurons from 36 recorded cells in Veh_LPS group, n = 36 neurons from 36 recorded cellsin Poly I:C_LPS group; dITC: n = 8 neurons
from 9 recorded cells in Veh_Veh group, n = 5 neurons from 7 recorded cells in Poly 1:C_Veh group, n = 6 neurons from 7 recorded cells in Veh_LPS group, n = 8 neurons from 10 recorded cells
inPoly I:C_LPS group. C, Rescue of optogenetically induced and TTX-blocked EPSCs at mPFC(PL)-BLA projections by 4-AP. Left, Graph showing the time course of changes in the EPSCamplitude under
control conditions (1), after application of TTX (2), and after the subsequent addition of 4-AP (3). Right, EPSCs (average of 10 traces) recorded ina BLA neuron at —80 mV under different experimental
conditions. EPSCs evoked by photostimulation (with 5-ms-long pulses) of ChR2-expressing mPFC fibers were blocked by TTX (1 wm). An addition of 4-AP (1 mm) in the presence of TTX partially
rescued the EPSC (asin Cho et al., 2013; n = 3 neurons), confirming monosynaptic nature of activated mPFC—BLA projections. D, Summary plot of the EPSCamplitudesin TTX only and TTX + 4-AP.
Peak amplitudes of EPSCs were normalized to the baseline EPSC recorded under control conditions. Open circles represent individual experiments, whereas closed circles show average values (n =
3 neurons). E, Experimental design for the analysis of mPFC—AMG connectivity. Vertical lines indicate location of coronal sections through the AMG shown in F. F, Microscopic images showing
innervation of the AMG by ChR2-eYFP-expressing mPFC fibers (green) in coronal brain sections (300 pum in thickness) along the rostral— caudal axis. Blue fluorescence indicates DAPI counterstain.
CeM, Medial division of the central nucleus; dITC, dorsal cluster of intercalated cells in the AMG. G—I, Mean densities of ChR2-eYFP fluorescence due to the innervation by mPFC projections in different
sections along the rostral-caudal axes in BLA (G), LA (H), and central nucleus of the AMG (CeA) (/) in slices from all experimental groups (Veh_Veh group: n = 16 slides from 6 mice; Poly I:C_Veh:
n = 14slides from 4 mice; Veh_LPS: n = 18 slides from 6 mice; Poly I:C_LPS: n = 17 slides from 6 mice).
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Figure 4. MIA but not PIA results in increased synaptic strength in glutamatergic mPFC projections to the BLA. A, Experimental design for optogenetic analysis of mPFC—AMG projections. A
vertical line indicates location of a coronal section through the AMG shown in B. B, Left, Confocal microscopicimage showing ChR2-eYFP-expressing mPFC fibers in the AMG (green). Red fluorescent
cellsin the BLA are neurobiotin-filled neurons. Right, Higher-magnification image of the same section. ¢, EPSCs (average of five responses) recorded in PNsin mPFC—BLA projectionsin voltage-clamp
mode at a holding potential —80 mV in slices from different experimental groups. EPSCs were evoked by photostimuli of increasing intensity. D, Input/output plots for peak amplitudes of EPSCs at
the mPFC—BLA synapses in all experimental groups (Veh_Veh group: n = 39 neurons from 12 mice; Poly 1:C_Veh: n = 28 neurons from 9 mice; Veh_LPS: n = 36 neurons from 9 mice; Poly :C_LPS:
n = 38 neurons from 12 mice). £, EPSCs in BLA PNs were evoked by paired photostimuli (50 ms interpulse interval) at the saturating photostimulation intensity (10.2 mW/mm ) in slices from all
groups. F, There was no effect of the treatments on the paired-pulse ratio magnitude (Veh_Veh group: n = 25 neurons from 12 mice; Poly 1:C_Veh: n = 24 neurons from 9 mice; Veh_LPS:n = 16
neurons from 9 mice; Poly I:C_LPS: n = 28 neurons from 12 mice). G, Examples of SEPSCs recorded in BLA neurons. H, I, Cumulative amplitude (H) and interevent interval (/) histograms of SEPSCs
recorded in slices from all groups. J, K, Summary plots of the mean SEPSCamplitude (/) and the frequency (K) in slices from all groups (Veh_Veh group: n = 10 neurons from 5 mice; Poly I:C_Veh:
n = 9 neurons from 6 mice; Veh_LPS: n = 8 neurons from 4 mice; Poly I:C_LPS: n = 9 neurons from 5 mice). **p < 0.01.

PIA, or MIA+PIA (Fig. 4 E, F; two-way ANOVA, Poly I:C, F, 49, = neous EPSCs (sEPSCs), which reflect synaptic responses to single
0.99,p = 0.321; LPS, F(, g9y = 0.483, p = 0.489; interaction, F, g, = quanta of glutamate (Lietal., 2013) (Fig. 4G—I). The sEPSCs were
0.04, p = 0.852). To address the possibility thatimmunoactivation ~ recorded at a holding potential of —80 mV in the presence of
could be associated with postsynaptic modifications at glutama-  bicuculline (30 uMm). Consistent with the potentiating effect of MIA
tergic inputs to BLA neurons, we recorded and analyzed sponta- ~ on evoked, light-induced synaptic responses, the amplitude of
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Table 1. Summary table of passive membrane properties determined in current-clamp recordings from principal neurons in slices of the BLA from different experimental

groups of mice

Group Veh_Veh Poly I:C_Veh Veh_LPS Poly I:C_LPS Poly I:C LPS

No. cells/no. mice 21/10 24/ 15/7 20/12

Reeries (M) 17207 16.5 + 0.6 171110 175+ 0.8 Fia,76=0.03 (p = 0.871) Fia,769=0.29 (p = 0.59)
Rinput M) 1593 + 125 155.4 + 16.4 1520 = 145 131.0 * 128 Faze = 0.71(p=0402) Faze = 1.16 (p = 0.285)
RMP (mV) 742 +09 761+ 1.1 766 + 16 725+ 11 Fo7e = 0.87 (p = 0.355) Fize = 0.26(p = 061)
Trembrane (MS) 2.7+0.1 3101 3.0+ 0.1 29+ 0.1 Fia,76=1.05(p = 0.308) Fir,76 = 0.41(p = 0.526)
C, (pF) 181.8 + 9.1 2153 = 12.1 2041+ 1138 1963 + 7.4 Faze = 148 (p = 0228) Fuze = 0.02(p = 0877)

The membrane capacitance (C,, ) was calculated using the following equation: C,, = (1/R, + 1/R,, ), as described previously (Gentet etal., 2000). Two-way ANOVAin a2 X 2 factorial design was used to evaluate the statistical significance

of differences between experimental groups.

sEPSPs was enhanced in Poly I:C_Veh and Poly I: C_LPS groups
relative to control Veh_Veh mice (Fig. 4J; two-way ANOVA, Poly
I:C, F(y 35y = 17.523, p < 0.001; LPS, F(, 5, = 0.292, p = 0.593;

interaction, F(, 5,y = 0.251, p = 0.62; post hoc Bonferroni’s test:

p = 0.007 for Veh_Veh versus Poly I:C_Veh and p = 0.002 for
Veh_Veh versus Poly I:C_LPS). However, the frequency of
SEPSCs, reflecting presynaptic function, was not altered (Fig. 4K;
two-way ANOVA, Poly I.C, F(, 5,y = 0.02, p = 0.887; LPS, F(; 5, =
0.361, p = 0.552; interaction, F, 5,y = 0.187, p = 0.669). Together,
these results suggest that potentiation of glutamatergic synaptic
transmission in mPFC-BLA projections in Poly I:C_Veh and
Poly I:C_LPS groups may be postsynaptically regulated.

Sholl analyses of neuronal structure in neurobiotin-filled BLA
principal neurons (PNs) in fixed tissue sections showed that
immune activation was associated with morphological changes.
The averaged soma size (area) was increased in Poly I:C_LPS-
treated mice (Fig. 5A,B; soma size: two-way ANOVA, Poly L:C,
Fg = 2553, p = 0.121; LPS, F 4 = 11.417, p = 0.002;
interaction, F(, ,5) = 0.085, p = 0.773, post hoc Bonferroni’s test:
p = 0.005 for Veh_Veh vs Poly IC_LPS). We detected the main
effect of LPS treatment on the number of primary dendrites (Fig.
5C; two-way ANOVA, Poly .G, F(, 55, = 0.914, p = 0.347; LPS,
Fi 58 = 5.264, p = 0.029; interaction, F(, ,5) = 0.91, p = 0.347).
However, post hoc Bonferroni’s test did not reveal statistically
significant differences between Veh_Veh and Poly IC_LPS
groups (F; 5g) = 2.364, p = 0.092). The dendritic surface area
and averaged dendritic diameter were also enhanced in Veh_LPS
and Poly I:C_LPS groups (Fig. 5E,G), as well as the dendritic
length in the Veh_LPS group (Fig. 5D), whereas the number of
branch points was unaffected by immune activation (Fig. 5F).

PIA selectively decreases feedforward GABAergic inhibition
in mPFC-BLA projections

Excitatory neurotransmission in the BLA is under strong inhibi-
tory control by local circuit GABA-releasing interneurons (INs)
(Ehrlich et al., 2009). Specifically, BLA INs receive direct gluta-
matergic inputs from the mPFC and, when INs are driven above
the AP firing threshold, this results in feedforward inhibition of
BLA PNs (Fig. 6A4; Cho et al,, 2013). We investigated whether
neuronal immunoactivation could affect the efficacy of feedfor-
ward inhibition in mPFC-BLA projections, thereby modifying
the firing output of BLA neurons. Consistent with previous re-
ports, activation of mPFC projections to the BLA by pulses of blue
light resulted in monosynaptic (see above) glutamatergic EPSCs in
recorded neurons that were followed by GABA , receptor-mediated
IPSCs. To record the excitatory and inhibitory responses from the
same neurons in isolation, we evoked the EPSCs at a holding
potential of —80 mV (close to the reversal potential for chloride-
mediated GABAergic IPSCs) and the IPSCs at 0 mV (the reversal
potential for AMPA receptor EPSCs) (Cho et al., 2013) (Fig. 6B).
Synaptic latencies of IPSCs were ~2 times longer than those of

the EPSCs, consistent with the disynaptic nature of inhibitory
responses (Fig. 6B; Student’s two-tailed paired t test, t, =
5.296, p < 0.001 for the comparison between synaptic latencies of
EPSCs and IPSCs). The IPSCs at 0 mV were completely blocked
by bicuculline (30 uMm), confirming that IPSCs were mediated by
activation of GABA, receptors and were not contaminated by
EPSCs at this holding potential (Fig. 6C). Conversely, the EPSCs

—80 mV were suppressed by AMPA/kainate and NMDA re-
ceptor antagonists (10 um NBQX and 50 um D-APS5, respec-
tively) when the antagonists were applied together (Fig. 6D).
GABA R-IPSCs were also completely blocked by the application
of NBQX and D-APS5, confirming that they were disynaptic, me-
diating feedforward inhibition of BLA neurons (Fig. 6D).

To determine the effects of immunoactivation on feedforward
inhibition in mPFC-BLA projections, we first recorded photo-
stimulation-induced glutamatergic EPSCs at —80 mV and then
GABAergic IPSCs at 0 mV (see above) from the same neurons in
the BLA (Fig. 6E) in control and treated mice and calculated
IPSC/EPSC amplitude ratios in all experimental groups. We
found that these ratios were significantly reduced in slices from
Veh_LPSand PolyI:C_LPS groups compared with control Veh_Veh
animals (Fig. 6F; two-way ANOVA, Poly I:C, F, ,, = 0.004, p =
0.95; LPS, F(, 47y = 14.598, p < 0.001; interaction, F, 4,) = 0.148,
p = 0.702; post hoc Bonferroni’s test: p = 0.044 for Veh_Veh
versus Veh_LPS and p = 0.027 for Veh_Veh versus Poly
I:C_LPS). However, IPSC/EPSC amplitude ratios were not al-
tered in the Poly I:C_Veh group. MIA, PIA, and MIA+PIA had
no effects on the latencies of synaptic responses in mPFC inputs
to the BLA (Fig. 6G; EPSC latencies: two-way ANOVA, Poly I:C,
Fiiep = 1.733,p = 0.193; LPS, F,, ¢, = 1.245, p = 0.269; inter-
action, F(,¢;) = 1.522, p = 0.222; IPSC latencies: two-way
ANOVA, Poly I:C, F,, o, = 2.538, p = 0.116; LPS, F,, o, = 0.402,
p = 0.528; interaction, F, 4;y = 0.519, p = 0.474). Considered
together with the fact that the efficacy of glutamatergic synaptic
transmission was unaffected in Veh_LPS mice (Fig. 4C,D), these
findings suggest that PIA, but not MIA, led to decreased feedfor-
ward inhibition, thus shifting the balance between inhibition and
excitation in mPFC-BLA projections toward a greater functional
efficiency of excitation. Therefore, it appears that MIA and PIA
may have distinct cellular targets in the BLA.

Neuroinflammation-induced synaptic modifications in
mPFC-BLA projections lead to increased firing output of BLA
neurons

To explore the functional consequences of MIA-induced strength-
ening of glutamatergic synapses and PIA-induced suppression of
feedforward GABAergic inhibitory responses in prefrontal projec-
tions to the BLA, we tested the effects of immunoactivation on the
probability of synaptically driven spiking at the studied pathways
(Riccio et al., 2009; Cho et al., 2012, 2013). We induced extracel-
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Sholl analysis of dendritic morphology in the BLA afterimmune activation. 4, Sholl dendritic analysis of reconstructed neurobiotin-filled BLA neurons was performed by placing a series

of concentric circles spaced at 30 m intervals and centered on the soma. B, Average soma size estimates in all experimental groups. There was a significant increase in the soma size in LPS-treated
mice (see text for details). C, Averaged number of primary dendrites in all experimental groups. D, Summary plot of the dendritic length as a function of the radial distance from soma by 30 wm
increments. There was amain effect of LPS on the dendritic length: three-way ANOVA (Poly I:C X LPS X distance from soma, Poly I:C, F; 5,4 = 0.272,p = 0.603; LPS, F; 54 = 10.499,p = 0.001;
interaction, F; 5,4 = 0.64,p = 1.0; post hoc Bonferonni’s test: p = 0.004 for Veh_Veh versus Veh_LPS). E, Summary plot of the dendritic surface area as a function of the radial distance from soma.
There was an increase in the dendritic surface area in Veh_LPS and Poly 1:C_LPS groups versus Veh_Veh group: three-way ANOVA (Poly 1:C XX LPS X distance from soma, Poly 1:C, ; 5,4 = 1.681,
p = 0.196; LPS, F; 5,4 = 51.762, p < 0.001; interaction, F; 5,4 = 0.086, p = 0.99; post hoc Bonferonnis test: p << 0.001 for both Veh_Veh versus Veh_LPS and Veh_Veh versus Poly :C_LPS
groups). F, Averaged number of branch points. There was no difference in branch point numbers between the groups: three-way ANOVA (Poly I:C X LPS X distance from soma, Poly :C, F; 5,4 =
2.27,p = 0.133; LPS, F; 5,4y = 0.0396, p = 0.842; interaction, F; ,,, = 0.338, p = 0.936). G, Averaged dendritic diameter as a function of distance from soma. There was an increase in the
averaged dendritic diameter in the Veh_LPS and Poly I:C_LPS groups versus Veh_Veh group: three-way ANOVA (Poly I:C XX LPS X distance from soma, Poly I:C, F; 11,y = 7.5, p = 0.007; LPS,
Fa11z) = 30.197, p < 0.001; interaction, F3 14, = 0.376, p = 0.771; post hoc Bonferonni’s simultaneous multiple comparisons: p = 0.032 for Veh_Veh versus Veh_LPS and p << 0.001 for
Veh_Veh group versus Poly I:C_LPS group). Veh_Veh group: n = 8 neurons from 5 mice; Poly I:C_Veh: n = 8 neurons from 4 mice; Veh_LPS: n = 8 neurons from 7 mice; Poly :C_LPS:n = 8

neurons from 6 mice). **p << 0.01.

lular synaptically triggered spikes with photostimuli of increasing
intensity (ranging from 0.5 to 10.2 mW/mm?) and recorded them
in BLA neurons in a cell-attached patch configuration (Fig. 7A, B).
Under these recording conditions, we minimized the contribution
of voltage errors, which might be prominent for synaptic responses
exceeding 1 nA in amplitude (Fig. 4C), and avoided the potential
problems associated with prolonged whole-cell recordings,
which can disturb the intracellular milieu, thus possibly affecting
the properties of recorded neurons (Cho et al., 2011). The prob-
ability of AP generation was dramatically increased when the
GABA , receptor antagonist bicuculline (30 um) was added to the
external medium (Fig. 7C,D; two-way ANOVA, F, g,y = 14.169,
p < 0.001), providing evidence that synaptically driven spike

output of BLA neurons is under inhibitory control. We then
compared the average number of extracellular spikes triggered in
BLA neurons by single pulses of light of increasing intensity de-
livered to the ChR2-expressing mPFC fibers. We found that the
probability of neuronal firing induced by synaptic activation was
increased in slices from the Veh_LPS group only[(relative to the
control Veh_Veh group) (Fig. 7E, F; three-way ANOVA (Poly
I:C X LPS X light power density), Poly I:C, F(, 445 = 23.474,p <
0.001; LPS, F(; 44y = 34.994, p < 0.001; interaction, F(; 445y =
1.027, p = 0.401; post hoc Bonferroni’s multiple comparisons:
p < 0.001 for Veh_Veh versus Veh_LPS], whereas there was no
effect of the treatments on spike output of BLA neurons in Poly
I:C_Veh or Poly I:C_LPS groups.
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(7.4-10.2 mW/mm?2) and recorded in BLA neurons at —80 mV (black trace, EPSC) and 0 mV (red trace, IPSC). The inset shows a delayed onset (synaptic latency) of synaptic currents recorded at 0
mV. Right, mean synaptic latencies of IPSCs and EPSCs. The IPSClatency (at a holding potential of 0 mV) was much longer compared with EPSCs recorded in the same neurons at a holding potential
of —80 mV, suggesting that the IPSCis polysynaptic in nature (n = 10 neurons from 3 mice). C, IPSCs at a holding potential of 0 mV were completely blocked by the GABA, receptor antagonist
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F, The IPSC/EPSCamplitude ratio was decreased in Veh_LPS and Poly I:C_LPS groups, indicating an effect of PIA on the balance between excitation and inhibition in mPFC—BLA projections (Veh_Veh
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Figure7. Neuroinflammation is associated with the increased probability of synaptically driven spike firing in the mPFC—BLA pathway. A, Experimental design for recording of synaptically driven

extracellular spikes in BLA PNs in response to photostimulation of mPFC fibers. B, Left, Superimposed synaptic responses (extracellular spikes) recorded in a BLA PN evoked by photostimulation of
ChR2-expressing mPFCfibersina cell-attached patch configuration. Right, Recordings under current-clamp conditions from the same neuron after establishing a whole-cell recording configuration.
C, Examples of responses (extracellular spikes recorded in a cell-attached patch configuration) in BLA neurons to light pulses of increasing intensity under control conditions (left) and in the presence
of the GABA, receptor antagonist bicuculline (30 wm, right). D, Number of spikes in response to presynaptic photostimulation was increased significantly in the presence of the GABA, receptor
antagonist bicuculline (30 wum) in the external medium (control: n = 10 neurons from 3 mice; bicuculline: n = 6 neurons from 3 mice). E, Examples of synaptically driven spikes in BLA PNs in slices
from different groups of mice. F, Summary input/output plots for synaptically driven spikes in BLA neurons in all experimental groups (Veh_Veh group: n = 22 neurons from 7 mice; Poly I:C_Veh:
n = 13 neurons from 5 mice; Veh_LPS: n = 21 neurons from 5 mice; Poly I:C_LPS: n = 22 neurons from 7 mice).

Considered together, our findings provide evidence that neuro-
inflammation-associated synaptic modifications are functionally
relevant, modifying the signal flow in mPFC-BLA circuits, and that
the various manipulations (MIA, PIA, and MIA+PIA) can be dis-
tinguished from each other using our methodologies, enabling the
development of a model that depicts the specific effects of each pro-
cess (Fig. 8).

Discussion

Our studies provide evidence that MIA and PIA could have dis-
tinct cellular targets in the brain. Specifically, our MIA regimen
(prenatal Poly I:C) led to the strengthening of monosynaptic
glutamatergic inputs of the mPFC-arising afferents to PNs in the
BLA, whereas our PIA regimen (postnatal LPS) suppressed feed-
forward GABA ,R-mediated inhibition of BLA neurons by local
circuit INs. The resulting shift in the balance between excitation
and inhibition in mPFC-BLA projections, enhancing the func-
tional efficiency of excitatory prefrontal inputs, translated into
the increased firing of BLA neurons. These physiological altera-
tions were accompanied by increases in anxiety-like behavior and
decreases in social interactions in groups in which mice had re-
ceived LPS treatment (Veh_LPS and Poly I:C_LPS). Conversely,

systemic neuroinflammation has been shown previously to result
in increased neuronal activity within the AMG, which was corre-
lated with increases in anxiety-like behavior (Engler et al., 2011).
The fact that all of the immune-activating treatments produced
distinct physiological consequences, even in the absence of a sig-
nificant change in behavior (e.g., Poly I:C_Veh mice), suggests a
potentially higher sensitivity of the electrophysiological tech-
niques in detecting effects that might be below the threshold for
significantly altering behavioral endpoints.

Our results enable the development of a circuit model that
captures the unique “physiological signature” of each treatment.
Mechanistically, in the offspring of Poly I:C-treated dams (Poly
I:C_Veh group), the efficacy of glutamatergic synaptic transmis-
sion in mPFC projections to both BLA PNs and BLA INs was
proportionally increased (shown as thicker red lines in Fig. 8B),
reflected in proportionally increased amplitudes of EPSCs and
IPSCs. The proportionality of the effect of MIA on EPCS and
IPSCs is supported by the finding that the IPSC/EPSC amplitude
ratio in slices from these mice was unaffected relative to control
Veh_Veh mice. Consistent with this, the spike output of BLA
neurons in response to activation of mPFC afferents remained
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in mice from all experimental groups. Glutamatergic (red lines) mPFC projections form excitatory synapses on BLA PNs and on the local circuit INs. Interneurons form inhibitory synapses (blue line)
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including the central nucleus of the AMG (CeA), bed nucleus of the stria terminalis (BNST), striatum, and cortical areas. Right, Activation of mPFCinputs to BLA PNs and INs results in generation of
monosynaptic EPSCs (black trace) and disynaptic IPSCs (blue trace), which could be recorded in BLA PNs at holding potentials of —80 or 0 mV, respectively. Changes in the thickness of lines indicate
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unchanged. Postnatal immunoactivation alone (Veh_LPS group)
did not affect synaptic efficacy at glutamatergic mPFC inputs to
the BLA, but it was associated with decreases in the amplitude of
feedforward IN-mediated IPSCs (represented as a thinner blue
line in the diagram in Fig. 8C). The resulting decreases in the
IPSC/EPSC amplitude ratio led to the increased functional effi-
ciency of neurotransmission in the mPFC-BLA projections,
translating into the increased spike output of BLA PNs. In mice
from the Poly I:C_LPS group, the BLA spike output appears to be
determined by complex interactions between the effects of MIA
(increased synaptic strength at both glutamatergic and GABAergic
inputs to BLA PNs) and PIA-induced decreases in inhibition.
Although the opposing effects of MIA and PIA on feedforward
inhibition partially compensate each other, the IPSC/EPSC am-
plitude ratio was still decreased relative to control animals (Fig.
8D). However, this shift toward a greater functional efficiency of
excitation in the Poly I: C_LPS group was insufficient to affect the
spike output of BLA neurons in mPFC-BLA projections. Regard-
less, each of the three treatments produces a unique signature that
can be differentiated from the others.

Our finding that the altered signal flow in the mPFC-AMG
pathways may result in enhanced anxiety and decreased social
interactions is consistent with previously published observations
implicating both the mPFC (Elliott et al., 2016; Felix-Ortiz et al.,
2016; Vila-Verde et al., 2016) and the BLA complex (Sanders et
al., 1995; Frankland et al., 1997; Pérez de la Mora et al., 2006) in

control of innate fear and anxiety responses. In addition, we re-
cently reported evidence that, among other mechanisms, the ac-
tivation of the BLA complex mediates anxiogenesis (Riccio et al.,
2014). Specifically, we found that the knock-down of the tran-
sient receptor potential channel subunit 4 (TRPC4) subunit, which
is abundantly expressed in brain areas controlling innate fear re-
sponses in the normal mouse brain, in the lateral AMG resulted in
suppressed innate fear responses as quantified with anxiety-probing
behavioral tests. Our present results link together these previously
disparate observations, highlighting the role of mPFC-BLA projec-
tions in control of anxiety-like behaviors, which are frequently co-
morbid with ASD (South and Rodgers, 2017). Considering that it
has been shown that MIA alone and PIA alone can each produce
behavioral signs in mice that resemble the core features of ASDs (e.g.,
aberrant social interactions, communication deficits, and increases
in stereotyped behaviors; Smith et al., 2007; Custodio et al., 2017),
our data raise the possibility that mPFC-BLA functional interactions
could be affected in humans with ASD.

It is important to emphasize that our studies characterize the
effects of using Poly I:C as the trigger for MIA and LPS as the
trigger for PIA. We selected this order to approximate the human
condition, where postnatal bacterial infections (modeled by LPS)
are highly prevalent (Bilbo and Schwarz, 2009). In addition, this
order of treatment matches well with models that describe the
putative time course of TLR3 (the receptor at which Poly I: C acts)
and TLR4 (the receptor at which LPS acts) expression (Barak et
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al., 2014). Other permutations of this treatment regimen may
yield different outcomes.

The mechanisms that we describe here could contribute to the
behavioral manifestations of ASD, providing evidence that the
development of ASD may implicate dysregulation of the func-
tional connectivity between distinct brain regions involved in
control of specific behavioral mechanisms (Markram and Markram,
2010; Monk et al., 2010; Rudie et al., 2012). More generally, our
work lends support to a theory that the development of ASD may
be associated with the excitation/inhibition imbalance in the
brain leading to increased excitability of relevant neural circuits
(Hussman, 2001; Rubenstein and Merzenich, 2003; Nelson and
Valakh, 2015; Canetta et al., 2016; Lee et al., 2017; Missig et al.,
2018). Future studies will be needed to identify molecular pathways
implicated in neuroinflammation-induced synaptic changes in the
mPFC-BLA circuits and to determine whether there might be sex
differences that contribute to the prevalence of conditions such as
ASD (Baron-Cohen et al., 2005; Werling and Geschwind, 2013).
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