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Sleep-wake abnormalities are common in patients with Alzheimer’s disease, and can be a major reason for institutionalization. However,
an emerging concept is that these sleep-wake disturbances are part of the causal pathway accelerating the neurodegenerative process.
Recently, new findings have provided intriguing evidence for a positive feedback loop between sleep-wake dysfunction and 3-amyloid
(AB) aggregation. Studies in both humans and animal models have shown that extended periods of wakefulness increase A3 levels and
aggregation, and accumulation of A3 causes fragmentation of sleep. This perspective is aimed at presenting evidence supporting causal
links between sleep-wake dysfunction and aggregation of A peptide in Alzheimer’s disease, and explores the role of astrocytes, a
specialized type of glial cell, in this context underlying Alzheimer’s disease pathology. The utility of current animal models and the
unexplored potential of alternative animal models for testing mechanisms involved in the reciprocal relationship between sleep disrup-

tion and A are also discussed.
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Introduction

Alzheimer’s disease (AD) is an irreversible brain disease charac-
terized by the presence of neurofibrillary amyloid plaques and
hyperphosphorylated tau tangles that results in progressive de-
mentia associated with memory loss, cognitive impairment, sleep
disturbances, and other behavioral abnormalities. AD is the most
common form of dementia; and although AD is not part of the
normal aging process, aging is the greatest risk factor for devel-
oping AD. Several other factors are known to affect AD risk, and
include genetic variants of apolipoprotein E (ApoE), or muta-
tions in genes encoding amyloid precursor protein (APP) or the
presenilin proteins (PS1, PS2). The ApoE genotype is the stron-
gest known genetic risk factor for sporadic late-onset AD, with
the &4 allele contributing to the most genetic risk (Holtzman et
al., 2012). Rare, early-onset autosomal dominant familial forms
of AD caused by mutations in APP, PS1, or PS2 share similar
pathology with sporadic forms of AD, most notably aggrega-
tion of B-amyloid (AB) peptides. These familial forms of AD-
associated mutations increase production of toxic forms of A3
and can be genetically reproduced in many different animal mod-
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els (Van Dam and De Deyn, 2011). In this review, we will discuss
the current state of AD research across many different animal
models and highlight the unique opportunities offered by these
models to study the molecular, cellular, and behavioral linkages
in the pathogenesis of AD.

In addition to the genetic predisposition for AD, a newly
emerging idea is that disruption in sleep and/or circadian
rhythms may be a principal component of the causal pathway
leading to AD pathogenesis, as well as in accelerating AD progres-
sion through a reciprocal, positive-feedback loop relationship
(Gerstner et al., 2012; Roh et al., 2012; Ju et al., 2014; Lim et al.,
2014; Musiek and Holtzman, 2016). This review therefore fo-
cuses primarily on AD models using AB, and the potential for
their application in the study of the associations of A3 accumu-
lation with sleep behavior.

A critical understanding of the molecular and cellular mech-
anisms responsible for a feedback relationship between sleep, Af3,
and AD pathophysiology is lacking. Although there have been
many reviews covering the topic of sleep—wake disturbance and
AD (Lim et al., 2014; Lucey and Bateman, 2014; Peter-Derex et
al., 2015; Mander et al., 2016; Mattis and Sehgal, 2016), the cur-
rent review highlights a central role for astrocytes, a specialized
type of glial cell, as a mechanistic link in AD pathophysiology.
Also not previously reviewed, we will discuss a broad range of AD
animal models (vertebrate and invertebrate species) used in the
study of the interactions among sleep disruption, amyloid depo-
sition, and AD pathophysiology. We will then present a unifying
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hypothesis for a potential mechanism underlying the reciprocal
sleep-AB-AD relationship involving astrocytes. Last, we will con-
clude with a discussion on future directions of research using
novel animal models in this newly burgeoning area.

AD-associated sleep disturbance

Sleep—wake and circadian dysfunction are prevalent in AD (Pol-
lak and Perlick, 1991; Vitiello and Borson, 2001; McCurry and
Ancoli-Israel, 2003; Bliwise, 2004). Insomnia at night and exces-
sive daytime sleepiness affects 25%—40% of patients with mild to
moderate AD and their caretakers (McCurry et al., 1999; Moran
et al., 2005). Compared with healthy older adults, individuals
with AD spend more time in bed awake and experience more
fragmented sleep (Prinz et al., 1982a,b). A recent prospective
study indicated that sleep fragmentation increased risk of cogni-
tive decline and incident AD (Lim et al., 2013). During an early
stage of AD called mild cognitive impairment (Schneider et al.,
2009), evidence is emerging to suggest that sleep disturbance may
precede a clinical diagnosis of AD years in advance (Hita-Yafiez et
al., 2012; Westerberg et al., 2012). One study used both objective
and subjective measures of sleep to compare healthy elderly with
subjects with mild cognitive impairment, and observed shorter
bouts of REM sleep and increased slow-wave sleep fragmentation
in subjects with mild cognitive impairment (Hita-Yafiez et al.,
2013). The disruption in REM sleep was exacerbated in Apoe4
carriers compared with noncarriers, suggesting that, even at a
preclinical stage, sleep disturbance exists in individuals with in-
creased risk of developing AD. This raises the possibility that
sleep may be sensitive during the preclinical period, and sleep
disturbance itself may provide a biomarker of potential AD risk
and also be a contributing factor to the progression of AD. Less
robust circadian rhythms may also predict risk of developing AD
in cognitively normal older women, suggesting a possible rela-
tionship between sleep, circadian function, and AD (Tranah et
al., 2011). Sleep disturbance before any cognitive impairment in
the earliest stages of AD is a newly emerging idea and an area of
current research needing more attention.

A reciprocal relationship between sleep disturbance and AD
progression likely involves the accumulation of AB plaques
(Kang et al., 2009; Gerstner et al., 2012; Roh et al., 2012; Ju et al,,
2014; Lim et al., 2014). AB plaques consist of insoluble forms of
normally soluble amino acid peptides derived from proteolytic
cleavage of the APP (Palop and Mucke, 2010). Reduced levels of
soluble AB in the CSF have been considered a biomarker for
preclinical AD because it indicates the presence of increases in A3
plaque formation (Fagan et al., 2006; Sperling et al., 2011). Lon-
gitudinal studies of sporadic and genetically inherited AD have
shown reduced A levels occurring before AD-associated cogni-
tive symptoms by =15 years (Price and Morris, 1999; Bateman et
al., 2012). To determine whether sleep disruption is associated
with AP deposition in preclinical AD before cognitive impair-
ment, Ju et al. (2013) analyzed sleep measures with CSF A342
levels in cognitively normal individuals that included subjects
with and without a parental history of late-onset AD, and found
that low CSF A levels were associated with worse sleep quality in
preclinical AD. Similarly, another study found self-reported
shorter sleep duration and poor sleep quality associated with
greater A plaque formation (Spira et al., 2013). Together, these
studies suggest that sleep disruption occurs when amyloid
plaques are forming but before cognitive dysfunction (Spiraetal.,
2014).
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Astrocyte involvement

Astrocytes are “neuroglia” with diverse functional roles in phys-
iological processes, such as aging, inflammation, disease, homeo-
stasis, and CNS repair (Sofroniew, 2009; Parpura et al., 2012;
Verkhratsky et al., 2013; Rodriguez-Arellano et al., 2016). Astro-
cytes have also been shown to be critical regulators of sleep be-
havior, across many diverse species, including flies, mice, and
humans (Halassa et al., 2009; Clasadonte et al., 2017; Farca Luna
etal., 2017; Gerstner et al., 2017b). A primary function of astro-
cytes may be to regulate the metabolic demands of neurons by a
mechanism termed the astrocyte-neuron-lactate-shuttle (ANLS)
(Pellerin and Magistretti, 2012) tied to the sleep—wake cycle (Ger-
stner et al., 2012; Lim et al., 2014). Although controversial, the
central premise of the ANLS is that lactate release from astrocytes
is closely tied to glutamatergic (excitatory) synaptic activity, and
this lactate works to meet the metabolic needs of neighboring
neurons as an energy substrate, derived from glycolysis in astro-
cytes. Genes associated with this process in the ANLS have been
shown to be regulated in cortical astrocytes following sleep depri-
vation in mice (Petit et al., 2013), suggesting astrocytes link neu-
rometabolic coupling to the sleep—wake cycle. Further support
for this idea is that a reciprocal relationship between oscillations
in lactate and glucose is associated with normal sleep—wake be-
havior, where wakefulness is associated with increases in gluta-
mate and lactate, and a simultaneous reduction in glucose levels
(Dash et al., 2009, 2013; Naylor et al.,, 2012). During sleep,
changes in neural activity patterns are observed throughout cor-
tex, as observed from EEG recordings (Vyazovskiy et al., 2009).
The neuronal activity patterns during EEG-defined slow-wave
sleep stages are associated with a reduction in global glucose uti-
lization (Nofzinger et al., 2002). Together, this evidence supports
that ANLS mechanisms change over the sleep-wake cycle, where
increases in glutamatergic tone associated with wakefulness pro-
mote lactate release and glucose utilization.

How might astrocytes and sleep-related ANLS mechanisms be
tied to A clearance in AD pathophysiology? In mice, astrocytic
expression of the proteins low-density lipoprotein receptor (Ba-
sak et al., 2012) and ApoE (Verghese et al., 2013) regulate the
uptake and degradation of A species, whereas astrocyte dys-
function promotes A aggregation. For example, disrupting nor-
mal astrocyte activation via deletion of glial fibrillary acidic
protein and Vimetin enhances A aggregation, whereas enhanc-
ing astrocytic autophagic processing via transcriptional factor EB
overexpression mitigates amyloid plaque pathology in mice
(Kraftetal., 2013; Xiao et al., 2014). AB clearance is also impaired
by silencing of low-density lipoprotein receptor-related protein 1
in astrocytes, and low-density lipoprotein receptor-related pro-
tein 1 regulates levels of certain A degrading enzymes (Liu et al.,
2017). Increased wakefulness and neural activity regulate extra-
cellular AB levels in rodents (Bero et al., 2011; Roh et al., 2012)
and flies (Tabuchi et al., 2015). In the absence of aggregation in
mouse models, diurnal oscillations in A are tied closely to the
sleep—wake cycle and wake-related lactate levels (Roh et al,
2012), whereas neural activity and wakefulness in turn increase
A release (Kangetal., 2009). Evidence suggests that endogenous
neural activity regulates regional changes in interstitial AB, driv-
ing local AB aggregation, which is associated with the concentra-
tion of lactate (Bero et al., 2011). This supports the idea that the
ANLS may be perturbed in AD (Newington et al., 2013) due to
AB-induced changes in lactate metabolism. It is plausible that
clearance of wakefulness-associated A3 would be facilitated dur-
ing sleep periods by astrocytes and other glial cells, and prevent
AP oligomerization and aggregation (Fig. 1). Indeed, support for
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(Roh et al., 2012). Neuronal activity and wakefulness are thought to increase A3 release from neurons. Mechanisms that may reduce extracellular levels of A3 during sleep periods, such as
ApoE-derived AB-clearance from astrocytes and other glial cells, would prevent A3 oligomerization and aggregation. Oscillations of lactate are coupled with normal (balanced) behavioral changes
inthe sleep—wake cycle (Naylor etal., 2012) and extracellular A3 levels (Roh et al., 2012). The ANLS hypothesis proposes that astrocytic uptake of activity-dependent glutamate release at synapses
inturn triggers glucose uptake, whichis then converted to lactate and supplied back to neurons to facilitate metabolic demand (Pellerin and Magistretti, 2012). B, Sleep decline, as occurs with normal
aging, may slow A 3-derived clearance mechanisms while simultaneously promoting the further release of wakefulness-induced A B release, thereby permitting A 3 oligomerization and subsequent
plaque formation. The plaques would serve as a “sink” for A3 oligomers, generating an A3 concentration gradient. This A$ gradient would attract astroglial-derived clearance mechanisms,
mobilizing glia and preventing normal ANLS coupling, and the establishment of the underlying pathology of Alzheimer’s disease. Without proper functioning astrocytes, excessive wakefulness
would further increase glutamate release and generate excitotoxicity damage, leading to neurodegeneration and cognitive dysfunction. Thus, dysfunctional ANLS coupling would aggravate a

vicious cycle linking sleep fragmentation with A3 release, amyloid plaque formation, and progressive neuronal loss.

this idea was shown by sleep-associated reduction in Af through
glymphatic processes involving astrocytes (Xie et al., 2013). Re-
cently, it was shown that state-dependent brain lactate levels are
controlled by glymphatic clearance in mice (Lundgaard et al.,
2017). Impairing glucose and lactate trafficking through astro-
cytic networks silenced wake-promoting neurons and causes
nocturnal sleepiness in mice (Clasadonte et al., 2017). Together,
astrocytes are uniquely positioned to regulate sleep and A3 clear-
ance mechanisms tied to the ANLS.

We hypothesize that, in normal aging, neurometabolic cou-
pling through the ANLS maintains a balance in A production
and clearance during sleep (Fig. 1A). Given the normal decline in
sleep with age, astrocyte-derived clearance of AB may be slowed.
Slowing of clearance may increase the chance of Af oligomeriza-
tion and aggregation. Plaque formation would attract newly
formed AB oligomers and thus become a “sink” to generate an
AP concentration gradient (Fig. 1B). These A gradients may
attract astrocyte- and other glial-derived AB clearance mecha-
nisms (e.g., microglia), promote astrocytosis, and mobilization
away from glutamatergic uptake at synapses, preventing the
ANLS. A recent examination of postmortem human cortex de-
scribes mislocalization of astrocyte expressed aquaporin-4 in
perivascular astrocytic endfeet associated with A aggregation in
AD (Zeppenfeld et al., 2017). These astrocyte endfeet may play a

crucial role in neurovascular dysfunction associated with AD
(Kisler et al., 2017). Astrocytes may also respond to plaques by
changing phenotype, rather than location (Galea et al., 2015),
suggesting that morphological changes in astrocytes may affect
perisynaptic astrocytic responses, consistent with our model (Fig.
1). Astrocytes remove excess glutamate from the synapse to re-
duce the impact of glutamate toxicity (Coulter and Eid, 2012), a
mechanism implicated in AD rodent models (Scimemi et al.,
2013). The movement of astrocytes away from synapses alone
may account for neuronal impairment though glutamate toxic-
ity. However, ANLS uncoupling may also allow glutamate spill-
over, which would facilitate and increase surrounding synaptic
excitability, excitotoxicity, and neurodegeneration. This final
step is supported by findings that AB can induce glutamate re-
lease from astrocytes, leading to synapse loss (Talantova et al.,
2013), and that AR alters metabolic functions of astrocytes
(Allaman et al., 2010). These events promote further wakefulness-
induced AP release, aggregation, and ANLS uncoupling, establish-
ing a vicious cycle underlying AD pathology. This suggests that
therapeutic strategies that prevent the localized astroglial response to
A aggregates and/or that target the maintenance of an intact ANLS
may represent an avenue for treatment of AD.

Studies in rodents have shown that activated astrocytes can
assume a neurotoxic phenotype upon exposure to certain cyto-
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kines, at which point they begin to express complement protein
C3 and contribute to inflammation and synapse engulfment
(Chung et al., 2013; Liddelow et al., 2017). However, activated
astrocytes can also be diverted toward more protective polariza-
tion in certain settings (Chung et al., 2013) and may comprise
multiple subtypes, which may vary in their response under dif-
ferent challenges (John Lin et al., 2017; Liddelow and Barres,
2017). It remains unknown how many different polarization
states of astrocytes exist, and how these different astrocyte acti-
vation states impact AB uptake, ANLS function, or sleep. Further
exploration of therapeutic strategies to optimize astrocyte activa-
tion state may have important implications for the treatment of
AD and other neurodegenerative diseases. Elucidation of astro-
cyte signaling pathways could potentially be exploited to pro-
mote the neuroprotective actions of astrocytes (e.g., A clearance
and neuronal metabolic support) and prevent the damaging as-
pects of astrocyte activation (e.g., inflammatory cytokine pro-
duction and synapses engulfment). Disruption of the circadian
clock via deletion of the master clock gene Bmall in mice leads to
massive astrocyte activation and inflammation (Musiek et al.,
2013). This finding suggests that circadian rhythm dysfunction
could promote neuroinflammation and A accumulation due to
astrocyte activation, although this has not yet been proven. How-
ever, altered Bmall expression has been noted in human AD
brain tissue (Cermakian et al., 2011; Cronin et al., 2017) and AD
mouse models (Song et al., 2015).

ApoE genotype is one the strongest genetic risk factors for AD.
It is notable that astrocytes are a major source of ApoE, and that
different ApoE isoforms influence astrocytic synapse elimination
(Chung et al., 2016). The Apoe4 allele has been shown to impair
autophagy, a process involved in protein degradation, in astro-
cyte cultures, and this effect was associated with a reduced capac-
ity to clear AB plaques (Simonovitch et al., 2016). Interestingly,
sleep deprivation severely impairs the delivery of ApoE particles
to the brain due to diminished glymphatic flow (Achariyar et al.,
2016), suggesting a possible link between sleep, ApoE, astrocytes,
and synaptic homeostasis. Thus, the influence of sleep and circa-
dian rhythms on astrocyte function and astrocyte-neuronal cou-
pling has clear implications for the pathogenesis of AD. There
now appears to be an association between sleep and circadian
mechanisms related to AB deposition and aggregation, under-
scoring the importance of using AD animal models in under-
standing their functional relationship in Alzheimer’s disease
pathophysiology. However, to rigorously test the relationship be-
tween sleep and clocks in a cell-specific manner, and in the con-
text of this mechanism (Fig. 1), requires the use of AD animal
models with a strong genetic tool-kit.

Animal models
The development of model organisms to study AD has provided
researchers with numerous ways to examine the genetic, molec-
ular, cellular, systems, and behavioral mechanisms related to AD
pathophysiology, in addition to the means for evaluating poten-
tial therapeutic strategies (Gotz and Ittner, 2008; Van Dam and
De Deyn, 2011). Unfortunately, to date, little to no work has
focused on the role of astrocytes and sleep in the development of
AD or any other neurological disorders. The remainder of this
review will describe the current state of AD research using various
animal models and, where applicable, highlight how astrocyte
research could be incorporated.

Rodent models, and in particular mouse genetic models, have
provided the most information regarding a causal link between
AB and sleep disruption (Ju et al.,, 2014). In the Tg2576 AD
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mouse model (which expresses the familial human APP Swedish
mutation), EEG 8 power, a measure of sleep intensity, is blunted
at all ages studied, and slow-wave sleep-associated EEG is shifted
to higher frequencies in mice with plaque formation (Wisor et al.,
2005; Zhangetal., 2005). Another study in Tg2576 mice observed
disruption of REM sleep associated with plaque formation
around mesopontine cholinergic neurons, cells necessary for
normal REM sleep (Zhang et al., 2005). Using in vivo microdialy-
sis, it was shown that diurnal oscillations in A exist in the inter-
stitial fluid (ISF) of brains of wild-type and Tg2576 mice, with
elevated A levels during wakefulness (Kang et al., 2009). Six
hours of acute sleep deprivation or chronic sleep restriction (4 h
of sleep per day for 21 d) also increased the levels of ISF Ap,
suggesting that circulating A levels in the brain are regulated by
wakefulness (Kang et al., 2009). In a follow-up study, diurnal A
oscillations in mouse brain ISF were observed only at ages before
the formation of amyloid plaques, and were associated with nor-
mal sleep—wake behavior (Roh et al., 2012). However, disruption
of normal diurnal A ISF cycling correlated with both a progres-
sive increase in the amount of age-associated A3 aggregation and
the amount of wakefulness during the period of normal sleep
(Roh et al., 2012). Together, these data suggest that plaque for-
mation in aged mice is negatively correlated with diurnal oscilla-
tions in ISF AB, maybe generated by a positive feedback loop
consisting of wakefulness-induced elevations in Af3 release and
AP aggregation-induced wakefulness (Gerstner et al., 2012; Ju et
al., 2014; Lim et al., 2014).

While mice have been the predominant AD model, over the
past decade, other nonmammalian model organisms of AD have
emerged, including invertebrates, such as the fruit fly Drosophila
melanogaster and the nematode Caenorhabditis elegans, and alter-
native vertebrate species, such as the zebrafish Danio rerio (Went-
zell and Kretzschmar, 2010; Van Dam and De Deyn, 2011). These
species have been particularly useful for transgenic manipula-
tions engineered to express amyloid mutations causing neuropa-
thology that resembles what is observed in AD patients. In
addition, limitations with current mouse models, which often fail
to recapitulate all aspects of human AD, require alternative ani-
mal models to explore appraisal of early pathological processes
(Van Dam and De Deyn, 2011).

The fruit fly, D. melanogaster, has provided a strong molecular
genetics approach to the research of behavior for decades, and its
genome contains ~70% of human disease-related genes (Fortini
et al., 2000; Reiter et al., 2001). The use of the fruit fly to study
neurodegenerative disease, including AD, is no exception (Bilen
and Bonini, 2005). The APP belongs to a conserved gene family,
which includes mammalian APLP1 and APLP2 genes, and the fly
homolog, APPL (Luo et al., 1992; lijima-Ando and Iijima, 2010;
Cassar and Kretzschmar, 2016). Similar to APP, APPL can be
processed by secretase enzymes and has been shown to yield
secreted fragments, a neurotoxic AB-like peptide, and an intra-
cellular C-terminal intracellular domain (Luo et al., 1990;
Carmine-Simmen et al., 2009; Bolkan et al., 2012). A study dem-
onstrated that increased 3-cleavage of endogenous APPL by the
B-secretase severely disrupted circadian behavior in flies (Blake et
al., 2015). Many transgenic flies have been generated to model
AD, with a variety of ways to express A3 peptides (Iijima-Ando
and lijima, 2010). One group used triple transgenic flies that
express human APP, along with two enzymes that cleave APP
(human B-secretase and the Drosophila presenilin) to produce
AP peptides (Greeve et al., 2004). These flies develop amyloid
plaques with age-dependent neurodegeneration and lethality.
Other groups used a more direct approach to express neuronal
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human A in flies to determine behavioral and pathophysiolog-
ical consequences. Overexpression of human A in neurons pro-
duced amyloid deposits in the brains of flies and resulted in
progressive memory loss, neurodegeneration, and premature
death (Iijima et al., 2004). Similarly, another study showed that
overexpression of a mutation of Af3 observed in humans with
early-onset familial AD, called the Arctic mutant (E22G), re-
sulted in increased severity of neurodegeneration compared with
overexpression of nonmutated A (Crowther et al., 2005). When
Arctic AP was conditionally expressed at different ages, older flies
had an increased susceptibility to AB toxicity (Rogers et al.,
2012). These Arctic AR flies were observed to have progressive
circadian rhythm deficits, even though they retained a functional
molecular circadian clock (Chen et al., 2014; Long et al., 2014).
These studies provide evidence for a role of AB in modulating
circadian rhythms, and new evidence also suggests a role of AB on
sleep in flies (Dissel et al., 2015; Tabuchi et al., 2015; Gerstner et
al., 2017a).

In addition to value to studying circadian rhythms, Drosophila
also have robust sleep phenotypes established over a decade ago
(Hendricks et al., 2000; Shaw et al., 2000), allowing for the op-
portunity to exploit the power of fly genetics and pharmacologi-
cal approaches for the study of sleep, glia, and A3 in AD. Tabuchi
etal. (2015) first showed that Arctic AB accumulation in flies led
to reduced and fragmented sleep, whereas chronic sleep depriva-
tion increased AB burden. Using another AD fly model, Gerstner
et al. (2017a) showed that increased AB expression in neurons
similarly led to reduced and fragmented sleep, and this pheno-
type was rescued by overexpression of fatty acid binding protein,
a lipid binding protein found in glial cells (Ahn et al., 2014).In a
recent study, APPL inhibition in Drosophila glial cells resulted in
higher sleep amounts, whereas glial APPL overexpression in flies
disrupts sleep (Farca Luna et al., 2017), suggesting that glial APP
plays a role in sleep—wake regulation. The Drosophila Presenilin
mutants (PsnB3/%, PsnC4/") show cognitive defects similar to
AD, and pharmacological increase of sleep improves this cogni-
tive impairment (Dissel et al., 2015). These studies were further
extended to encompass both the (1) APP and (2) Beta-secretase
Drosophila models of AD. As before, restoring sleep to these AD
models was sufficient to restore functional senescence, short-
term and long-term memory, and anatomical dysregulation to
these previously impaired flies (Dissel et al., 2017). These data
suggest that sleep can serve as a therapeutic to AD cognitive im-
pairments in the fruit fly and provide a critical foundation of
work that link sleep and AD. However, no studies to date have
leveraged Drosophila to study the interaction between sleep, AD,
and astrocytes, an area ripe for investigation.

Another invertebrate model with a powerful genetic toolkit
for dissecting AD is C. elegans. Only recently has C. elegans sleep-
like behavior (lethargus) been described (Raizen et al., 2008; Nel-
son and Raizen, 2013). However, C. elegans offers a unique and
largely unexplored model for the study of the role of A and sleep
behavior. The worm is a powerful genetically tractable model
organism (Brenner, 1974) with a short (3 week) lifespan associ-
ated with an age-related decline in a variety of physiological pro-
cesses, including pharyngeal pumping and body movement
(Huang et al., 2004). While C. elegans have a simple nervous
system comprised of 302 neurons, it has been estimated that
~42% of human disease genes have some ortholog (Markaki and
Tavernarakis, 2010). These features, along with the low cost, ease
to maintain, and amenability for unbiased genetic and pharma-
cological screens, make C. elegans a desirable model for future
studies in neurodegenerative research (Teschendorf and Link,
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2009; Li and Le, 2013; Alexander et al., 2014). Indeed, several
AB-transgenic AD worm models have already been generated,
often with inducible- and cell-specific targeting systems, and
have been shown to aggregate and produce age-related, progres-
sive paralysis (Link, 1995; McColl et al., 2009, 2012). Gene ex-
pression studies have been examined in both transgenic AB AD
models (Link et al., 2003), as well as during the sleep-like state
lethargus (George-Raizen et al., 2014); therefore, a cross-
examination of these two datasets may contain common molec-
ular pathways that point toward a linkage between sleep and A3
aggregation. C. elegans glia have also been shown to modulate
neural activity and behavior (Stout et al., 2014). Similar to Dro-
sophila, future studies using C. elegans along with bioinformatics,
forward and reverse genetics, and pharmacological screens represent
an important area of research to improve our understanding of
sleep, glia, and AB.

Like its worm and fly invertebrate counterparts, the zebrafish,
D. rerio, provides an exceptional opportunity for the study of the
interaction between sleep, glia, and AB. The zebrafish is a small
fresh water tropical fish that is quite useful for large-scale genetic
and pharmacological screens. Because of their large reproductive
capacity, transparency of embryos and larvae, and given that they
are vertebrates with similar organs and biological systems, along
with ~70% genetic similarity to humans (Howe et al., 2013), this
makes zebrafish a more closely related model for the study of
human disease (Lieschke and Currie, 2007), including AD (Xia,
2010), than worms or flies. While zebrafish have APP orthologs,
and many of the genes related to the familial forms of AD found
in humans (Newman et al., 2014), the precise role of AB and
A-related toxicity in zebrafish models of AD has been under-
studied. One study fused human AB to the promoter of mitfa
gene to drive the expression specifically in melanocytes, in aims
to produce a readily identified pigmentation phenotype (in the
absence of zebrafish lethality) for screening drugs (Newman et
al., 2010). However, a disrupted pigment phenotype emerged
after 16 months, a time that is too late for drug screens in this
model. Exposing zebrafish to AB in the aqueous environment
resulted in developmental defects, and accelerated senescence
(Donnini et al., 2010). A more recent study showed that hind-
brain ventricle injection of Af in zebrafish embryos shows cog-
nitive abnormalities in avoidance behavioral task performance,
in addition to reduced survival (Nery et al., 2014). To date, a
zebrafish AB model similar to what has been developed in other
species, such as Drosophila, has yet to be generated. In contrast to
established AB models in zebrafish, a sleep-like state in zebrafish
has been well characterized by a number of groups (Zhdanova et
al., 2001; Rihel et al., 2010a), and similar sleep—wake regulatory
systems, such as the orexin-hypocretin system, exist in zebrafish
(Yokogawa et al., 2007; Appelbaum et al., 2009, 2010). The trans-
parency of zebrafish makes it a powerful model given newly de-
veloped imaging tools and techniques to uncover insight into
how A affects the normal molecular and circuit networks that
generate sleep behavior in real-time (Chiu and Prober, 2013;
Leung et al., 2013). Behavioral profiling combined with hierar-
chical clustering has revealed the diversity of drug effectiveness in
zebrafish, and support this model for screens combined with A3
(Rihel et al., 2010b; Rihel and Schier, 2013). Aging-related dis-
ruption of the circadian system, sleep, and cognitive performance
have also been reported in zebrafish (Zhdanova et al., 2008). The
similarity in ontological changes in sleep architecture between
zebrafish and humans (Sorribes et al., 2013), which when com-
bined with more targeted transgenic models of AB that have been



2906 - J. Neurosci., March 21, 2018 - 38(12):2901-2910

successful in other species, would greatly facilitate advances in the
field of sleep, glia, and AD.

Alternative animal models, such as worms, flies, and ze-
brafish, have been underused in examining the contribution of
astrocytes to the relationship between sleep-wake and AD, and
represent a genetically tractable, quick and cost-effective means
for evaluating this relationship. This fills a current need in AD
research, which has been dominated by animal models (e.g., ro-
dents) that are more expensive to breed and maintain. Together,
these alternative animal models are powerful tools for the study
of interactions between sleep, astrocytes, and AB. Future use of
these alternative models will greatly facilitate our understanding
of AD pathophysiology, and provide a tremendous opportunity
and faster pace for significant advancements in AD research.

Future directions

Our hypothetical model suggests disruption of neuroglial meta-
bolic coupling as a key mechanism underlying the positive feed-
back loop linking sleep—wake irregularities with A aggregation
in AD. Future experiments using genetic and pharmacological
approaches against molecular targets responsible for brain reac-
tivity to aggregates and ANLS will need to be tested. AD animal
models hold a lot of promise for the characterization of such
mechanisms and would be of great value to target discovery in the
AD drug pipeline. Opportunities exist in multiple species, includ-
ing worms, fruit flies, zebrafish, and mice, to examine the role of
AP in aging and sleep. For example, current genetic tools and
technology exist to study whether AB driven in neurons is able to
disrupt sleep in Drosophila (Hendricks et al., 2000; Shaw et al.,
2000; Tijima et al., 2004; Crowther et al., 2005). Because altera-
tions in sleep may serve as a prodromal marker for AD, one
simple question to first address is whether sleep disturbances are
observed before AB-induced cognitive disruption previously es-
tablished using existing genetic tools in flies (Iijima et al., 2004).
Understanding how sleep influences astrocyte activation, inflam-
matory regulation, and A3 metabolism is another important is-
sue which can be addressed using cell-type-specific manipulation
of astrocyte genetics in flies or mice. Finally, understanding the
interplay between A, sleep, and ANLS in the aging brain is of
critical importance. The development and utilization of alterna-
tive animal models and new transgenic animals will undoubtedly
add to our understanding of the relationships between sleep, as-
trocytes, AB, and AD. Given that sleep—wake behavior has been
established in worms, flies, and zebrafish, transgenic AB models
can be quickly generated and evaluated for changes in sleep be-
havior. With the evaluation and characterization of A effects on
sleep in more simple AD models, future work determining the
therapeutic potential of pharmacological treatments can be
streamlined, and interrogated first in these simple systems before
more expensive and time-consuming higher-order and complex
models.

In conclusion, sleep disturbance is common in AD patients
and may exacerbate AD pathophysiology. Studies in animal
models and humans have shown increased levels of AB follow
extended periods of wakefulness, and are associated with A ag-
gregation. Accumulation of AB has also been shown to fragment
consolidated sleep, suggesting a causal link between sleep frag-
mentation with A release, aggregation, and subsequent neuro-
degeneration. However, a critical understanding of the molecular
and cellular mechanisms responsible for this feedback relation-
ship between sleep, AB, and AD pathology has been lacking. In
this review, we propose one mechanism that may contribute to
this vicious cycle: the disruption of the ANLS neurometabolic
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coupling by astrocytes. We also emphasize the need for multiple
alternative animal models, including the worm C. elegans, the
fruit fly D. melanogaster, and the zebrafish D. rerio to examine
the association between sleep, A3, and AD pathophysiology, and
the role of astrocytes in this process. These models are well poised
to evaluate and test the relationship between sleep—wake dysfunc-
tion, astrocyte activation, and A3 aggregation. The development
and characterization of these AD animal models are critical for
our understanding of the relationship between sleep, AB, and
AD, and the therapeutic potential of drug treatments.

~

Response from Dual Perspectives Companion
Author-Lawrence Rajendran

The exact etiology of Alzheimer’s disease (AD) is not clear.
Perhaps, it is safe to assume that the cause could be multifac-
torial with a combination of genetic and lifestyle influences.
This Dual Perspectives article makes a case for sleep-wake dis-
turbances as potential risk factors for AD. Indeed, studies
indicate that AD patients experience more sleep distur-
bances and stay awake during night. Inversely, fragmenta-
tion and lack of sound sleep increase risk for decline in
cognition, suggesting a possible predictive marker for an
ensuing cognitive decline and incipient AD. This reciprocal
relationship is also evident at the molecular level: that the
accumulation of amyloid into plaques as judged by lower
CSF A 342 levels were associated with lower sleep quality,
and individuals reported to have sleep disturbances were
shown to have higher amyloid accumulation. How does
sleep affect amyloid accumulation and vice versa? Intro-
duce astrocytes.

Gerstner et al. argue that astrocytes are critical to the sleep-
amyloid accumulation pattern through the astrocyte-
neuron-lactate shuttle, which suggests that lactate released
by astrocytes fuels the metabolic needs for excitatory syn-
aptic activity. Increased glutamatergic tone associated with
wakefulness bolsters lactate release. Gerstner et al. suggest
that, in aging-induced sleep decline, the balance between
AP production and clearance is disrupted through astrocyte-
neuron-lactate shuttle, and this skews toward accumula-
tion of A 3. Much of this is credited to wakefulness and how
it affects astrocytes’ cellular clearance.

What is fascinating is that the Gerstner et al. reason for am-
yloid accumulation is not increased amyloid production,
but defective amyloid clearance, despite ample studies
showing that increased synaptic activity increases A@3 pro-
duction. We tend to agree with their model, at least for the
cases of late-onset AD, where the evidence for increase in
production is slim. Indeed, using a cellular model, we
showed that at least for the majority of the genes associated
with the risk for late-onset AD, there is not much evidence
that increased production provides an etiological explana-
tion (Bali et al., 2012). One of the explanations that we of-
fered is that perhaps these gene variants, either without or
with lifestyle alterations, influence amyloid clearance. The
model of Gerstner et al. on how sleep disturbances could
contribute to defective A3 clearance fits well. In addition to
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microglia, astrocytes clear amyloid. Indeed, several lines of
evidence show that meddling with astrocyte activation or
proteolytic machinery (e.g., autophagy) through sleep dis-
turbances can regulate amyloid clearance, as proposed by
the Gerstner et al. model. One question thatis not addressed
by their model is whether sleep affects astrocytic clearance
of AB3. How about synaptic structures that are also shown to
be eliminated through astrocytic phagocytosis? Also, while
the narrative is specific for how sleep-wake cycle distur-
bances could affect astrocytic A3 clearance in AD (arguably
also because A also affects lactate release and synaptic ac-
tivity), it should certainly not be lost on us as to how these
dysregulations could also steer other amyloid disorders of
the brain.

Reference
Bali J, Gheinani AH, Zurbriggen S, Rajendran L (2012) Role of

genes linked to sporadic Alzheimer’s disease risk in the produc-
tion of B-amyloid peptides. Proc Natl Acad Sci U S A 109:15307—
K 15311. 10.1073/pnas.1201632109 22949636

References

Achariyar TM, Li B, Peng W, Verghese PB, Shi Y, McConnell E, Benraiss A,
Kasper T, Song W, Takanoa T, Holtzman DM, Nedergaard M, Deane R
(2016) Glymphatic distribution of CSF-derived apoE into brain is iso-
form specific and suppressed during sleep deprivation. Mol Neurode-
gener 11:74. CrossRef Medline

Ahn HJ, Jeon SH, Kim SH (2014) Expression of a set of glial cell-specific
markers in the Drosophila embryonic central nervous system. BMB Rep
47:354-359. CrossRef Medline

Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a
model to study Alzheimer’s disease and other neurodegenerative diseases.
Front Genet 5:279. CrossRef Medline

Allaman I, Gavillet M, Bélanger M, Laroche T, Viertl D, Lashuel HA, Magis-
tretti PJ (2010) Amyloid-beta aggregates cause alterations of astrocytic
metabolic phenotype: impact on neuronal viability. ] Neurosci 30:3326—
3338. CrossRef Medline

Appelbaum L, Wang GX, Maro GS, Mori R, Tovin A, Marin W, Yokogawa T,
Kawakami K, Smith SJ, Gothilf Y, Mignot E, Mourrain P (2009) Sleep—
wake regulation and hypocretin-melatonin interaction in zebrafish. Proc
Natl Acad Sci U S A 106:21942-21947. CrossRef Medline

Appelbaum L, Wang G, Yokogawa T, Skariah GM, Smith SJ, Mourrain P,
Mignot E (2010) Circadian and homeostatic regulation of structural
synaptic plasticity in hypocretin neurons. Neuron 68:87-98. CrossRef
Medline

Basak JM, Verghese PB, Yoon H, Kim J, Holtzman DM (2012) Low-density
lipoprotein receptor represents an apolipoprotein E-independent path-
way of abeta uptake and degradation by astrocytes. ] Biol Chem 287:
13959-13971. CrossRef Medline

Bateman RJ, Xiong C, Benzinger TL, Fagan AM, Goate A, Fox NC, Marcus
DS, Cairns NJ, Xie X, Blazey TM, Holtzman DM, Santacruz A, Buckles V,
Oliver A, Moulder K, Aisen PS, Ghetti B, Klunk WE, McDade E, Martins
RN, etal. (2012) Clinical and biomarker changes in dominantly inher-
ited Alzheimer’s disease. N Engl ] Med 367:795—-804. CrossRef Medline

Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtz-
man DM (2011) Neuronal activity regulates the regional vulnerability to
amyloid-beta deposition. Nat Neurosci 14:750-756. CrossRef Medline

Bilen J, Bonini NM (2005) Drosophila as a model for human neurodegen-
erative disease. Annu Rev Genet 39:153-171. CrossRef Medline

Blake MR, Holbrook SD, Kotwica-Rolinska J, Chow ES, Kretzschmar D,
Giebultowicz JM (2015) Manipulations of amyloid precursor protein
cleavage disrupt the circadian clock in aging Drosophila. Neurobiol Dis
77:117-126. CrossRef Medline

Bliwise DL (2004) Sleep disorders in Alzheimer’s disease and other demen-
tias. Clin Cornerstone 6 [Suppl. 1A]:S16-S28.

Bolkan BJ, Triphan T, Kretzschmar D (2012) [B-secretase cleavage of the fly

J. Neurosci., March 21, 2018 - 38(12):2901-2910 + 2907

amyloid precursor protein is required for glial survival. ] Neurosci 32:
16181-16192. CrossRef Medline

BrennerS (1974) The genetics of Caenorhabditis elegans. Genetics 77:71-94.
Medline

Carmine-Simmen K, Proctor T, Tschipe J, Poeck B, Triphan T, Strauss R,
Kretzschmar D (2009) Neurotoxic effects induced by the Drosophila
amyloid-beta peptide suggest a conserved toxic function. Neurobiol Dis
33:274-281. CrossRef Medline

Cassar M, Kretzschmar D (2016) Analysis of amyloid precursor protein
function in Drosophila melanogaster. Front Mol Neurosci 9:61. CrossRef
Medline

Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock
gene expression in brain regions of Alzheimer ’s disease patients and
control subjects. ] Biol Rhythms 26:160—170. CrossRef Medline

Chen KF, Possidente B, Lomas DA, Crowther DC (2014) The central mo-
lecular clock is robust in the face of behavioural arrhythmia in a Drosoph-
ila model of Alzheimer’s disease. Dis Model Mech 7:445—-458. CrossRef
Medline

Chiu CN, Prober DA (2013) Regulation of zebrafish sleep and arousal states:
current and prospective approaches. Front Neural Circuits 7:58. CrossRef
Medline

Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A, Chakraborty C, Joung
J, Foo LC, Thompson A, Chen C, Smith SJ, Barres BA (2013) Astrocytes
mediate synapse elimination through MEGF10 and MERTK pathways.
Nature 504:394—400. CrossRef Medline

Chung WS, Verghese PB, Chakraborty C, Joung J, Hyman BT, Ulrich JD,
Holtzman DM, Barres BA (2016) Novel allele-dependent role for APOE
in controlling the rate of synapse pruning by astrocytes. Proc Natl Acad
SciU S A 113:10186-10191. CrossRef Medline

Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG (2017) Connexin
43-mediated astroglial metabolic networks contribute to the regulation of
the sleep—wake cycle. Neuron 95:1365-1380.e5. CrossRef Medline

Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in
epilepsy. Glia 60:1215-1226. CrossRef Medline

Cronin P, McCarthy MJ, Lim AS, Salmon DP, Galasko D, Masliah E, De Jager
PL, Bennett DA, Desplats P (2017) Circadian alterations during early
stages of Alzheimer’s disease are associated with aberrant cycles of DNA
methylation in BMALI. Alzheimers Dement 13:689-700. CrossRef
Medline

Crowther DC, Kinghorn KJ, Miranda E, Page R, Curry JA, Duthie FA, Gubb
DC, Lomas DA (2005) Intraneuronal abeta, non-amyloid aggregates
and neurodegeneration in a Drosophila model of Alzheimer’s disease.
Neuroscience 132:123-135. CrossRef Medline

Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G (2009) Long-
term homeostasis of extracellular glutamate in the rat cerebral cortex
across sleep and waking states. ] Neurosci 29:620—629. CrossRef Medline

Dash MB, Bellesi M, Tononi G, Cirelli C (2013) Sleep/wake dependent
changes in cortical glucose concentrations. J Neurochem 124:79—89.
CrossRef Medline

Dissel S, Angadi V, Kirszenblat L, Suzuki Y, Donlea ], Klose M, Koch Z,
English D, Winsky-Sommerer R, van Swinderen B, Shaw PJ (2015)
Sleep restores behavioral plasticity to Drosophila mutants. Curr Biol 25:
1270-1281. CrossRef Medline

Dissel S, Klose M, Donlea J, Cao L, English D, Winsky-Sommerer R, van
Swinderen B, Shaw PJ (2017) Enhanced sleep reverses memory deficits
and underlying pathology in Drosophila models of Alzheimer’s disease.
Neurobiol Sleep Circadian Rhythms 2:15-26. CrossRef Medline

Donnini S, Solito R, Cetti E, Corti F, Giachetti A, Carra S, Beltrame M, Cotelli
F, Ziche M (2010) Abeta peptides accelerate the senescence of endothe-
lial cells in vitro and in vivo, impairing angiogenesis. FASEB J 24:2385—
2395. CrossRef Medline

Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN,
Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman
DM (2006) Inverse relation between in vivo amyloid imaging load and
cerebrospinal fluid Abeta42 in humans. Ann Neurol 59:512-519.
CrossRef Medline

Farca Luna AJ, Perier M, Seugnet L (2017) Amyloid precursor protein in
Drosophila glia regulates sleep and genes involved in glutamate recycling.
J Neurosci 37:4289—4300. CrossRef Medline

Fortini ME, Skupski MP, Boguski MS, Hariharan IK (2000) A survey of
human disease gene counterparts in the Drosophila genome. J Cell Biol
150:F23-F30. CrossRef Medline


http://dx.doi.org/10.1186/s13024-016-0138-8
http://www.ncbi.nlm.nih.gov/pubmed/27931262
http://dx.doi.org/10.5483/BMBRep.2014.47.6.177
http://www.ncbi.nlm.nih.gov/pubmed/24286328
http://dx.doi.org/10.3389/fgene.2014.00279
http://www.ncbi.nlm.nih.gov/pubmed/25250042
http://dx.doi.org/10.1523/JNEUROSCI.5098-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20203192
http://dx.doi.org/10.1073/pnas.906637106
http://www.ncbi.nlm.nih.gov/pubmed/19966231
http://dx.doi.org/10.1016/j.neuron.2010.09.006
http://www.ncbi.nlm.nih.gov/pubmed/20920793
http://dx.doi.org/10.1074/jbc.M111.288746
http://www.ncbi.nlm.nih.gov/pubmed/22383525
http://dx.doi.org/10.1056/NEJMoa1202753
http://www.ncbi.nlm.nih.gov/pubmed/22784036
http://dx.doi.org/10.1038/nn.2801
http://www.ncbi.nlm.nih.gov/pubmed/21532579
http://dx.doi.org/10.1146/annurev.genet.39.110304.095804
http://www.ncbi.nlm.nih.gov/pubmed/16285856
http://dx.doi.org/10.1016/j.nbd.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25766673
http://dx.doi.org/10.1523/JNEUROSCI.0228-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23152602
http://www.ncbi.nlm.nih.gov/pubmed/4366476
http://dx.doi.org/10.1016/j.nbd.2008.10.014
http://www.ncbi.nlm.nih.gov/pubmed/19049874
http://dx.doi.org/10.3389/fnmol.2016.00061
http://www.ncbi.nlm.nih.gov/pubmed/27507933
http://dx.doi.org/10.1177/0748730410395732
http://www.ncbi.nlm.nih.gov/pubmed/21454296
http://dx.doi.org/10.1242/dmm.014134
http://www.ncbi.nlm.nih.gov/pubmed/24574361
http://dx.doi.org/10.3389/fncir.2013.00058
http://www.ncbi.nlm.nih.gov/pubmed/23576957
http://dx.doi.org/10.1038/nature12776
http://www.ncbi.nlm.nih.gov/pubmed/24270812
http://dx.doi.org/10.1073/pnas.1609896113
http://www.ncbi.nlm.nih.gov/pubmed/27559087
http://dx.doi.org/10.1016/j.neuron.2017.08.022
http://www.ncbi.nlm.nih.gov/pubmed/28867552
http://dx.doi.org/10.1002/glia.22341
http://www.ncbi.nlm.nih.gov/pubmed/22592998
http://dx.doi.org/10.1016/j.jalz.2016.10.003
http://www.ncbi.nlm.nih.gov/pubmed/27883893
http://dx.doi.org/10.1016/j.neuroscience.2004.12.025
http://www.ncbi.nlm.nih.gov/pubmed/15780472
http://dx.doi.org/10.1523/JNEUROSCI.5486-08.2009
http://www.ncbi.nlm.nih.gov/pubmed/19158289
http://dx.doi.org/10.1111/jnc.12063
http://www.ncbi.nlm.nih.gov/pubmed/23106535
http://dx.doi.org/10.1016/j.cub.2015.03.027
http://www.ncbi.nlm.nih.gov/pubmed/25913403
http://dx.doi.org/10.1016/j.nbscr.2016.09.001
http://www.ncbi.nlm.nih.gov/pubmed/29094110
http://dx.doi.org/10.1096/fj.09-146456
http://www.ncbi.nlm.nih.gov/pubmed/20207941
http://dx.doi.org/10.1002/ana.20730
http://www.ncbi.nlm.nih.gov/pubmed/16372280
http://dx.doi.org/10.1523/JNEUROSCI.2826-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28314820
http://dx.doi.org/10.1083/jcb.150.2.F23
http://www.ncbi.nlm.nih.gov/pubmed/10908582

2908 - J. Neurosci., March 21, 2018 - 38(12):2901-2910

Galea E, Morrison W, Hudry E, Arbel-Ornath M, Bacskai B], Gomez-Isla T,
Stanley HE, Hyman BT (2015) Topological analyses in APP/PS1 mice
reveal that astrocytes do not migrate to amyloid-beta plaques. Proc Natl
Acad Sci U S A 112:15556-15561. CrossRef Medline

George-Raizen JB, Shockley KR, Trojanowski NF, Lamb AL, Raizen DM
(2014) Dynamically-expressed prion-like proteins form a cuticle in the
pharynx of Caenorhabditis elegans. Biol Open 3:1139-1149. CrossRef
Medline

Gerstner JR, Perron IJ, Pack AI (2012) The nexus of Abeta, aging, and sleep.
Sci Transl Med 4:150fs134. CrossRef Medline

Gerstner JR, Lenz O, Vanderheyden WM, Chan MT, Pfeiffenberger C, Pack
Al (2017a) Amyloid-beta induces sleep fragmentation that is rescued by
fatty acid binding proteins in Drosophila. ] Neurosci Res 95:1548-1564.
CrossRef Medline

Gerstner JR, Perron IJ, Riedy SM, Yoshikawa T, Kadotani H, Owada Y, Van
Dongen HP, Galante RJ, Dickinson K, Yin JC, Pack Al, Frank MG
(2017b) Normalsleep requires the astrocyte brain-type fatty acid binding
protein FABP7. Sci Adv 3:e1602663. CrossRef Medline

Gotz ], Ittner LM (2008) Animal models of Alzheimer’s disease and fronto-
temporal dementia. Nat Rev Neurosci 9:532-544. CrossRef Medline

Greeve I, Kretzschmar D, Tschipe JA, Beyn A, Brellinger C, Schweizer M,
Nitsch RM, Reifegerste R (2004) Age-dependent neurodegeneration
and Alzheimer-amyloid plaque formation in transgenic Drosophila.
] Neurosci 24:3899-3906. CrossRef Medline

Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG,
Frank MG (2009) Astrocytic modulation of sleep homeostasis and cog-
nitive consequences of sleep loss. Neuron 61:213-219. CrossRef Medline

Hendricks JC, Finn SM, Panckeri KA, Chavkin J, Williams JA, Sehgal A, Pack
AT (2000) Rest in Drosophila is a sleep-like state. Neuron 25:129-138.
CrossRef Medline

Hita-Yanez E, Atienza M, Gil-Neciga E, Cantero JL (2012) Disturbed sleep
patterns in elders with mild cognitive impairment: the role of memory
decline and ApoE epsilon4 genotype. Curr Alzheimer Res 9:290-297.
CrossRef Medline

Hita-Yanez E, Atienza M, Cantero JL (2013) Polysomnographic and subjec-
tive sleep markers of mild cognitive impairment. Sleep 36:1327-1334.
CrossRef Medline

Holtzman DM, Herz ], BuG (2012) Apolipoprotein E and apolipoprotein E
receptors: normal biology and roles in Alzheimer disease. Cold Spring
Harb Perspect Med 2:a006312. CrossRef Medline

Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins
JE, Humphray S, McLaren K, Matthews L, McLaren S, Sealy I, Caccamo
M, Churcher C, Scott C, Barrett JC, Koch R, Rauch GJ, White S, Chow W,
etal. (2013) The zebrafish reference genome sequence and its relation-
ship to the human genome. Nature 496:498-503. CrossRef Medline

Huang C, Xiong C, Kornfeld K (2004) Measurements of age-related changes
of physiological processes that predict lifespan of Caenorhabditis elegans.
Proc Natl Acad Sci U S A 101:8084—8089. CrossRef Medline

Tijima K, Liu HP, Chiang AS, Hearn SA, Konsolaki M, Zhong Y (2004) Dis-
secting the pathological effects of human Abeta40 and Abeta42 in Dro-
sophila: a potential model for Alzheimer’s disease. Proc Natl Acad Sci
U S A 101:6623—6628. CrossRef Medline

lijima-Ando K, lijima K (2010) Transgenic Drosophila models of Alzhei-
mer’s disease and tauopathies. Brain Struct Funct 214:245-262. CrossRef
Medline

John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, Weston MC,
Chen F, Zhang Y, Zhu W, Mohila CA, Ahmed N, Patel AJ, Arenkiel BR,
Noebels JL, Creighton CJ, Deneen B (2017) Identification of diverse as-
trocyte populations and their malignant analogs. Nat Neurosci 20:396—
405. CrossRef Medline

Ju YE, McLeland JS, Toedebusch CD, Xiong C, Fagan AM, Duntley SP, Mor-
ris JC, Holtzman DM (2013) Sleep quality and preclinical Alzheimer
disease. JAMA Neurol 70:587-593. CrossRef Medline

JuYE, Lucey BP, Holtzman DM (2014) Sleep and Alzheimer disease pathol-
ogy: a bidirectional relationship. Nat Rev Neurol 10:115-119. CrossRef
Medline

Kang JE, Lim MM, Bateman R]J, Lee JJ, Smyth LP, Cirrito JR, Fujiki N,
Nishino S, Holtzman DM (2009) Amyloid-beta dynamics are regulated
by orexin and the sleep-wake cycle. Science 326:1005-1007. CrossRef
Medline

Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow

Vanderheyden et al. ® Alzheimer's Disease and Sleep—Wake Disturbances

regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev
Neurosci 18:419-434. CrossRef Medline

Kraft AW, Hu X, Yoon H, Yan P, Xiao Q, Wang Y, Gil SC, Brown J, Wil-
helmsson U, Restivo JL, Cirrito JR, Holtzman DM, Kim J, Pekny M, Lee
JM (2013) Attenuating astrocyte activation accelerates plaque patho-
genesis in APP/PS1 mice. FASEB ] 27:187-198. CrossRef Medline

Leung LC, Wang GX, Mourrain P (2013) Imaging zebrafish neural circuitry
from whole brain to synapse. Front Neural Circuits 7:76. CrossRef
Medline

LiJ, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis
elegans. Exp Neurol 250:94-103. CrossRef Medline

Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function,
and therapeutic potential. Immunity 46:957-967. CrossRef Medline

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L,
Bennett ML, Miinch AE, Chung WS, Peterson TC, Wilton DK, Frouin A,
Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson
VL, Dawson TM, Stevens B, et al. (2017) Neurotoxic reactive astrocytes
are induced by activated microglia. Nature 541:481-487. CrossRef
Medline

Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish
swim into view. Nat Rev Genet 8:353-367. CrossRef Medline

Lim AS, Kowgier M, Yu L, Buchman AS, Bennett DA (2013) Sleep fragmen-
tation and the risk of incident Alzheimer’s disease and cognitive decline in
older persons. Sleep 36:1027-1032. CrossRef Medline

Lim MM, Gerstner JR, Holtzman DM (2014) The sleep—wake cycle and
Alzheimer’s disease: what do we know? Neurodegener Dis Manag 4:351—
362. CrossRef Medline

Link CD (1995) Expression of human beta-amyloid peptide in transgenic
Caenorhabditis elegans. Proc Natl Acad SciU S A 92:9368 -9372. CrossRef
Medline

Link CD, Taft A, Kapulkin V, Duke K, Kim S, Fei Q, Wood DE, Sahagan BG
(2003) Gene expression analysis in a transgenic Caenorhabditis elegans
Alzheimer’s disease model. Neurobiol Aging 24:397-413. CrossRef
Medline

Liu CC, Hu J, Zhao N, Wang J, Wang N, Cirrito JR, Kanekiyo T, Holtzman
DM, Bu G (2017) Astrocytic LRP1 mediates brain Abeta clearance and
impacts amyloid deposition. ] Neurosci 37:4023—4031. CrossRef Medline

Long DM, Blake MR, Dutta S, Holbrook SD, Kotwica-Rolinska J, Kretzsch-
mar D, Giebultowicz JM (2014) Relationships between the circadian
system and Alzheimer’s disease-like symptoms in Drosophila. PLoS One
9:€106068. CrossRef Medline

Lucey BP, Bateman R] (2014) Amyloid-beta diurnal pattern: possible role of
sleep in Alzheimer’s disease pathogenesis. Neurobiol Aging 35 [Suppl.
2]:529-S34.

Lundgaard I, Lu ML, Yang E, Peng W, Mestre H, Hitomi E, Deane R, Neder-
gaard M (2017) Glymphatic clearance controls state-dependent changes
in brain lactate concentration. ] Cereb Blood Flow Metab 37:2112-2124.
CrossRef Medline

Luo LQ, Martin-Morris LE, White K (1990) Identification, secretion, and
neural expression of APPL, a Drosophila protein similar to human amy-
loid protein precursor. J Neurosci 10:3849-3861. Medline

Luo L, Tully T, White K (1992) Human amyloid precursor protein amelio-
rates behavioral deficit of flies deleted for appl gene. Neuron 9:595-605.
CrossRef Medline

Mander BA, Winer JR, Jagust W], Walker MP (2016) Sleep: a novel mech-
anistic pathway, biomarker, and treatment target in the pathology of
Alzheimer’s disease? Trends Neurosci 39:552-566. CrossRef Medline

Markaki M, Tavernarakis N (2010) Modeling human diseases in Caeno-
rhabditis elegans. Biotechnol J 5:1261-1276. CrossRef Medline

Mattis J, Sehgal A (2016) Circadian rhythms, sleep, and disorders of aging.
Trends Endocrinol Metab 27:192-203. CrossRef Medline

McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL, Barnham
KJ, Cherny RA, Bush AI (2009) The Caenorhabditis elegans A beta 1-42
model of Alzheimer disease predominantly expresses A beta 3—42. ] Biol
Chem 284:22697-22702. CrossRef Medline

McColl G, Roberts BR, Pukala TL, Kenche VB, Roberts CM, Link CD, Ryan
TM, Masters CL, Barnham KJ, Bush A, Cherny RA (2012) Utility of an
improved model of amyloid-beta (Abeta(1)(-)(4)(2)) toxicity in Caeno-
rhabditis elegans for drug screening for Alzheimer’s disease. Mol Neuro-
degener 7:57. CrossRef Medline

McCurry SM, Ancoli-Israel S (2003) Sleep dysfunction in Alzheimer’s dis-


http://dx.doi.org/10.1073/pnas.1516779112
http://www.ncbi.nlm.nih.gov/pubmed/26644572
http://dx.doi.org/10.1242/bio.20147500
http://www.ncbi.nlm.nih.gov/pubmed/25361578
http://dx.doi.org/10.1126/scitranslmed.3004815
http://www.ncbi.nlm.nih.gov/pubmed/22956197
http://dx.doi.org/10.1002/jnr.23778
http://www.ncbi.nlm.nih.gov/pubmed/27320125
http://dx.doi.org/10.1126/sciadv.1602663
http://www.ncbi.nlm.nih.gov/pubmed/28435883
http://dx.doi.org/10.1038/nrn2420
http://www.ncbi.nlm.nih.gov/pubmed/18568014
http://dx.doi.org/10.1523/JNEUROSCI.0283-04.2004
http://www.ncbi.nlm.nih.gov/pubmed/15102905
http://dx.doi.org/10.1016/j.neuron.2008.11.024
http://www.ncbi.nlm.nih.gov/pubmed/19186164
http://dx.doi.org/10.1016/S0896-6273(00)80877-6
http://www.ncbi.nlm.nih.gov/pubmed/10707978
http://dx.doi.org/10.2174/156720512800107609
http://www.ncbi.nlm.nih.gov/pubmed/22211488
http://dx.doi.org/10.5665/sleep.2956
http://www.ncbi.nlm.nih.gov/pubmed/23997365
http://dx.doi.org/10.1101/cshperspect.a006312
http://www.ncbi.nlm.nih.gov/pubmed/22393530
http://dx.doi.org/10.1038/nature12111
http://www.ncbi.nlm.nih.gov/pubmed/23594743
http://dx.doi.org/10.1073/pnas.0400848101
http://www.ncbi.nlm.nih.gov/pubmed/15141086
http://dx.doi.org/10.1073/pnas.0400895101
http://www.ncbi.nlm.nih.gov/pubmed/15069204
http://dx.doi.org/10.1007/s00429-009-0234-4
http://www.ncbi.nlm.nih.gov/pubmed/19967412
http://dx.doi.org/10.1038/nn.4493
http://www.ncbi.nlm.nih.gov/pubmed/28166219
http://dx.doi.org/10.1001/jamaneurol.2013.2334
http://www.ncbi.nlm.nih.gov/pubmed/23479184
http://dx.doi.org/10.1038/nrneurol.2013.269
http://www.ncbi.nlm.nih.gov/pubmed/24366271
http://dx.doi.org/10.1126/science.1180962
http://www.ncbi.nlm.nih.gov/pubmed/19779148
http://dx.doi.org/10.1038/nrn.2017.48
http://www.ncbi.nlm.nih.gov/pubmed/28515434
http://dx.doi.org/10.1096/fj.12-208660
http://www.ncbi.nlm.nih.gov/pubmed/23038755
http://dx.doi.org/10.3389/fncir.2013.00076
http://www.ncbi.nlm.nih.gov/pubmed/23630470
http://dx.doi.org/10.1016/j.expneurol.2013.09.024
http://www.ncbi.nlm.nih.gov/pubmed/24095843
http://dx.doi.org/10.1016/j.immuni.2017.06.006
http://www.ncbi.nlm.nih.gov/pubmed/28636962
http://dx.doi.org/10.1038/nature21029
http://www.ncbi.nlm.nih.gov/pubmed/28099414
http://dx.doi.org/10.1038/nrg2091
http://www.ncbi.nlm.nih.gov/pubmed/17440532
http://dx.doi.org/10.5665/sleep.2802
http://www.ncbi.nlm.nih.gov/pubmed/23814339
http://dx.doi.org/10.2217/nmt.14.33
http://www.ncbi.nlm.nih.gov/pubmed/25405649
http://dx.doi.org/10.1073/pnas.92.20.9368
http://www.ncbi.nlm.nih.gov/pubmed/7568134
http://dx.doi.org/10.1016/S0197-4580(02)00224-5
http://www.ncbi.nlm.nih.gov/pubmed/12600716
http://dx.doi.org/10.1523/JNEUROSCI.3442-16.2017
http://www.ncbi.nlm.nih.gov/pubmed/28275161
http://dx.doi.org/10.1371/journal.pone.0106068
http://www.ncbi.nlm.nih.gov/pubmed/25171136
http://dx.doi.org/10.1177/0271678X16661202
http://www.ncbi.nlm.nih.gov/pubmed/27481936
http://www.ncbi.nlm.nih.gov/pubmed/2125311
http://dx.doi.org/10.1016/0896-6273(92)90024-8
http://www.ncbi.nlm.nih.gov/pubmed/1389179
http://dx.doi.org/10.1016/j.tins.2016.05.002
http://www.ncbi.nlm.nih.gov/pubmed/27325209
http://dx.doi.org/10.1002/biot.201000183
http://www.ncbi.nlm.nih.gov/pubmed/21154667
http://dx.doi.org/10.1016/j.tem.2016.02.003
http://www.ncbi.nlm.nih.gov/pubmed/26947521
http://dx.doi.org/10.1074/jbc.C109.028514
http://www.ncbi.nlm.nih.gov/pubmed/19574211
http://dx.doi.org/10.1186/1750-1326-7-57
http://www.ncbi.nlm.nih.gov/pubmed/23171715

Vanderheyden et al. ® Alzheimer's Disease and Sleep—Wake Disturbances

ease and other dementias. Curr Treat Options Neurol 5:261-272.
CrossRef Medline

McCurry SM, Logsdon RG, Teri L, Gibbons LE, Kukull WA, Bowen JD,
McCormick WC, Larson EB (1999) Characteristics of sleep disturbance
in community-dwelling Alzheimer’s disease patients. ] Geriatr Psychiatry
Neurol 12:53-59. CrossRef Medline

Moran M, Lynch CA, Walsh C, Coen R, Coakley D, Lawlor BA (2005) Sleep
disturbance in mild to moderate Alzheimer’s disease. Sleep Med 6:347—
352. CrossRef Medline

Musiek ES, Holtzman DM (2016) Mechanisms linking circadian clocks,
sleep, and neurodegeneration. Science 354:1004—1008. CrossRef Medline

Musiek ES, Lim MM, Yang G, Bauer AQ, QiL, Lee Y, Roh JH, Ortiz-Gonzalez
X, Dearborn JT, Culver JP, Herzog ED, Hogenesch JB, Wozniak DF,
Dikranian K, Giasson BI, Weaver DR, Holtzman DM, Fitzgerald GA
(2013) Circadian clock proteins regulate neuronal redox homeostasis
and neurodegeneration. J Clin Invest 123:5389—-5400. CrossRef Medline

Naylor E, Aillon DV, Barrett BS, Wilson GS, Johnson DA, Harmon HP,
Gabbert S, Petillo PA (2012) Lactate as a biomarker for sleep. Sleep 35:
1209-1222. CrossRef Medline

Nelson MD, Raizen DM (2013) A sleep state during C. elegans development.
Curr Opin Neurobiol 23:824-830. CrossRef Medline

Nery LR, Eltz NS, Hackman C, Fonseca R, Altenhofen S, Guerra HN, Freitas
VM, Bonan CD, Vianna MR (2014) Brain intraventricular injection of
amyloid-beta in zebrafish embryo impairs cognition and increases tau
phosphorylation, effects reversed by lithium. PLoS One 9:2105862.
CrossRef Medline

Newington JT, Harris RA, Cumming RC (2013) Reevaluating metabolism
in Alzheimer’s disease from the perspective of the astrocyte-neuron lac-
tate shuttle model. ] Neurodegener Dis 2013:234572. CrossRef Medline

Newman M, Wilson L, Camp E, Verdile G, Martins R, Lardelli M (2010) A
zebrafish melanophore model of amyloid beta toxicity. Zebrafish 7:155—
159. CrossRef Medline

Newman M, Ebrahimie E, Lardelli M (2014) Using the zebrafish model for
Alzheimer’s disease research. Front Genet 5:189. CrossRef Medline

Nofzinger EA, Buysse DJ, Miewald JM, Meltzer CC, Price JC, Sembrat RC,
Ombao H, Reynolds CF, Monk TH, Hall M, Kupfer D], Moore RY
(2002) Human regional cerebral glucose metabolism during non-rapid
eye movement sleep in relation to waking. Brain 125:1105-1115. CrossRef
Medline

Palop JJ, Mucke L (2010) Amyloid-beta-induced neuronal dysfunction in
Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci
13:812—-818. CrossRef Medline

Parpura V, Heneka MT, Montana V, Oliet SH, Schousboe A, Haydon PG,
Stout RF Jr, Spray DC, Reichenbach A, Pannicke T, Pekny M, Pekna M,
Zorec R, Verkhratsky A (2012) Glial cells in (patho)physiology. ] Neu-
rochem 121:4-27. CrossRef Medline

Pellerin L, Magistretti P] (2012) Sweetsixteen for ANLS. J Cereb Blood Flow
Metab 32:1152-1166. CrossRef Medline

Peter-Derex L, Yammine P, Bastuji H, Croisile B (2015) Sleep and Alzhei-
mer’s disease. Sleep Med Rev 19:29-38. CrossRef Medline

Petit JM, Gyger J, Burlet-Godinot S, Fiumelli H, Martin JL, Magistretti PJ
(2013) Genesinvolved in the astrocyte-neuron lactate shuttle (ANLS) are
specifically regulated in cortical astrocytes following sleep deprivation in
mice. Sleep 36:1445-1458. CrossRef Medline

Pollak CP, Perlick D (1991) Sleep problems and institutionalization of the
elderly. J Geriatr Psychiatry Neurol 4:204-210. Medline

Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and
“preclinical” Alzheimer’s disease. Ann Neurol 45:358-368. CrossRef
Medline

Prinz PN, Peskind ER, Vitaliano PP, Raskind MA, Eisdorfer C, Zemcuznikov
N, Gerber CJ (1982a) Changes in the sleep and waking EEGs of nonde-
mented and demented elderly subjects. ] Am Geriatr Soc 30:86-93.
CrossRef Medline

Prinz PN, Vitaliano PP, Vitiello MV, Bokan J, Raskind M, Peskind E, Gerber
C (1982b) Sleep, EEG and mental function changes in senile dementia of
the Alzheimer’s type. Neurobiol Aging 3:361-370. CrossRef Medline

Raizen DM, Zimmerman JE, Maycock MH, Ta UD, You Y], Sundaram MV,
Pack Al (2008) Lethargusisa Caenorhabditis elegans sleep-like state. Na-
ture 451:569 —572. CrossRef Medline

Reiter LT, Potocki L, Chien S, Gribskov M, Bier E (2001) A systematic anal-
ysis of human disease-associated gene sequences in Drosophila melano-
gaster. Genome Res 11:1114-1125. CrossRef Medline

J. Neurosci., March 21, 2018 - 38(12):2901-2910 + 2909

Rihel J, Schier AF (2013) Sites of action of sleep and wake drugs: insights
from model organisms. Curr Opin Neurobiol 23:831-840. CrossRef
Medline

Rihel J, Prober DA, Schier AF (2010a) Monitoring sleep and arousal in ze-
brafish. Methods Cell Biol 100:281-294. CrossRef Medline

Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ,
Kokel D, Rubin LL, Peterson RT, Schier AF (2010b) Zebrafish behav-
ioral profiling links drugs to biological targets and rest/wake regulation.
Science 327:348-351. CrossRef Medline

Rodriguez-Arellano JJ, Parpura V, Zorec R, Verkhratsky A (2016) Astro-
cytes in physiological aging and Alzheimer’s disease. Neuroscience 323:
170-182. CrossRef Medline

Rogers I, Kerr F, Martinez P, Hardy J, Lovestone S, Partridge L (2012) Age-
ing increases vulnerability to af42 toxicity in Drosophila. PLoS One
7:¢40569. CrossRef Medline

Roh JH, Huang Y, Bero AW, Kasten T, Stewart FR, Bateman R]J, Holtzman
DM (2012) Disruption of the sleep—wake cycle and diurnal fluctuation
of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl
Med 4:150ral22. CrossRef Medline

Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA (2009) The neuropa-
thology of probable Alzheimer disease and mild cognitive impairment.
Ann Neurol 66:200-208. CrossRef Medline

Scimemi A, Meabon JS, Woltjer RL, Sullivan JM, Diamond ]S, Cook DG
(2013) Amyloid-betal—42 slows clearance of synaptically released gluta-
mate by mislocalizing astrocytic GLT-1. J Neurosci 33:5312-5318.
CrossRef Medline

Shaw PJ, Cirelli C, Greenspan RJ, Tononi G (2000) Correlates of sleep and
waking in Drosophila melanogaster. Science 287:1834-1837. CrossRef
Medline

Simonovitch S, Schmukler E, Bespalko A, Iram T, Frenkel D, Holtzman DM,
Masliah E, Michaelson DM, Pinkas-Kramarski R (2016) Impaired au-
tophagy in APOE4 astrocytes. ] Alzheimers Dis 51:915-927. CrossRef
Medline

Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial
scar formation. Trends Neurosci 32:638 —647. CrossRef Medline

Song H, Moon M, Choe HK, Han DH, Jang C, Kim A, Cho S, Kim K, Mook-
Jung I (2015) Abeta-induced degradation of BMALI and CBP leads to
circadian rhythm disruption in Alzheimer’s disease. Mol Neurodegener
10:13. CrossRef Medline

Sorribes A, Thornorsteinsson H, Arnardéttir H, Johannesdottir I, Sigur-
geirsson B, de Polavieja GG, Karlsson KA (2013) The ontogeny of sleep—
wake cycles in zebrafish: a comparison to humans. Front Neural Circuits
7:178. CrossRef Medline

Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo
T, Jack CR Jr, Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC,
Siemers E, Stern Y, Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M,
Wagster MV, etal. (2011) Toward defining the preclinical stages of Alz-
heimer’s disease: recommendations from the national institute on aging-
Alzheimer’s association workgroups on diagnostic guidelines for
Alzheimer’s disease. Alzheimers Dement 7:280-292. CrossRef Medline

Spira AP, Gamaldo AA, An Y, Wu MN, Simonsick EM, Bilgel M, Zhou Y,
Wong DF, Ferrucci L, Resnick SM (2013) Self-reported sleep and beta-
amyloid deposition in community-dwelling older adults. JAMA Neurol
70:1537-1543. CrossRef Medline

Spira AP, Chen-Edinboro LP, Wu MN, Yaffe K (2014) Impact of sleep on
the risk of cognitive decline and dementia. Curr Opin Psychiatry 27:478—
483. CrossRef Medline

Stout RF Jr, Verkhratsky A, Parpura V (2014) Caenorhabditis elegans glia
modulate neuronal activity and behavior. Front Cell Neurosci 8:67.
CrossRef Medline

Tabuchi M, Lone SR, Liu S, Liu Q, Zhang J, Spira AP, Wu MN (2015) Sleep
interacts with abeta to modulate intrinsic neuronal excitability. Curr Biol
25:702-712. CrossRef Medline

Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, Dziew-
czapolski G, Nakamura T, Cao G, Pratt AE, Kang YJ, Tu S, Molokanova E,
McKercher SR, Hires SA, Sason H, Stouffer DG, Buczynski MW, Solo-
mon JP, Michael S, et al. (2013) Abeta induces astrocytic glutamate re-
lease, extrasynaptic NMDA receptor activation, and synaptic loss. Proc
Natl Acad Sci U S A 110:E2518-E2527. CrossRef Medline

Teschendorf D, Link CD (2009) What have worm models told us about the
mechanisms of neuronal dysfunction in human neurodegenerative dis-
eases? Mol Neurodegener 4:38. CrossRef Medline


http://dx.doi.org/10.1007/s11940-003-0017-9
http://www.ncbi.nlm.nih.gov/pubmed/12670415
http://dx.doi.org/10.1177/089198879901200203
http://www.ncbi.nlm.nih.gov/pubmed/10483925
http://dx.doi.org/10.1016/j.sleep.2004.12.005
http://www.ncbi.nlm.nih.gov/pubmed/15978517
http://dx.doi.org/10.1126/science.aah4968
http://www.ncbi.nlm.nih.gov/pubmed/27885006
http://dx.doi.org/10.1172/JCI70317
http://www.ncbi.nlm.nih.gov/pubmed/24270424
http://dx.doi.org/10.5665/sleep.2072
http://www.ncbi.nlm.nih.gov/pubmed/22942499
http://dx.doi.org/10.1016/j.conb.2013.02.015
http://www.ncbi.nlm.nih.gov/pubmed/23562486
http://dx.doi.org/10.1371/journal.pone.0105862
http://www.ncbi.nlm.nih.gov/pubmed/25187954
http://dx.doi.org/10.1155/2013/234572
http://www.ncbi.nlm.nih.gov/pubmed/26316984
http://dx.doi.org/10.1089/zeb.2009.0628
http://www.ncbi.nlm.nih.gov/pubmed/20515319
http://dx.doi.org/10.3389/fgene.2014.00189
http://www.ncbi.nlm.nih.gov/pubmed/25071820
http://dx.doi.org/10.1093/brain/awf103
http://www.ncbi.nlm.nih.gov/pubmed/11960899
http://dx.doi.org/10.1038/nn.2583
http://www.ncbi.nlm.nih.gov/pubmed/20581818
http://dx.doi.org/10.1111/j.1471-4159.2012.07664.x
http://www.ncbi.nlm.nih.gov/pubmed/22251135
http://dx.doi.org/10.1038/jcbfm.2011.149
http://www.ncbi.nlm.nih.gov/pubmed/22027938
http://dx.doi.org/10.1016/j.smrv.2014.03.007
http://www.ncbi.nlm.nih.gov/pubmed/24846773
http://dx.doi.org/10.5665/sleep.3034
http://www.ncbi.nlm.nih.gov/pubmed/24082304
http://www.ncbi.nlm.nih.gov/pubmed/1789908
http://dx.doi.org/10.1002/1531-8249(199903)45:3%3C358::AID-ANA12%3E3.0.CO;2-X
http://www.ncbi.nlm.nih.gov/pubmed/10072051
http://dx.doi.org/10.1111/j.1532-5415.1982.tb01279.x
http://www.ncbi.nlm.nih.gov/pubmed/7199061
http://dx.doi.org/10.1016/0197-4580(82)90024-0
http://www.ncbi.nlm.nih.gov/pubmed/7170052
http://dx.doi.org/10.1038/nature06535
http://www.ncbi.nlm.nih.gov/pubmed/18185515
http://dx.doi.org/10.1101/gr.169101
http://www.ncbi.nlm.nih.gov/pubmed/11381037
http://dx.doi.org/10.1016/j.conb.2013.04.010
http://www.ncbi.nlm.nih.gov/pubmed/23706898
http://dx.doi.org/10.1016/B978-0-12-384892-5.00011-6
http://www.ncbi.nlm.nih.gov/pubmed/21111222
http://dx.doi.org/10.1126/science.1183090
http://www.ncbi.nlm.nih.gov/pubmed/20075256
http://dx.doi.org/10.1016/j.neuroscience.2015.01.007
http://www.ncbi.nlm.nih.gov/pubmed/25595973
http://dx.doi.org/10.1371/journal.pone.0040569
http://www.ncbi.nlm.nih.gov/pubmed/22808195
http://dx.doi.org/10.1126/scitranslmed.3004291
http://www.ncbi.nlm.nih.gov/pubmed/22956200
http://dx.doi.org/10.1002/ana.21706
http://www.ncbi.nlm.nih.gov/pubmed/19743450
http://dx.doi.org/10.1523/JNEUROSCI.5274-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23516295
http://dx.doi.org/10.1126/science.287.5459.1834
http://www.ncbi.nlm.nih.gov/pubmed/10710313
http://dx.doi.org/10.3233/JAD-151101
http://www.ncbi.nlm.nih.gov/pubmed/26923027
http://dx.doi.org/10.1016/j.tins.2009.08.002
http://www.ncbi.nlm.nih.gov/pubmed/19782411
http://dx.doi.org/10.1186/s13024-015-0007-x
http://www.ncbi.nlm.nih.gov/pubmed/25888034
http://dx.doi.org/10.3389/fncir.2013.00178
http://www.ncbi.nlm.nih.gov/pubmed/24312015
http://dx.doi.org/10.1016/j.jalz.2011.03.003
http://www.ncbi.nlm.nih.gov/pubmed/21514248
http://dx.doi.org/10.1001/jamaneurol.2013.4258
http://www.ncbi.nlm.nih.gov/pubmed/24145859
http://dx.doi.org/10.1097/YCO.0000000000000106
http://www.ncbi.nlm.nih.gov/pubmed/25188896
http://dx.doi.org/10.3389/fncel.2014.00067
http://www.ncbi.nlm.nih.gov/pubmed/24672428
http://dx.doi.org/10.1016/j.cub.2015.01.016
http://www.ncbi.nlm.nih.gov/pubmed/25754641
http://dx.doi.org/10.1073/pnas.1306832110
http://www.ncbi.nlm.nih.gov/pubmed/23776240
http://dx.doi.org/10.1186/1750-1326-4-38
http://www.ncbi.nlm.nih.gov/pubmed/19785750

2910 - J. Neurosci., March 21, 2018 - 38(12):2901-2910

Tranah GJ, Blackwell T, Stone KL, Ancoli-Israel S, Paudel ML, Ensrud KE,
Cauley JA, Redline S, Hillier TA, Cummings SR, Yaffe K (2011) Circa-
dian activity rhythms and risk of incident dementia and mild cognitive
impairment in older women. Ann Neurol 70:722-732. CrossRef Medline

Van Dam D, De Deyn PP (2011) Animal models in the drug discovery pipe-
line for Alzheimer’s disease. Br J Pharmacol 164:1285-1300. CrossRef
Medline

Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, Bu G, Frieden
C, Holtzman DM (2013) ApoE influences amyloid-beta (Abeta) clear-
ance despite minimal apoE/Abeta association in physiological conditions.
Proc Natl Acad Sci U S A 110:E1807-E1816. CrossRef Medline

Verkhratsky A, Rodriguez JJ, Parpura V (2013) Astroglia in neurological
diseases. Future Neurol 8:149-158. CrossRef Medline

Vitiello MV, Borson S (2001) Sleep disturbances in patients with Alzhei-
mer’s disease: epidemiology, pathophysiology and treatment. CNS Drugs
15:777-796. CrossRef Medline

Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC,
Cirelli C, Tononi G (2009) Cortical firing and sleep homeostasis. Neu-
ron 63:865-878. CrossRef Medline

Wentzell ], Kretzschmar D (2010) Alzheimer’s disease and tauopathy stud-
ies in flies and worms. Neurobiol Dis 40:21-28. CrossRef Medline

Westerberg CE, Mander BA, Florczak SM, Weintraub S, Mesulam MM, Zee
PC, Paller KA (2012) Concurrent impairments in sleep and memory in
amnestic mild cognitive impairment. J Int Neuropsychol Soc 18:490-500.
CrossRef Medline

Wisor JP, Edgar DM, Yesavage J, Ryan HS, McCormick CM, Lapustea N,
Murphy GM Jr (2005) Sleep and circadian abnormalities in a transgenic
mouse model of Alzheimer’s disease: a role for cholinergic transmission.
Neuroscience 131:375-385. CrossRef Medline

Vanderheyden et al. ® Alzheimer's Disease and Sleep—Wake Disturbances

Xia W (2010) Exploring Alzheimer’s disease in zebrafish. J Alzheimers Dis
20:981-990. CrossRef Medline

Xiao Q, Yan P, Ma X, Liu H, Perez R, Zhu A, Gonzales E, Burchett JM, Schuler
DR, Cirrito JR, Diwan A, Lee JM (2014) Enhancing astrocytic lysosome
biogenesis facilitates abeta clearance and attenuates amyloid plaque
pathogenesis. ] Neurosci 34:9607-9620. CrossRef Medline

Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Chris-
tensen DJ, Nicholson C, Iliff JJ, Takano T, Deane R, Nedergaard M
(2013) Sleep drives metabolite clearance from the adult brain. Science
342:373-377. CrossRef Medline

Yokogawa T, Marin W, Faraco ], Pézeron G, Appelbaum L, Zhang J, Rosa F,
Mourrain P, Mignot E (2007) Characterization of sleep in zebrafish and
insomnia in hypocretin receptor mutants. PLoS Biol 5:¢277. CrossRef
Medline

Zeppenfeld DM, Simon M, Haswell JD, D’Abreo D, Murchison C, Quinn JF,
Grafe MR, Woltjer RL, Kaye J, Iliff J] (2017) Association of perivascular
localization of aquaporin-4 with cognition and Alzheimer disease in aging
brains. JAMA Neurol 74:91-99. CrossRef Medline

Zhang B, Veasey SC, Wood MA, Leng LZ, Kaminski C, Leight S, Abel T,
Lee VM, Trojanowski JQ (2005) Impaired rapid eye movement sleep
in the Tg2576 APP murine model of Alzheimer’s disease with injury to
pedunculopontine cholinergic neurons. Am J Pathol 167:1361-1369.
CrossRef Medline

Zhdanova IV, Wang SY, Leclair OU, Danilova NP (2001) Melatonin promotes
sleep-like state in zebrafish. Brain Res 903:263-268. CrossRef Medline

ZhdanovalV, YuL, Lopez-Patino M, Shang E, Kishi S, Guelin E (2008) Agingof
the circadian system in zebrafish and the effects of melatonin on sleep and
cognitive performance. Brain Res Bull 75:433—441. CrossRef Medline


http://dx.doi.org/10.1002/ana.22468
http://www.ncbi.nlm.nih.gov/pubmed/22162057
http://dx.doi.org/10.1111/j.1476-5381.2011.01299.x
http://www.ncbi.nlm.nih.gov/pubmed/21371009
http://dx.doi.org/10.1073/pnas.1220484110
http://www.ncbi.nlm.nih.gov/pubmed/23620513
http://dx.doi.org/10.2217/fnl.12.90
http://www.ncbi.nlm.nih.gov/pubmed/23658503
http://dx.doi.org/10.2165/00023210-200115100-00004
http://www.ncbi.nlm.nih.gov/pubmed/11602004
http://dx.doi.org/10.1016/j.neuron.2009.08.024
http://www.ncbi.nlm.nih.gov/pubmed/19778514
http://dx.doi.org/10.1016/j.nbd.2010.03.007
http://www.ncbi.nlm.nih.gov/pubmed/20302939
http://dx.doi.org/10.1017/S135561771200001X
http://www.ncbi.nlm.nih.gov/pubmed/22300710
http://dx.doi.org/10.1016/j.neuroscience.2004.11.018
http://www.ncbi.nlm.nih.gov/pubmed/15708480
http://dx.doi.org/10.3233/JAD-2010-1412
http://www.ncbi.nlm.nih.gov/pubmed/20182049
http://dx.doi.org/10.1523/JNEUROSCI.3788-13.2014
http://www.ncbi.nlm.nih.gov/pubmed/25031402
http://dx.doi.org/10.1126/science.1241224
http://www.ncbi.nlm.nih.gov/pubmed/24136970
http://dx.doi.org/10.1371/journal.pbio.0050277
http://www.ncbi.nlm.nih.gov/pubmed/17941721
http://dx.doi.org/10.1001/jamaneurol.2016.4370
http://www.ncbi.nlm.nih.gov/pubmed/27893874
http://dx.doi.org/10.1016/S0002-9440(10)61223-0
http://www.ncbi.nlm.nih.gov/pubmed/16251420
http://dx.doi.org/10.1016/S0006-8993(01)02444-1
http://www.ncbi.nlm.nih.gov/pubmed/11382414
http://dx.doi.org/10.1016/j.brainresbull.2007.10.053
http://www.ncbi.nlm.nih.gov/pubmed/18331912

	Alzheimer’s Disease and Sleep–Wake Disturbances: Amyloid, Astrocytes, and Animal Models
	Introduction
	References


