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Microglia are emerging as key players in neurodegenerative diseases, such as Alzheimer’s disease (AD). Thus far, microglia have rather
been known as modulator of neurodegeneration with functions limited to neuroinflammation and release of neurotoxic molecules.
However, several recent studies have demonstrated a direct role of microglia in “neuro” degeneration observed in AD by promoting
phagocytosis of neuronal, in particular, synaptic structures. While some of the studies address the involvement of the �-amyloid peptides
in the process, studies also indicate that this could occur independent of amyloid, further elevating the importance of microglia in AD.
Here we review these recent studies and also speculate about the possible cellular mechanisms, and how they could be regulated by risk
genes and sleep. Finally, we deliberate on possible avenues for targeting microglia-mediated synapse loss for therapy and prevention.
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Introduction
Alzheimer’s disease (AD) is the most common neurodegenera-
tive disorder; and because of its high costs toward patient care
and management, it is among the top devastating diseases
(Scheltens et al., 2016). While the definitive etiology is still to be
uncovered, several characteristic features, such as abnormal in-
traneuronal cytoskeletal changes, known as neurofibrillary tan-
gles, and extracellular protein deposits called amyloid plaques
(Hardy and Higgins, 1992; Gandy, 2005), define the disease. Ge-
netic evidence from the familial forms of AD suggests that the
formation of the longer variants of the peptide called �-amyloid
(A�) that nucleate amyloid plaques could play a causative role
(Hardy and Higgins, 1992; Price et al., 1998; Tanzi, 2012). The
major risk factors for developing AD are aging and a family his-
tory of the disease. More than 95% of all AD cases occur in indi-
viduals over the age of 60 years and are defined as sporadic AD or
late-onset AD. Less than 5% of cases are defined as familial AD
and can be seen in patients as young as 30 years of age. In the
majority of cases the inheritance of familial AD shows autosomal
dominance, either in the amyloid precursor protein (APP) or
Presenilin 1 (PSEN1), or Presenilin2 (PSEN2) genes (Bertram et
al., 2010; de Strooper, 2010). Allelic distribution of Apolipopro-
tein E (ApoE) on chromosome 19 has been identified as an addi-

tional genetic risk factor associated with sporadic AD (Roses,
1996). In the case of late-onset AD, genome-wide association
studies have identified several genetic polymorphisms in various
gene loci that are associated with increased AD risk (Guerreiro
and Hardy, 2011). Given that late-onset AD is not associated with
strong disease-causing mutations that usually increase the pro-
duction of the longer A� peptides (Bali et al., 2012), it could arise
from defective clearance of amyloid and, thus, account for the
higher amyloid load observed in AD patients. In the context of
amyloid clearance, several mechanisms have been studied: for
example, efflux out of the brain through lipoprotein receptor-
related proteins (LRP receptors), amyloid-specific degrading en-
zymes, such as insulin-degrading enzyme, Neprilysin, and A�
clearance through microglia (Tarasoff-Conway et al., 2015). In
the case of microglial removal of amyloid, phagocytosis is one of
the well-studied mechanisms (Ries and Sastre, 2016).

The presence of microglia around amyloid plaques has been
largely documented both in humans and in transgenic mouse
models that overexpress mutated human APP (Dickson et al.,
1988; Haga et al., 1989; Frautschy et al., 1998; Stalder et al., 1999;
Serrano-Pozo et al., 2013). Their exact function around the
plaques, however, is still not understood. Some studies have re-
ported the rapid recruitment of microglia around newly formed
plaques, by using longitudinal in vivo imaging in the brain of AD
mouse models (Meyer-Luehmann et al., 2008). Microglia, the
major phagocytes of the brain, are indeed equipped with a variety
of receptors able to bind and phagocytose A� (Lee and Landreth,
2010; Doens and Fernández, 2014; Yu and Ye, 2015). However, in
vivo two-photon imaging studies have revealed that A� deposi-
tion coincides with functional impairment of microglia, suggest-
ing that, in advanced pathological stages, microglia become
unable to remove and clear the amyloid burden (Krabbe et al.,
2013). By replenishing hippocampal organotypic slices with
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acutely isolated microglia, Hellwig et al. (2015) elegantly showed
reduced phagocytic capacity to clear A� in microglia isolated
from AD mouse brains, suggesting that a long exposure to the
amyloid load is responsible for such impairment. Interestingly, a
reduction in microglia number in 3xTg-AD mice (�30%) did
not lead to significant changes in amyloid burden but im-
proved cognition, suggesting that microglia might contribute
to the cognitive dysfunction also via A�-independent mecha-
nisms (Dagher et al., 2015).

Mechanisms through which microglia mediate
synapse loss
In the last few years, microglia have emerged as important players
in pruning synapses during early brain development. Selective
manipulation of microglial genes has indeed revealed a critical
role for these cells in refining neural circuits through removal of
supernumerary synaptic connections (Paolicelli et al., 2011;
Schafer et al., 2012). During development, microglia-mediated
synapse loss represents an important physiological process re-
quired for proper brain maturation.

Mice lacking the microglial receptor Cx3cr1, for example, ex-
hibit a significant reduction in microglial number and a transient
increase in dendritic spine density in the postnatal hippocampus,
associated with long-lasting defects in brain connectivity, as
a consequence of defective synaptic pruning by microglia
(Paolicelli et al., 2011; Zhan et al., 2014). Neural activity is critical
for synapse removal, with its inhibition by TTX or stimulation by
forskolin promoting or reducing, respectively, the fraction of
synaptic terminals engulfed by microglia in the dorsolateral
geniculate nucleus (Schafer et al., 2012). Monocular deprivation
has also been shown to effectively promote engulfment of synap-
tic elements by microglia in wild-type (WT) but not in mice
lacking the purinergic receptor P2y12, suggesting that microglia-
mediated synaptic refinement is occurring during visual plastic-
ity and requires P2RY12 (Sipe et al., 2016). The molecules that
mediate synapse removal by microglia are still under investiga-
tion. The best characterized, so far, are the components of the
complement cascade (Stevens et al., 2007; Stephan et al., 2012).
C1q and C3 KO mice exhibit sustained defects in synapse elimi-
nation and refinement of neural circuits (Chu et al., 2010; Schafer
et al., 2012; Bialas and Stevens, 2013). Recently, C4 has been also
implicated in mediating synaptic removal, with C4 variants asso-
ciated with the risk to develop schizophrenia (Sekar et al., 2016).

Microglia-mediated synapse loss in AD
Evidence for the involvement of the complement pathway. Recent
studies suggest that microglia-mediated synapse removal, nor-
mally confined to the activity-dependent refinement during
brain development, can be reactivated in aging or in disease. The
expression profile of complement mediators, such as C1q and C3,
has been shown to follow a peculiar trajectory, with high levels
during development and aging, but a very low baseline expres-
sion across the adult lifespan (Johnson et al., 1994; Reichwald et
al., 2009; Naito et al., 2012; Schafer et al., 2012; Stephan et al.,
2013), thus supporting a reactivation of complement-mediated
mechanisms later in life. Interestingly, in AD mouse models, C1q
and C3 are highly upregulated, paralleling A� deposition (Reich-
wald et al., 2009). Although no substantial changes in A� load are
reported in AD mouse models lacking C1q (Fonseca et al., 2004),
C1q ablation seems to exacerbate amyloid deposition in a model
of aberrant transthyretin deposition (Panayiotou et al., 2017).

Despite the controversial effects on amyloid burden, in both
models, C1q depletion is associated with reduced microglia/mac-

rophage activation. AD mice lacking C1q, moreover, display re-
duced synapse loss, supporting a role for C1q in mediating
synapse removal (Fonseca et al., 2004). Consistently, mice in-
jected with A� oligomers exhibited synaptic loss in the hip-
pocampus, and this was rescued in animals treated with either
anti-C1q antibody or genetically depleted of C1q (Hong et al.,
2016).

Recent work shows that C3 depletion in a mouse model of AD
significantly reduces synapse loss and promotes cognition, de-
spite accumulation of the amyloid burden (Shi et al., 2017). To
study the effects of complement in the later stages of AD, Shi et al.
(2017) used a mouse model of AD (APP/PS1) lacking C3 and
found that, at 16 months of age, despite the increased amyloid
load, C3 deficiency protected the animals from synapse loss and
rescued cognitive deficits. Mechanistically, A�, probably specifi-
cally A� oligomers, increases the expression of C3 in microglia
and astrocytes, and this, in turn, marks the synapses, promotes
microglia recruitment, and mediates synapse elimination (Fig.
1). Indeed, injection of A� oligomers in wild-type mice leads to
upregulation of C3 levels, which promote microglial removal of
synaptic connections (Hong et al., 2016). In this model, the loss
of synapses correlates with increased engulfment of the postsyn-
aptic protein homer by microglia (Hong et al., 2016). While C3
deficiency seems to behoove protection against synaptic loss,
even in the presence of increased A� levels as described by Shi et
al. (2017); Czirr et al. (2017) recently showed that C3 deletion in
APP transgenic mice actually reduced phagocytic activity in mi-
croglia but increased A� degradation. The authors attribute this
enhanced A� degradation to increased levels of tissue plasmino-
gen activator. While these two studies differ on their findings
related to A�, the fact that C3 deficiency reduces phagocytic ac-
tivity and thus protects synapse removal is intriguing. Other
complement pathway-associated molecules are also implicated in
AD, providing a solid support for the involvement of the entire
complement cascade, and not just C3 or C1q. Copy number vari-
ation studies on the two isoforms of complement 4 (4A and 4B)
show that these genes exhibit a statistically significant increase in
copy number variations in AD populations (Zorzetto et al.,
2017). Uptake of fibrillar A� is mediated through the C3 receptor
(CD11b) in microglia and CD88, the receptor for C5a, which is
upregulated around the plaques and thus correlates with amyloid
(Ager et al., 2010) and neurofibrillary pathology (Fonseca et al.,
2013). Interestingly, inhibiting the C5aR pathway with the antag-
onist PX205 reduced both amyloid pathology and neurofibrillary
tangles (hyperphosphorylated tau) and improved behavior in AD
mouse models (Fonseca et al., 2009). Similar improvement was
also described when mice were immunized actively with peptides
derived from C5a (Landlinger et al., 2015). While most of these
latter studies have not looked at microglial removal of synapses
influenced by complement, it is tempting to imagine that this
would be the case, and that inhibiting this pathway or its compo-
nents would result in the protection of synapses.

A� oligomers: a possible role for synaptic tagging? The synapto-
toxic role of A�, specifically in its oligomeric conformation, has
been extensively discussed in the last decades (De Felice et al.,
2008; Zhao et al., 2008; Wilcox et al., 2011; Forny-Germano et al.,
2014) and has been primarily attributed to synapse inactivation
by targeting postsynaptic glutamatergic receptors (Decker et al.,
2010; Li et al., 2011). However, the possibility that A� oligomers
might also serve as a direct tag on synapses to promote microglia-
mediated removal has not yet been addressed.

Double-label immunofluorescence studies have shown that
�90% of A� oligomers colocalize with PSD-95, a marker of den-
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dritic spines, revealing a highly selective synaptic targeting, and
�50% of PSD-95-positive synaptic terminals were targeted by
A� oligomers, showing that synapses targeted by A� oligomers
were approximately half of the synapses (Lacor et al., 2004).
High-resolution 3D imaging, indeed, provides evidence that in-
tracellular fibrillar A� aggregates pierce the cell membrane at the
synaptic site (Capetillo-Zarate et al., 2011). Localization of A�
oligomers at the postsynaptic structures evidently correlates with
synaptic loss both in humans as well as in AD mouse models
(Koffie et al., 2009, 2012).

Mechanistically, A� binds to glutamatergic receptors at the
postsynaptic site leading to their inactivation (Decker et al., 2010;
Li et al., 2011) in a calcium-dependent manner (Birnbaum et al.,
2015). In addition, it could act as an extracellular hook that re-
cruits microglia to the synapse and, thus, induces the removal of
the A�-tagged synapse. In a more complex scenario, one could
envision that fibrillar A� first recruits complement molecules,
which in turn promote microglial recruitment (Eikelenboom and
Veerhuis, 1996; Stoltzner et al., 2000). Because C3 is a known
mediator for microglial phagocytosis of fibrillar A� (Maier et al.,
2008; Fu et al., 2012), it is possible that A� oligomer deposition at
the synapse induces not only microglial recruitment but also, via
upregulation of C3, promotes engulfment of synaptic structures
(Fig. 1).

A�-independent mechanisms of microglia-mediated synapse
loss. In a context where no preexistent amyloid pathology (e.g.,
proteinopathies) might be ascribed as the direct culprit for syn-
apse loss, one possibility is that intrinsically dysfunctional micro-
glia might be a trigger. Clues for this possibility come from many
studies (see below). Pruning of synapses by microglia during
early development (Paolicelli et al., 2011; Schafer et al., 2012)
already suggests that this physiological role of microglia occurs

well before aging or amyloid deposition; thus, its reactivation
during aging might not necessarily depend on amyloid. Indeed,
we recently showed that selectively depleting TDP-43 in a micro-
glial cell line induced an aberrant phagocytic phenotype, which
results in enhanced amyloid clearance (Paolicelli et al., 2017).
Mice expressing mutant APP and lacking microglial TDP-43 dis-
played enhanced clearance of amyloid but, at the same time,
showed significant synapse loss. Interestingly, the deposition of
amyloid is not necessary, as a similar synaptic loss was observed in
mice that did not express any human mutant APP (Paolicelli et
al., 2017). Similarly, Shi et al. (2017) recently showed that 16-
month-old AD mice deficient in complement C3 had less synap-
tic loss and showed better performance in behavioral tests of
memory, despite enhanced amyloid load. This again suggests that
synapse loss might not necessarily follow the trajectory of amy-
loid buildup.

Microglia-derived soluble factors as a trigger for synapse loss.
Synapse loss can be mediated by microglial phagocytosis, as a
consequence of direct synaptic removal, likely in response to
receptor-mediated recognition of a specific molecular tag at the
synapses. However, another possibility, which does not exclude
the former, is that microglia might also release soluble synapto-
toxic factors, ultimately promoting synapse loss.

A large number of in vitro assays have indeed shown that
conditioned medium from activated microglia might be suffi-
cient to induce synapse loss in primary neuronal cultures. Soluble
factors, such as TNF-�, nitric oxide, and IL-6, released by micro-
glia in the medium are indeed able to induce loss of synapses
(Azevedo et al., 2013; Wang et al., 2015). Recent data also show
that activated microglia release soluble factors, identified as
IL-1�, TNF, and C1q, able to induce A1 neurotoxic astrocytes
(Liddelow et al., 2017). On the other hand, soluble factors re-

Figure 1. Diagram depicting the role of microglia (yellow) in supporting synapse homeostasis under physiological conditions (left). Pathological role (right) is influenced either
genetically through late-onset AD risk genes or through sleep deprivation. Top right, Phagocytic uptake of synaptic structures by microglia, aided by A�, complement molecules, C1q and
C3. A possible role for APOE is here proposed. Inset (zoomed), Possible tagging mechanism of synaptic structures by A� and complement. Bottom right, Synapse loss mediated by soluble
factors or by loss of trophic support.
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leased by microglia could be critical for synapse maintenance, so
that dysfunction in homeostatic microglial activity may lead to
lack of such support, thus contributing to synapse loss. Microglial
are an important source of activity-dependent release of BDNF,
and conditional mice lacking microglial-derived BDNF displayed
altered synaptic plasticity (Parkhurst et al., 2013). C3 deficiency
has been shown to inhibit phagocytosis but still reduce A� levels
by releasing A�-degrading enzymes (Czirr et al., 2017), and
mechanisms similar to this could positively or negatively regulate
synapse loss through such secretory systems.

Regulation of microglia-mediated synapse loss
Because a number of mechanisms might influence microglia-
mediated synapse loss, here we discuss factors, both genetic and
lifestyle, which could regulate this process. For this part of the
review, we focus on ApoE as an example for the late-onset risk
(genome-wide association study risk) genes for AD on the genetic
side and sleep as a lifestyle factor (see Dual Perspectives compan-
ion article by Vanderheyden et al.).

Genetics: AD risk genes and synapse loss
Mutations in genes associated with early-onset AD (APP, PSEN1,
PSEN2) lead to the overproduction of the amyloidogenic A�42
peptide, but genes associated with late-onset AD do not seem to
be involved in increased production of A�42 (Bali et al., 2012).
Indeed, several of the risk genes associated with AD, such as ApoE
and TREM2, seem to be expressed in, or depend on, microglia for
their expression (Efthymiou and Goate, 2017). Among the risk
genes, APOE is the gene where the �4 allelic variant confers the
highest risk for late-onset AD and, interestingly, is also expressed
by microglia (astrocytes being the most predominant cells that
express APOE). ApoE is a major regulator of lipid homeostasis
present in three allelic variants �2, �3, or �4; and although its
function is varied (for review, see Lane-Donovan and Herz,
2017), it primarily transports cholesterol to neurons via specific
ApoE receptors. In addition to lipid binding, ApoE also play a
role in A� metabolism, with ApoE �4 carriers having significantly
higher A� deposition than noncarriers (Schmechel et al., 1993;
Kok et al., 2009). Interestingly, in a model of acute LPS injections,
mice expressing the human ApoE �4 displayed significantly
higher synapse loss, compared with ApoE �2 or ApoE �3, associ-
ated with increased microgliosis and astrocytosis (Y. Zhu et al.,
2012). Deeper investigations revealed that the different ApoE iso-
forms critically affect the levels of C1q and the phagocytic capac-
ity of astrocytes (Chung et al., 2016). It remains to be tested
whether, under these conditions, the phagocytic activity of mi-
croglia is enhanced, and directed to synapses in a C1q-dependent
manner (Fig. 1). When �50,000 synapses from AD patients were
analyzed using array tomography, it was not only found that
patients with the ApoE �4 have higher levels of A� oligomers but
also that ApoE �4 correlates with increased localization of A�
oligomers to synapses (Koffie et al., 2012). These authors also
elegantly demonstrated, both in mice as well as in humans, that
A� oligomer accumulation correlated with synaptic loss (Koffie
et al., 2009, 2012) (Fig. 1). It is thus tempting to surmise that
ApoE �4 cooperates with A� oligomers in recruiting microglia
and inducing microglia-mediated synapse loss. Evidence for this
is currently missing but would be worth investigating whether
ApoE �4 drives microglia recruitment, expression of comple-
ment factors, and thus synapse elimination seen in AD. Bonham
et al. (2016) found a significant interaction between APOE �4 and
C3 in CSF in both amyloid and tau pathology, strengthening the
idea of synergistic influence of APOE and A� on C3-mediated

synapse loss accounting for neurodegeneration in AD (Fig. 1). A
recent study reported that the APOE pathway plays a critical role
in mediating the switch from a homeostatic to a neurodegenera-
tive microglia phenotype observed in AD, triggered by TREM2-
mediated phagocytosis of apoptotic neurons (Krasemann et al.,
2017). Whether a similar switch in microglia might in turn affect
synapse elimination remains to be investigated.

Lifestyle: sleep and synapse loss
Several factors, such as aging, nutrition, infections, inflamma-
tion, chronic stress, and sleep, all contribute to the multifactori-
ality of AD. Sleep is arguably one of the most influential factors
that are associated with the risk for neurodegenerative diseases
(Holth et al., 2017). Live imaging studies in the adolescent mouse
cortex report that sleep is associated with reduction in dendritic
spine number, whereas wakefulness promotes synaptic forma-
tion, clearly establishing a critical role for sleep and wake states in
synaptic remodeling (Maret et al., 2011). Intriguingly, such alter-
nation in synaptic density, higher in the awake phase and lower in
the sleep state, is disrupted in mice lacking the microglial-specific
lysosomal protease Cathepsin S, providing evidence for the im-
plication of microglia in mediating sleep-dependent synapse re-
finement (Hayashi et al., 2013).

Several studies have shown the relationship between sleep
quality and risk for AD (Osorio et al., 2011; Lim et al., 2013; Spira
et al., 2013; Minakawa et al., 2017). Genetic risk factors, particu-
larly, ApoE �4, have been shown to interact with sleep (Kadotani
et al., 2001; Lim et al., 2013; Achariyar et al., 2016). ApoE �4
carriers have decreased sleep quality and increased insomnia, and
this could affect the hallmarks of AD, such as amyloid deposition
and tau pathology. A recent study conducted in 101 cognitively
normal adults (average age 63 years; with 65.3% females) shows
that lack of sleep correlated with CSF biochemical markers of AD
(low A�42/A�40 ratio, increased total Tau/A�42; pTau/ A�42
ratios) (Sprecher et al., 2017). Although supporting a correlation
between sleep quality and amyloid/tau pathology, this study did
not report any effect on synaptic dysfunction, indicated by neu-
rogranin levels. Because sleep is known to affect AD and vice
versa through a reciprocal, positive feedback loop (see Vander-
heyden et al., Dual Perspectives companion article; Gerstner et
al., 2012; Ju et al., 2014), it would be interesting to see how dys-
regulated sleep affects synaptic markers in patients with mild
cognitive impairment or AD.

Mechanistically, the interstitial concentration of A�, as mea-
sured by microdialysis in mice, correlates with wakefulness (Kang
et al., 2009), and synaptic activity is associated with increased
release of A� (Roh et al., 2012). A reason for this increase in A�
with higher synaptic activity during wakefulness could be that
synaptic activity increases endocytosis (Cirrito et al., 2008) and
endocytosis is essential for A� production (Rajendran et al., 2006,
2008; Udayar et al., 2013; Ben Halima et al., 2016). Another ex-
planation is that sleep increases A� clearance (Xie et al., 2013)
and that sleep deprivation affects both A� production and clear-
ance, thus mechanistically explaining the higher amyloid deposi-
tion in sleep-deprived patients (Osorio et al., 2011; Lim et al.,
2013; Spira et al., 2013; Minakawa et al., 2017). Although Xie et al.
(2013) focused on the fluxes of interstitial space and metabolic
exchange and did not specifically address the role of microglia in
this process (Xie et al., 2013), it is interesting to note that sleep
affects microglial activity (B. Zhu et al., 2012; Ingiosi et al., 2013;
Bellesi et al., 2017); thus, impaired sleep might affect microglial
clearance of A�. Indeed, addition of orexin, the crucial molecule
that regulates the sleep–wake cycle in mammals, to BV-2 micro-
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glia cells impaired microglial phagocytic activity and A� clear-
ance (An et al., 2017), confirming the studies by Xie et al. (2013).

Sleep deprivation is associated with dramatic changes in mi-
croglial morphology and increase in proinflammatory mediators
both in hippocampus and plasma of adult rodents, which medi-
ate impairment in spatial memory (Guan et al., 2004).

In addition to neurotoxic effects triggered by neuroinflamma-
tion, recent evidence indicates that glia-mediated synapse elimi-
nation could also represent a possible mechanism by which sleep
deprivation affects cognitive function. Bellesi et al. (2017) re-
ported that, whereas acute sleep deprivation induces astrocytic
phagocytosis, chronic sleep restriction promotes microglial
phagocytic activity of synaptic structures, as evidenced by serial
block-face electron microscopy in the mouse frontal cortex. Sleep
deprivation is associated with the upregulation, albeit moderate,
of both Mertk, the receptor, and Gas6, the ligand, involved in
astrocytic phagocytosis, which could explain the increased loss of
synaptic structures. Interestingly, Gas6 protein is known to bind
to phosphatidylserine, a lipid externalized in apoptotic bodies
(Ravichandran, 2010; Morizono et al., 2011), which activates
Mertk, a process that also could occur during sleep deprivation-
induced synapse loss. Furthermore, chronic sleep restriction is
also associated with increased levels of C3, a known mediator of
synapse elimination by microglia (Bellesi et al., 2017). The in-
volvement of microglia specifically in chronic, but not acute,
sleep deprivation further highlights a possible link between long-
lasting sleep dysregulation associated with AD and microglia-
mediated synapse loss.

Overall, these studies clearly demonstrate that sleep loss has
the potential to modulate synaptic remodeling by microglia, thus
contributing to the risk for AD (Fig. 1).

From these overwhelming, but fragmented, findings on micro-
glia and sleep, it is indeed tempting to hypothesize that sleep pattern
disturbance could enhance microglial (and also astrocytic) phagocy-
tosis of synaptic structures, and this could be exacerbated in AD, thus
contributing to the cognitive dysfunction in the disease.

Avenues for prevention and therapeutic
intervention
As described in this Dual Perspectives article, substantial evi-
dence exists for microglia-mediated synapse loss in AD. If this is
the case, it is imperative that we consider this as a target for
therapy and management, but with caution. From these data, it is
clear that we need to exercise caution when it comes to increasing
microglial phagocytosis to enable clearance of A�. Such measures
need to make sure that, whereas clearance of A� is increased,
microglia-mediated synaptic loss needs to be avoided. Recently
identified “don’t-eat-me” signals, such as CD47 and its receptor
SIRP� (Ravichandran, 2010; Brown and Neher, 2014), regulate
synapse–microglia interactions and could protect from synapse
loss. Inhibiting complement molecules, particularly C1q and C3,
is an attractive approach and has given promising results in pre-
clinical mouse model studies. Because many of these factors col-
laborate in synergy (e.g., ApoE, A�, complement) in inducing
synaptic loss, targeting one or more of these components could
be effective in stabilizing synaptic structures. As a lifestyle factor,
overwhelming evidence suggests that sleep quality could modu-
late synapse loss through such phagocytic processes; and because
sleep deprivation is one of the main risk factors for dementia,
particularly AD, measures to improve sleep quality might reduce
cognitive decline in at-risk patients.

In conclusion, despite data supporting a critical role for mi-
croglia in inducing synapse loss in AD, further work is clearly

needed to delineate the cellular and molecular mechanisms in-
volved. A better understanding of the molecular mechanisms
underlying microglia-mediated synapse loss (i.e., a direct phago-
cytic uptake or removal of weakened synapses), elimination by
released soluble factors, etc., is urgently needed for designing
effective therapeutic approaches. Whether inhibiting microglial
removal of synapses could improve cognition and could repre-
sent a viable treatment for AD patients, it is an exciting possibility
and surely warrants further investigations. Exciting times are
ahead in this area for both basic and applied research.

Response from Dual Perspectives Companion
Author–Jason R. Gerstner

In the Dual Perspectives companion article, Rajendran and
Paolicelli highlight recent studies supporting a role of mi-
croglia in mediating synaptic loss in Alzheimer’s disease
(AD). They propose that microglia are ideally situated as
critical regulators of the complex phenotypes associated
with AD. Without a doubt, microglial functions, such as
those underlying neuroinflammation, may contribute to
the pathogenesis of AD (Mandrekar-Colucci and Landreth,
2010; Leyns and Holtzman, 2017; Spangenberg and Green,
2017). Interestingly, Rajendran and Paolicelli introduce an
exciting emerging theme: that microglial-mediated synap-
tic loss occurs via activation of the “complement cascade.”

Relationships between AD, microglia, and the complement
cascade are evident. C1q and C3, components of the com-
plement cascade, are involved in microglial phagocytosis
(Stevens et al., 2007) and are upregulated in AD mice
(Reichwald et al., 2009). Injection of A� oligomers into
wild-type mice increased C3 levels and promoted micro-
glial-mediated synaptic loss (Hong et al., 2016). However,
the role of the complement cascade is still poorly under-
stood. For example, C3 deficiency in AD mice with in-
creased amyloid accumulation showed reduced synapse
loss (Shi et al., 2017), and C3 deficiency in another AD
mouse model reduced microglial phagocytic activity yet en-
hanced A� degradation (Czirr et al., 2017). Other work has
found that activated microglia are sufficient to induce “A1”
neurotoxic astrocytes, and �60% of GFAP-positive astro-
cytes in prefrontal cortex of postmortem human AD brains
were C3-positive (Liddelow et al., 2017), suggesting that an
interplay between microglia and astrocytes may be just as
important as microglial/neuronal interactions. Tradition-
ally, microglial phagocytosis has been thought to be medi-
ated by C1q and C3, but data from Liddelow et al. (2017)
suggest that C3 expression in astrocytes may also contrib-
ute to disease state in human AD. Controversy remains as to
whether there is a direct association between amyloid load
and C3-mediated synaptic loss, and whether components of
the complement cascade implicated in neurodegenerative
disease are exclusive to microglia.

Relationships between AD, microglia, and sleep may also be
intriguingly interconnected. As sleep has an emerging role

Rajendran and Paolicelli • Microglia-Mediated Synapse Loss in Alzheimer’s Disease J. Neurosci., March 21, 2018 • 38(12):2911–2919 • 2915



in the pathogenesis of AD (Lim et al., 2014) and chronic
sleep deprivation results in activation of microglia (Bellesi
et al., 2017), a role for microglia in AD may in part depend
on the sleep state of the individual, as it does in astrocytes.
Rajendran and Paolicellli cite evidence supporting the ef-
fects of sleep disruption on microglial activity, including
upregulation of C3 following long-term sleep loss (Ingiosi et
al., 2013; Bellesi et al., 2017). However, data indicating how
impaired sleep might affect microglial A� clearance have
been limited, and the role of sleep in activating the comple-
ment cascade in the context of neurodegenerative disease
remains elusive. Future studies on microglia and astrocytes
are therefore needed to define the reciprocal relationship
between sleep disturbance and AD progression, particu-
larly in the accumulation of A� plaques (Lim et al., 2014;
Leyns and Holtzman, 2017).
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