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Tau is a microtubule-associated protein
that forms pathogenic inclusions in sev-
eral neurodegenerative diseases, includ-
ing Alzheimer’s disease (AD). Under
physiological conditions, dynamic post-
translational modifications of tau regulate
cytoskeletal stability. Under pathologi-
cal conditions, tau undergoes numerous
post-translational modifications that may
precede aggregation, including hyper-
phosphorylation, truncation, and abnor-
mal acetylation. Neurofibrillary tangles
(NFTs) are intraneuronal inclusions of
tau aggregated into an amyloid structure
and are one of the main histopathological
characteristics of AD. Importantly, the
density of NFTs in the AD brain is corre-
lated with neuronal death and cognitive
decline in the disease (Iqbal et al., 2016).
Although the precise mechanisms of ini-
tial tau seeding into an amyloid structure
are unknown, aggregated tau fibrils can
conformationally template soluble tau
and therefore “propagate” tau aggrega-
tion throughout the brain via anatomi-
cally connected pathways (Ayers et al.,
2018). This spreading of pathological tau
throughout the AD brain is thought to be
important in disease progression (Goed-

ert and Spillantini, 2017), and therapeu-
tics that can halt this propagation or target
NFTs might therefore be useful to treat
AD and other tauopathies (Golde et al.,
2010).

Much evidence indicates that acetyla-
tion of tau increases its propensity to
aggregate, influences other post-transla-
tional modifications, and can reduce deg-
radation of phosphorylated tau (Min et
al., 2010; Cook et al., 2014b). In addition,
tau acetylation promotes the seeding of
tau in vitro and may contribute to tau
propagation (Trzeciakiewicz et al., 2017).
Studies of human AD brain found colo-
calization of tau acetylated on lysine resi-
due 280 (K280) with phosphorylated tau
in NFTs. Increased amounts of acetylated
K280-positive NFTs were directly associ-
ated with more advanced AD stage (Irwin
et al., 2012). Together, these data suggest
that promoting tau deacetylation might
be an effective strategy for inhibiting tau
aggregation and propagation in tauopa-
thies. However, acetylation on four resi-
dues in the microtubule binding domain
of tau (Lysines 259, 290, 321, and 353) has
been found to inhibit aggregation, pos-
sibly by preventing phosphorylation at
these sites (Cook et al., 2014a). Therefore,
any viable therapeutic approach will need
to deacetylate tau preferentially at the res-
idues (K280 and K174) that promote ag-
gregation (Min et al., 2015).

When considering possible therapeu-
tic strategies that target tau acetylation, the
most logical direct approaches would be

through inhibition of tau acetylation or by
promotion of tau deacetylation (Cook et
al., 2014b). One way to increase tau
deacetylation is by targeting sirtuins. Sir-
tuins are a class of deacetylases that have
widespread effects on cellular physiology
through deacetylation of histones and
other proteins. Sirtuin 1 (SIRT1) can
deacetylate tau; and notably, its levels are
reduced in AD brain tissue, with levels
progressively decreasing as the disease ad-
vances (Julien et al., 2009; Jęśko et al.,
2017). SIRT1 can deacetylate tau residues
160 –182 and 264 –287 in vitro (Min et al.,
2010). In addition, SIRT1 deacetylates
components of the autophagy pathway
and inhibits mammalian target of rapa-
mycin signaling, both of which could lead
to increased breakdown of intracellular ag-
gregates, such as tau (Ng and Tang, 2013).

In an article recently published in The
Journal of Neuroscience, Min et al. (2018)
confirmed that SIRT1 deacetylates tau at
several residues in vitro as reported previ-
ously. In addition, the authors use the
PS19 mouse model of tauopathy that
overexpresses a human tau variant that
contains a serine residue instead of a pro-
line at amino acid 301 (P301S) and is as-
sociated with frontotemporal dementia
with parkinsonism, a primary tauopathy
(Sperfeld et al., 1999; Yoshiyama et al.,
2007). The authors generated a line of
these transgenic tau mice with brain-
specific deletion of the SIRT1 gene to in-
vestigate the absence of SIRT1 on tau
acetylation and disease progression in vivo.
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Brain-specific deletion of SIRT1 in-
creased acetylation of tau at K174 in vivo.
In addition, SIRT1 deletion modestly re-
duced synaptophysin levels, which is sug-
gestive of reduced synaptic connectivity, a
feature of AD (Spires-Jones and Hyman,
2014). Reduction of SIRT1 also led to
increased amounts of total tau and acety-
lated tau at the postsynaptic compart-
ment; increased synaptic tau has been
shown to contribute to tau propagation in
AD (DeVos et al., 2018). Lastly, brain
SIRT1 deletion increased the mortality
rate in PS19 mice, suggesting that reduc-
tion of SIRT1 in the setting of tauopathy is
detrimental to survival.

The authors went on to investigate the
effects of SIRT1 on the propagation of tau
aggregates. To do so, they injected tau fi-
brils into the hippocampus on one side of
the brain and virally expressed SIRT1 in
the contralateral hippocampus via injec-
tion of recombinant adeno-associated vi-
rus. SIRT1 overexpression reduced the
spread of tau aggregates across the mid-
line, reducing tau staining by 50%. This
result is somewhat surprising given that
their previous experiment showed that
SIRT1 deletion in the PS19 model did not
affect the overall levels of tau aggregation.
This discrepancy could be attributed to
recent findings that show the PS19 mouse
model can display widespread variability
in tau aggregation and neurodegeneration
(Woerman et al., 2017). Alternatively, this
finding may indicate that tau acetylation
is more relevant to tau propagation than
to aggregation.

Finally, Min et al. (2018) showed that
brain-specific deletion of SIRT1 had
deleterious effects on learning in both
nontransgenic and tau transgenic mice,
indicating that SIRT1 is important for
normal cognition. This is not wholly sur-
prising, as SIRT1 affects numerous path-
ways other than tau deacetylation. Most
importantly, as a histone deacetylase, SIRT1
regulates DNA coiling and genomewide
transcriptional activity. Reported effects
of SIRT1 on normal cellular physiology
include upregulation of mitochondrial
transcriptional programs that prevent
oxidative stress via increased mitogenesis.
In addition, SIRT1 can increase neu-
rotrophic signals, such as BDNF (Jęśko et
al., 2017). In this paper, SIRT1 deletion
negatively impacted longevity and learn-
ing ability, suggesting that decreasing
SIRT1 expression (such as that observed
in AD brain) may be deleterious. Indeed,
due to the extensive influences of SIRT1
on cellular physiology, it would be neces-
sary to establish that SIRT1 overexpres-

sion will not dysregulate normal brain
function if one were to propose it as a po-
tential therapeutic.

Similar to the pleotropic effects that
SIRT1 has on normal cellular processes,
SIRT1 can affect tau through several path-
ways, including regulation of autophagy
(Ng and Tang, 2013), by promoting
proteasomal degradation, through post-
translational modifications and at a tran-
scriptional level. SIRT1 inhibits mammalian
target of rapamycin signaling and thereby
enhances the autophagy system; stimula-
tion of autophagy has been proposed as a
potential therapeutic strategy across neu-
rodegenerative diseases, as nearly all of the
pertinent protein aggregates, including
tau, can be degraded via autophagy path-
ways (Menzies et al., 2017). SIRT1 can
promote proteasomal degradation of tau
via deacetylation, which increases avail-
able sites for the ubiquitination of tau and
therefore increases targeting of tau to the
proteasome (Min et al., 2010). SIRT1
overexpression can also reduce tau phos-
phorylation (Corpas et al., 2017), and
SIRT1 deletion increases tau phosphory-
lation (Min et al., 2010). There is a tre-
mendous amount of evidence supporting
the dephosphorylation of tau as a thera-
peutic strategy in AD, and SIRT1 overex-
pression could target tau in this manner.
It should also be discussed that human tau
undergoes alternative splicing to produce
six distinct isoforms, containing either
three (3R) or four (4R) microtubule bind-
ing domains due to exclusion or inclusion
of exon 10, respectively. Increased 4R tau
can increase tau phosphorylation and ag-
gregation, and SIRT1 activity can drive
exclusion of exon 10 during tau splicing
(Yin et al., 2018). This is an alternative
mechanism through which SIRT1 affects
tau at a transcriptional level and is unique
to previously proposed mechanisms that
act at a protein level. In summary, these
are all potential mechanisms where SIRT1
overexpression could beneficially affect
tau aggregation, degradation, and propa-
gation in AD.

In conclusion, this work by Min et al.
(2018) contributes to a nascent field in-
vestigating whether SIRT1 activation or
overexpression could be beneficial in
tauopathies. Moving forward, as neuro-
degeneration is a key feature of AD, it will
be valuable to determine whether tau
acetylation impacts neuronal loss and
whether SIRT1 overexpression is able to
prevent neurotoxicity. Further experi-
ments should also determine which of the
mechanisms discussed enables SIRT1
overexpression to prevent tau propaga-

tion. While there are always concerns
about off-target effects caused by overex-
pression of a protein with wide-ranging
functions such as SIRT1, it has been
previously reported that hippocampal
overexpression of SIRT1 via lentiviral trans-
duction had positive or nondeleterious ef-
fects on cognition, anxiety, locomotor
activity, and memory in 10-month-old
nontransgenic and 3xTg-AD mice (Cor-
pas et al., 2017). Together, these data
warrant further exploration of SIRT1
overexpression as a therapeutic strategy
in AD.
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