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Differentiating between Models of Perceptual Decision
Making Using Pupil Size Inferred Confidence
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During perceptual decisions, subjects often rely more strongly on early, rather than late, sensory evidence, even in tasks when both are
equally informative about the correct decision. This early psychophysical weighting has been explained by an integration-to-bound
decision process, in which the stimulus is ignored after the accumulated evidence reaches a certain bound, or confidence level. Here, we
derive predictions about how the average temporal weighting of the evidence depends on a subject’s decision confidence in this model. To
test these predictions empirically, we devised a method to infer decision confidence from pupil size in 2 male monkeys performing a
disparity discrimination task. Our animals’ data confirmed the integration-to-bound predictions, with different internal decision bounds
and different levels of correlation between pupil size and decision confidence accounting for differences between animals. However, the
data were less compatible with two alternative accounts for early psychophysical weighting: attractor dynamics either within the decision
area or due to feedback to sensory areas, or a feedforward account due to neuronal response adaptation. This approach also opens the
door to using confidence more broadly when studying the neural basis of decision making.
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An animal’s ability to adjust decisions based on its level of confidence, sometimes referred to as “metacognition,” has generated
substantial interest in neuroscience. Here, we show how measurements of pupil diameter in macaques can be used to infer their
confidence. This technique opens the door to more neurophysiological studies of confidence because it eliminates the need for
training on behavioral paradigms to evaluate confidence. We then use this technique to test predictions from competing expla-
nations of why subjects in perceptual decision making often rely more strongly on early evidence: the way in which the strength of
this effect should depend on a subject’s decision confidence. We find that a bounded decision formation process best explains our
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empirical data.
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Introduction

During perceptual discrimination tasks, subjects often rely more
strongly on early, rather than late, sensory evidence, even when
both are equally informative about the correct decision (e.g.,
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Kiani et al., 2008; Neri and Levi, 2008; Nienborg and Cumming,
2009; Yates et al., 2017). But some studies in rodents and humans
reported uniform weighting of the stimulus throughout the trial
(Brunton et al., 2013; Raposo et al., 2014; Drugowitsch et al.,
2016). From the perspective of maximizing the sensory informa-
tion and hence performance, such early weighting is nonoptimal.
Understanding this behavior may shed light on how the activity,
or the read-out of sensory neurons limits our perceptual abilities,
a major goal of contemporary neuroscience (e.g., Pitkow et al.,
2015; Cumming and Nienborg, 2016; Clery et al., 2017). The
classical explanation for such early psychophysical weighting is
that it reflects an integration-to-bound decision process in which
sensory evidence is ignored once an internal decision bound is
reached (Kiani et al., 2008). For simple perceptual discrimination
tasks, decision confidence can be defined statistically (Hangya et
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al., 2016), and hence also measured for such a model. Here, we
derived new predictions of this model for how the temporal
weighting of sensory evidence should vary as a function of
decision confidence on individual trials. These revealed char-
acteristic differences in the temporal weighting for high- and
low-confidence trials, depending on the decision bound. We then
sought to test these predictions in macaques performing a fixed
duration visual discrimination task while also estimating the an-
imal’s subjective decision confidence.

Measuring decision confidence psychophysically is relatively
difficult, particularly in animals, and increases the complexity of
atask (e.g., for post-decision wagering) (Kiani and Shadlen, 2009;
Komura et al., 2013), hence requiring additional training. To
avoid these difficulties, we devised a metric based on the mon-
keys’ pupil size. Combining this metric for decision confidence
with psychophysical reverse correlation (Neri et al., 1999; Nien-
borg and Cumming, 2007, 2009) allowed us to quantify the ani-
mals’ psychophysical weighting strategy for different levels of
inferred decision confidence, and test our model predictions. The
animals showed clear early psychophysical weighting on average.
But separating this analysis by inferred decision confidence re-
vealed that early psychophysical weighting was largely restricted
to high-confidence trials. Indeed, on low inferred confidence tri-
als, the animals weighted the stimulus relatively uniformly or even
slightly more toward the end of the trial. Such behavior matched
the predictions of the integration-to-bound model. Furthermore,
the differences between both animals could be accounted for by the
model by differences in its only two free parameters: internal deci-
sion bound as well as the level of uncertainty in our inference of
decision confidence.

The animals’ behavior was not as well explained by two alter-
native accounts of early psychophysical weighting. The first alter-
native account are models in which the decision stage provides
self-reinforcing feedback to the sensory neurons (Wimmer et al.,
2015), as suggested for example, for probabilistic inference
(Haefner et al., 2016) or by attractor dynamics within the deci-
sion making area (Wang, 2002; Wong et al., 2007). The second,
recent alternative proposal is that the early weighting simply re-
flects the feedforward effect of the dynamics (gain control or
adaptation) of the activity of the sensory neurons (Yates et al.,
2017). Although each of these alternatives predicts the early
weighting, we were unable to fully capture the animals’ data with
the temporal weighting predictions of these models when sepa-
rating trials by decision confidence.

Together, our data suggest that the animals rely on a bounded
decision formation process. In this model, evidence at the end of
the trial is only ignored once a certain level of decision confidence
is reached, thereby reducing the impact on performance. More-
over, this combination of techniques provides a novel tool for
a more fine-grained dissection of an animal’s psychophysical
behavior.

Materials and Methods

Animal preparation and surgery. All experimental protocols were ap-
proved by the local authorities (Regierungsprasidium Tiibingen). Two
adult male rhesus monkeys (Macaca mulatta), Animal A (7 kg; 11 years
old) and Animal B (8 kg; 11 years old), housed in pairs, participated in the
experiments. The animals were surgically implanted with a titanium
headpost under general anesthesia using aseptic techniques as described
previously (Seillier et al., 2017).

Visual discrimination task. The animals were trained to perform a two
choice disparity discrimination task (see Fig. 2a). The animals initiated
trials with the visual fixation on a small white fixation spot (size: 0.08°—
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0.12°) located on the center of the screen. After the animals maintained
fixation for 500 ms, a visual stimulus was presented (median eccentricity
for Animal A: 5.3°% range 3.0°-9.0°, median eccentricity for Animal B:
3.0° range 2.3°-5.0°) for 1500 ms. After that two choice targets, each
consisting of a symbol representing either a near or a far choice and
whose positions were randomized between trials, appeared above and
below the fixation spot. Once the fixation spot disappeared, the animals
were allowed to make a choice via saccade to one of these targets. The
animals received a liquid reward for correct choices. Randomizing target
positions allowed us to disentangle saccade direction and choice.

Visual stimuli. Visual stimuli (luminance linearized) were back-
projected on a screen using a DLP LED Propixx projector (ViewPixx; run
at 100 Hz 1920 X 1080 pixel resolution, 30 cd/m? mean luminance) and
an active circular polarizer (Depth Q; 200 Hz) for Animal B (viewing
distance 97.5 cm), or two projection design projectors (F21 DLP; 60 Hz
1920 X 1080 pixel resolution, 225 cd/m? mean luminance, and aviewing
distance of 149 cm) and passive linear polarizing filters for Animal A. The
animals viewed the screen through passive circular (Animal A) or linear
(Animal B), respectively, polarizing filter. Stimuli were generated with
custom written software using MATLAB (The MathWorks) and the psy-
chophysics toolbox (Brainard, 1997; Pelli, 1997; Kleiner et al., 2007).

The stimuli were circular dynamic random dot stereograms, which
consisted of equal numbers of white and black dots, similar to those
previously used (Nienborg and Cumming, 2009). Each random dot
stereogram had a disparity-varying circular center (3° diameter) sur-
rounded by an annulus (1° wide) shown at 0° disparity. On each video-
frame, all center dots had the same disparity whose value was changed
randomly on each video-frame according to the probability mass distri-
bution set for the stimulus. For the 0% signal stimulus, the disparity was
drawn from a uniform distribution (typically 11 values in 0.05° incre-
ments from —0.25° to 0.25°). The monkeys were rewarded randomly on
half of the trials on 0% signal trials. These 0% signal trials were randomly
interleaved with near disparity or far disparity signal trials. For each
session, one near and one far disparity value was used to introduce dis-
parity signal by increasing the probability of this disparity on each video-
frame during the stimulus presentation on this trial. The range of signal
strengths was adjusted between sessions to manipulate task difficulty and
encourage performance at psychophysical threshold. Typical added sig-
nal values were 3%, 6%, 12%, 25%, and 50%.

The choice target symbols were random dot stereograms very similar
to 100% signal stimuli, except that their diameter was smaller (2.2°).

To allow for constant mean luminance across the screen, equal num-
bers of black and white dots were used for the stimulus and the target
symbols. Because we used a white fixation dot, systematic differences in
fixation precision could, in principle, influence our findings. If this were
the case, a black fixation marker should give the opposite results. We
therefore also conducted control experiments using a black fixation
marker, which yielded very similar results, indicating that systematic
differences in fixation precision are insufficient to explain our findings.

Reward size. To discourage the animals from guessing, the available
reward size was increased based on their task performance. After 3 con-
secutive trials with correct choices, the available reward size was doubled
compared with the original reward size. After 4 consecutive trials with
correct choices, the available reward size was again doubled (quadruple
compared with the original size) and remained at this size until the next
error. After every error trial, the available reward size was reset to the
original. For the analyses in Figure 5, “large available reward” trials refer
to both intermediate and large available reward trials collapsed.

Pupil data acquisition and analysis. During the experiments, the ani-
mals’ eye positions and pupil size were measured at 500 Hz using an
infrared video-based eye tracker (Eyelink 1000, SR Research), digitized
and stored for the subsequent offline analysis. The eye tracker was
mounted in a fixed position on the primate chair to minimize variability
in pupil size measurements between sessions. Our pupil analysis focused
on the period of animals’ fixation in which the gaze angles were constant.
The background of the display was at mid-gray levels throughout, result-
ing in considerable illumination of the darkened experimental booths.
To nonetheless exclude the possibility that our results were substantially
affected by the dark adaptation of the pupils after the animals entered the
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experimental booths, we performed control analyses for which we ex-
cluded the initial 20 min of each experimental session, to allow for dark
adaptation of the pupil (Hansen and Fulton, 1986), with very similar
results (data not shown).

Only successfully completed trials (correct and error trials) were in-
cluded for the analysis. During preprocessing, we first downsampled the
pupil size data such that the sampling rate matched the refresh rates of
our screens (60 Hz for Animal A, 100 Hz for Animal B), effectively
low-pass filtering the data. We next high-pass filtered the data by sub-
tracting on each trial the mean pupil size of the preceding 10 and follow-
ing 10 trials (excluding the value of the current trial). This analysis
removed linear trends on the pupil size within a session and was omitted
for the analysis of pupil size changes throughout a session (see Fig. 3a).
This analysis yielded qualitatively similar results to bandpass filtering
(e.g., de Gee et al., 2014; Urai et al.,, 2017) the pupil size data. Finally,
pupil size measurements were z-scored using the mean and SD during
the stimulus presentation period across all trials.

When comparing pupil size across conditions, we aimed to minimize
any mean difference of pupil size between conditions at stimulus onset.
To do so, we computed a baseline pupil size, which was defined as the
average pupil size in the epoch 200 ms before stimulus onset, and itera-
tively excluded trials in which the baseline value deviated most from the
condition with the higher number of trials until the absolute mean dif-
ference of the z score of the baseline pupil size was =0.05. This procedure
successfully made the baseline pupil size statistically indistinguishable
across conditions with a small loss of trials in each session (for details, see
Inclusion criteria).

Psychometric threshold. The animals’ choice-behaviors were summa-
rized as a psychometric function by plotting the percentage of “far”
choices as a function of the signed disparity signals and then fitted with a
cumulative Gaussian function using maximum likelihood estimation
(see Fig. 2b). The SD of the cumulative Gaussian fit was defined as the
psychophysical threshold and corresponds to the 84% correct level. The
mean of the cumulative Gaussian quantified the subject’s bias.

Psychophysical kernel. Psychophysical kernels were computed to quan-
tify how the animals used the stimulus for their choices (Nienborg and
Cumming, 2009, 2007). Only 0% signal trials were used for this analysis.
First, the stimulus was converted into an n X m matrix (n, number of
discrete disparity values used for the stimulus; m, number of trials) that
contained the number of video-frames on which each disparity was pre-
sented per trial. Next, the trials were divided into “far” choice and “near”
choice trials. The time-averaged psychophysical kernel was then com-
puted as the difference between the mean matrix for “near” choice trials
and that for “far” choice trials. We also computed a time-resolved psy-
chophysical kernel as the psychophysical kernels for four nonoverlap-
ping consecutive time bins (each of 375 ms duration) during the stimulus
presentation period. Kernels were averaged across sessions, weighted by
the number of trials in that session. The amplitude of the psychophysical
kernels (PKAs) over time was calculated as the inner product between the
time-averaged psychophysical kernel and the psychophysical kernel for
each time bin. Kernel amplitudes separated by inferred decision confi-
dence were then normalized by the maximum of the psychophysical
kernel averaged across both conditions such that the relative differences
between conditions remained. The SE of the amplitude was calculated by
bootstrapping (1000 repeats). We also verified that our results were qual-
itatively similar when psychophysical kernels were computed using lo-
gistic regression (compare Yates et al., 2017).

Operationalizing decision confidence. When viewed from a statistical
perspective, decision confidence can be linked to several behavioral met-
rics, such as accuracy, discriminability, and choices on error or correct
trials (Hangya et al., 2016) (see Fig. 5b). Here, we simulated an observer’s
decision variables on each trial analogously to Urai et al. (2017). The
decision variable (d) was drawn from a normal distribution whose mean
depended on the signed signal strength (with negative and positive signal
reflecting near and far stimuli, respectively) and the SD on the observer’s
internal noise (22.8% signal, the median of the animals’ psychophysical
thresholds). The sign of the d determined the choice on each trial. As-
suming a category boundary ¢ = 0 (no bias), trial-by-trial confidence
(the distance between the decision variable and the category boundary)
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was transformed into an average across trials percent correct (Lak et al.,
2014) as follows:

1 n
confidence = ZE[:]f(‘di —d)

where fis the cumulative density function of the normal distribution as
follows:

f(x) = %[1 + erf(ai\/iﬂ X 100%

To simulate the relationship between accuracy and confidence, we gen-
erated the d for 108 trials, binned these based on the level of confidence
(20 bins), and computed the accuracy for each bin. To examine the
relationship between confidence and psychophysical performance, we
performed a median split of the trials based on confidence and measured
the psychometric function for high- and low-confidence trials. Finally,
we calculated the mean confidence as a function of signal strength sepa-
rately for correct and error trials.

Perceptual decision models. To compare the animals’ psychophysical
kernels to different decision strategies, we simulated different perceptual
decision models and calculated psychophysical kernels for the model
data. For all simulations, only 0% signal trials were used, and the model
“decision confidence” was defined as |decision variable| at the end of each
trial, unless stated otherwise. PKAs were then computed separately for
high- and low-confidence trials, after a median split based on this metric
for decision confidence. To account for the imperfect relationship be-
tween pupil size and decision confidence, we allowed for noise (“confi-
dence noise,” Gaussian additive noise ~N(0, o%), where o was scaled by
the SD of the noise-free distribution of the confidence values) when
assigning trials into the high- or low-confidence groups and fitting the
model PKAs separated by confidence to the animals’ data (compare re-
sults in Fig. 7). For this fitting procedure, we minimized the mean
squared error using MATLAB fminsearchbnd. To compare the model
performance, we used the Akaike Information Criterion (AIC) and nor-
malized mean squared error (where the difference between model pre-
diction and data point is divided by the SE of the respective data point).

Integration-to-bound model. In this model, the decision variable (d) is
computed as the integrated time-varying difference of the population
response of two pools of sensory neurons. For the disparity discrimina-
tion task, these would consist of one pool preferring near disparities, the
other preferring far disparities. We computed the time-varying popula-
tion response as the dot product between the time-varying stimulus
(analogous to that used in the experiments) and an idealized version of
the animals’ time-averaged psychophysical kernel. On each trial, once the
decision variable reached a decision bound (at decision time, t) (Mazurek
etal., 2003; Kiani et al., 2008), the decision variable was fixed at that value
(absorbing bound) until the end of the trial. The choice of the model was
based on sign (d) at the end of the trial. We used two approaches to derive
decision confidence for this model. First, it was defined as || at the end of
the trial. This approach ignores the decision time. This model had one
free parameter (the height of the decision bound), which we varied to
best account for the time courses of the PKAs for low- and high-
confidence trials. In this model, all trials in which the decision bound was
reached are assigned the same confidence. Second, we also generated
predictions for the proposal that subjective confidence is higher for those
trials in which the bound is reached earlier (Kiani and Shadlen, 2009;
Kiani et al., 2014). Because our analysis only relied on the rank order of
the trials based on confidence, our results are independent of how exactly
this time is converted into confidence.

Neural sampling-based probabilistic inference model. We used the
model by Haefner et al. (2016), implemented for an orientation discrim-
ination task. In this model, the decision is based on a belief over the
correct decision (posterior probability over the correct decision), which
is updated throughout each trial. The decision confidence was computed
as [posterior probability —0.5|, which effectively reflects the distance of
the posterior to the category boundary. To approximate the time course
of the PKA for high- and low-confidence trials, we varied the strength of
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the feedback in the model, the contrast of the orientation-selective com-
ponent of the stimulus and the trial duration. The parameters used to
generate the sampling model predictions were the same as in the original
paper (k = 2, A = 3, 6 = 0.08, n, = 20; stimulus contrast on each
individual frame = 10) (Haefner et al., 2016) and only differed in the
number of sensory neurons (1, = 256, n, = 64) to reduce computation
time. The decreasing PKA in this model is the result of a feedback loop
between the decision making area and the sensory representation.

Evidence accumulation toy-model (idealized attractor model). To be able
to systematically explore the predictions of attractor-based models for
confidence-specific PKAs, we devised two simple abstract models. In the
first, the decision variable d, at time ¢ is defined as follows:

di=d(1+a)+p,

where w, is the sensory evidence at time f, and « is an acceleration pa-
rameter of the accumulation process (compare Brunton et al., 2013). For
a = 0, the model performs perfect integration. For a < 0, it is a leaky
integrator; and for « > 0, the model implements a confirmation bias or
attractor. In the second model, a variant of the previous one, the accel-
eration parameter o depends on a sigmoidal function of d such that
instead:

d, = d,_, + atanh(d,_,) +

For a > 0, the behavior of the d, can then be described by an attractor
with a double-well energy landscape in which the minimum of each well
corresponds to the choice attractors (compare Wimmer et al., 2015), a
behavior also observed for the sampling model by Haefner et al. (2016).

Early sensory weighting model after Yates et al. (2017). We simulated
psychophysical model decisions based on sensory responses of a linear-
nonlinear model. The linear stage consisted of two temporal filters (k,
one for contrast, one for disparity) as follows:

k(t)=e (1 —e ") + at + b,
where 0 <t<t,,,a=0,b=0,7>0.

The time-varying disparity stimulus and the stimulus contrast were each
convolved with the temporal filter, and their sum (x(¢)) was exponenti-
ated to generate spike rates as follows:

A(t) = e

The model parameters a, b, t,,,,, T as well as the relative weights of the
disparity and contrast kernels were chosen such that the dynamics of
the output of the linear-nonlinear model approximately matched that of
the average peristimulus time histogram neurons in area MT (Yates et al.,
2017, their Fig. 3b). Starting from these initial values we then varied these
model parameters to explore a range of adaptation levels as shown in Fig.
8). To simulate the decision process, we used two of these MT responses
but with opposite tuning, and computed the decision variable (d(t)) as
the integral of the difference of these time-varying MT responses. The
decision on each trial was based on sign (d(t)) at the end of the trial, and
decision confidence defined as |d| at the end of the trial.

We further explored an extension of this model to additionally ac-
count for the temporal autocorrelation of the spiking response, also after
Yates et al. (2017). This variant was identical to the first, except that (1)
we generated spikes based on the spike rates using a Poisson process; and
(2) we included a spike history term such that:

)\(t) — e(x(:)+h*r(r—1))

where h (“history filter,” as in Yates et al., 2017, their Supplementary
Math Note Fig. 1¢) is the postspike weight that integrates the neuron’s
own spiking history (r(t—1)). This extension yielded similar results to the
version without spike history (data not shown).

Inclusion criteria. Data from a total of 436 sessions (300 and 136 ses-
sions from Animal A and B, respectively) were included. Trials with
fixation errors were excluded, thereby reducing the number of included
trials from 874,641 to 590,050 successfully completed trials (Animal A:
409,597 trials; Animal B: 180,453 trials). Additionally, to ensure that the
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differences in pupil size modulation across conditions were not simply a
consequence of systematic differences in the baseline pupil size across
conditions, we equalized baseline pupil size between conditions by iter-
atively removing trials until the mean difference of the z-scored baseline
pupil size values between conditions was =0.05. This baseline equaliza-
tion was done separately for the following conditions. (1) To explore the
effect of signal strength (see Fig. 3¢), signal trials were divided into easy
(=50% signal) and hard (>0% and <10% signal) trials, and the baseline
equalized between these conditions, thereby removing 2457 trials from
Animal A and 409 trials from Animal B. (2) To compute PKAs (see Figs.
2¢, 7), and to explore the effect of available reward size on pupil size
modulation (see Fig. 3b), only no-signal (0% signal) trials were used. To
avoid that our metric used to infer decision confidence (mean pupil size
during the last 250 ms before stimulus) and the pupil size modulation for
available reward size merely reflected differences in baseline pupil size
across conditions, we first separated trials into two groups: small and
large (including both intermediate and large) available reward trials.
Within each reward-size group, we divided trials according to our pupil
size metric (median split) into two subgroups and equalized baseline
across these subgroups. In a second step, we equalized baseline across the
two reward-size groups. This two step procedure removed 7237 trials
from Animal A and 2478 trials from Animal B. Additionally, we only
included sessions in which the trials per session remaining after baseline
correction exceeded 600, and in which each experimental condition had
at least 10 trials. For each session, three psychometric functions were
computed (one using all the completed trials, one each including only
trials for which the available reward size was large or small, respectively).
We fitted cumulative Gaussians to each of these psychometric functions,
and only sessions for which each of these fits explained >90% of the
variance were included. This selection resulted in 213 sessions from An-
imal A (312,998 trials) and 84 sessions from Animal B (122,897 trials)
that were included for analysis. For our analyses based on inferred
decision confidence (see Figs. 5, 7), we only used the last 40 sessions
for Animal B after sufficient learning (compare Fig. 4). In control
analyses, we verified that all our results were similar when instead no
inclusion criteria were applied and all 590,050 successfully completed
trials used.

Data and code availability. The code to reproduce the figures is avail-
able online at https://github.com/NienborgLab/Kawaguchi_et_al_2018,
and the data at https://figshare.com/articles/Kawaguchi_et_al_2018/
7076621.

Experimental design and statistical analyses. Two macaque monkeys
(both male) were used in this study, reflecting the typical sample size of
psychophysical or electrophysiological studies involving macaque
monkeys. The statistical analyses for the results are presented in Figures
3-7.

Results

Integration-to-bound models predict characteristic differences
in temporal sensory weighting when separating trials by decision
confidence

Subjects during psychophysical discrimination tasks often give
more weight to the early than late part of the stimulus presenta-
tion, even in tasks when both are equally informative about the
correctanswer (Kiani et al., 2008; Nienborg and Cumming, 2009;
Yates et al., 2017). We refer to this behavior as early psychophys-
ical weighting, and the standard computational account is that it
reflects an integration-to-bound decision process (Kiani et al.,
2008). In brief, this explanation suggests that subjects accumulate
sensory evidence only up to a predefined bound, not only in
reaction time tasks but also in tasks when the stimulus duration is
fixed by the experimenter, and when a complete accumulation of
evidence over the course of the entire trial would be optimal. Asa
result, sensory evidence is ignored after the internal bound is
reached on a given trial and, together with a variable time at
which this bound is reached, on average across trials, early evi-
dence is weighted more strongly than evidence presented late in a
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Figure 1. Integration-to-bound models predict characteristic differences in temporal sen-

sory weighting for high- and low-confidence trials. a—e, The PKA is plotted over time for
integration-to-bound models with different decision bounds. PKAs for low confidence, high
confidence, and averaged across all trials are shown in green, yellow, and black, respectively,
and normalized by the peak of the average psychophysical kernel. For intermediate levels of the
decision bound, the PKAs cross such that the PKA for low-confidence trials exceeds that for
high-confidence trials at the end of the stimulus presentation. The value of the decision bound
ismarked in each panel. f, PKA, ., is plotted for high (yellow) and low (green) confidence trials.
The difference, APKA, .. depends characteristically on the level of the decision bound in the
model and the stimulus strength. The decision bound is normalized by the SD of the sensory
variability. The relationship between APKA, .., and the value of the decision bound therefore
holds generally across tasks with different stimulus variability. g—I, Same as a—f, but for an
integration-to-bound model in which decision confidence is based on both decision time and
evidence. Because our analysis only relied on the rank order of the decision confidence, the
results are independent of the relative weight of these influences on decision confidence.
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trial. If this explanation for the observed early weighting is cor-
rect, then across trials in which the decision variable never
reaches the bound, all evidence would be weighted equally, re-
gardless of when it was presented during the trial.

Interestingly, for simple perceptual discrimination tasks, de-
cision confidence can be defined statistically (Hangya et al., 2016)
and directly linked to the decision variable. In an integration-to-
bound model, it simply reflects the distance of the decision vari-
able to the category boundary. Here, we exploited this link and
systematically explored how the temporal weighting of the sen-
sory stimulus should depend on decision confidence according to
the integration-to-bound model. To do so, we categorized trials
into high- or low-confidence trials (median split) and measured
the temporal weighting of the sensory evidence as the PKA over
time (see Materials and Methods) for each category. We com-
pared these for high-confidence trials, low-confidence trials, and
across all trials while systematically varying the decision bound of
the model (Fig. 1). As expected, we found that the average PKA
decreases more steeply if the decision bound is lower (Fig. 1a—e,
black lines), indicating that the decision bound was reached ear-
lier on average, and therefore the sensory evidence ignored from
an earlier point in the trial. It is also intuitive that the PKA was
typically larger for high- compared with low-confidence trials,
reflecting the stronger sensory evidence, and hence confidence,
on those trials. If the decision bound is low, the decision bound is
reached on a large proportion of trials, and the assigned decision
confidence identical. These trials are therefore randomly assigned
to the high- and low-confidence category, resulting in the simi-
larity of the PKAs (Fig. 1a). However, an interesting, nontrivial
characteristic emerges for intermediate values of the decision
bound (Fig. 1b,¢). Relatively strong evidence early during the trial
led to high-confidence and early reaching of the decision bound-
ary, resulting in the pronounced decrease of the PKA for high-
confidence trials. But for low-confidence trials, the PKA not only
showed no decrease but an increase over time (Fig. 1b—d). As a
result, the PKAs for high- and low-confidence trials crossed and
the PKA for low-confidence trials exceeded that for high-
confidence trials at the end of the stimulus presentation. Over a
range of values of the decision bound, the difference between the
PKA for high- and low-confidence trials was therefore negative
(Fig. 1f). This characteristic behavior was even more pronounced
when we defined decision confidence not only based on evidence
but also decision time, as previously suggested (Kiani and
Shadlen, 2009; Kiani et al., 2014) (compare Fig. 1¢-I). A two race
extension of the bounded integration model as used in van den
Berg et al. (2016) produced similar results. Because our analysis
depended only on the rank order of the decision confidence,
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Task and early psychophysical weighting behavior. a, Two choice disparity discrimination task. After the animals maintained fixation for 0.5 s, the stimulus was shown for 1.5 5. The

animals had to decide whether the stimulus was “far” or “near” by making a saccade to one of two targets after the stimulus offset and received a liquid reward for correct choices. b, Average
psychophysical performance of Animal A (left) and Animal B (right) across all sessions, each fitted with a cumulative Gaussian function. The average psychophysical thresholds are 23% signal and
45% signal for Animal A and Animal B, respectively. ¢, The time course of the PKA (normalized) shows that the animals weight the stimulus more strongly early during the trial. Data were obtained
from 0% signal trials and collapsed across animals (A: 55,570 trials in 213 sessions; B: 20,394 trials in 84 sessions). Error bars indicate SEM derived by resampling.



Kawaguchi et al. ® Models of Perceptual Decision Making Using Pupil Size Inferred Confidence J. Neurosci., October 10, 2018 - 38(41):8874 — 8888 « 8879

White fixation marker Black fixation marker

Animal A Animal B f Animal A Animal B

a os " 1.2 14 1.3 7

e
° - 1st quintile 1
_8 .&) / - 2nd quintile
T 2 3rd quintile =
g s L~ 4th quintile
c o

-
N

-1.3 -1.5 - -1.5 - -1.3 -
b os 1 9 os 12
; 2
2 o large reward 7
N g intermediate reward
g = small reward
s 2
c
-1.2 - -1 -1 -0.8
C 1 1 h ;. 1.3
° - /
g8 / /'/
= n > y, i
g = / hard Y ,
s 3 e \
c |/ \ p
B L : . AL 081 . .
0 750 1500 0 750 1500 0 1000 2000 0 750 1500
time after stimulus onset (ms) time after stimulus onset (ms)
psychophysical threshold (% signal) e mean pupil size (z-score)
d 90 1 0.9 7
B2
@
2
e
()
=
Ky
20 - 0.07 - X
0.07 0.9
small reward small reward
Figure 3.  Pupil size modulation with task covariates is consistent with pupil-linked arousal. a— ¢, Average z scores (across conditions) == SEM of pupil size aligned on stimulus onset are shown

for Monkey A (left) and Monkey B (right). Horizontal lines at the bottom of each panel indicate epochs of significant ( p << 0.05, Bonferroni-corrected, 450 pupil size samples) pupil size modulation
(by ANOVA in a, two sample t tests in b, ¢). a, Mean pupil size for five equally sized bins throughout each experimental session. Only small available reward 0% signal trials are used. Pupil size
decreases throughout the session as expected for decreasing motivation (Monkey A: 6987 trials from 213 sessions; Monkey B: 2571 trials from 84 sessions). b, Average time courses of pupil size on
0% signal trials that followed a correct trial for large (red), intermediate (purple), and small (blue) available reward trials (Monkey A: 18,700 small available reward trials, 5468 intermediate available
reward trials, and 13,035 large available reward trials from 213 sessions; Monkey B: 6897 small available reward trials, 2011 intermediate available reward trials, and 4843 large available reward
trials from 84 sessions). ¢, Average time courses of pupil size on hard (<C10%, excluding 0% signal, green) and easy (=50% signal, yellow) trials. Only trials with small available reward that followed
a correct trial were used (Monkey A: 39,390 hard trials and 8651 easy trials from 213 sessions; Monkey B: 10,813 hard trials and 14,020 easy trials from 84 sessions). d, Psychophysical thresholds on
large available reward trials were significantly smaller than in small available reward trials (Monkey A: n = 213, p << 10 ~ %% Monkey B: n = 84, p << 0.01). e, Average pupil size during the 250 ms
before the stimulus offset was significantly larger compared with small available reward trials (Monkey A: n = 213, p << 10 ~>'; Monkey B: n = 84, p << 10 ", all paired t tests). ~ h, Control
sessions for which a black fixation marker was used were included when the number of trials exceeded 600 and the number of trials in each condition per session was at least 10 (9 and 12 sessions,
for Animal A and Animal B, respectively). f~h, Colors same as in a—c. f, Monkey A: 139 trials in each time bin from 9 sessions; Monkey B: 221 trials in each time bin from 12 sessions. g, Monkey A:
411 small available reward trials, 102 intermediate available reward trials, and 403 large available reward trials from 9 sessions; Monkey B: 558 small available reward trials, 198 intermediate
available reward trials, and 407 large available reward trials from 12 sessions. The pupil size averaged over 250 ms before stimulus offset of the stimulus presentation tended to be larger compared
with small available reward trials (p = 0.12 for Animal A, p << 0.01 for Animal B, paired ¢ tests). h, Monkey A: 775 hard trials and 465 easy trials from 9 sessions; Monkey B: 1347 hard trials and 1169
easy trials from 12 sessions. Similar to our results for white fixation markers, the pupil size averaged over the last 250 ms before stimulus offset on easy trials (yellow) significantly exceeded that for
hard trials (p << 10 ~*for Animal A and Animal B, respectively). Data are mean * SEM.

these results hold generally, regardless of the relative weighting of
time and evidence for decision confidence (see Materials and
Methods). After sorting zero-signal trials by decision variable, the
PKA cannot easily be interpreted as a weight on the stimulus. For
instance, the temporal weights on any one trial are always a non-
zero constant starting at the beginning of the trial, and zero after
some point. As a result, the averaged weights across all trials must
be decreasing. The fact that the PKA may be increasing is the

result of sorting the trials by confidence which separates the stim-
ulus distributions between the high-and the low-signal trials.
Equally, the more pronounced early difference in PKAs for low-
decision bounds (compare Fig. 1a with Fig. 1g) reflects the fact
that, when decision confidence is based on both time and evi-
dence, trials with stronger early sensory evidence, and hence early
decision times, are assigned to the high-confidence category.
Nonetheless, these simulations reveal characteristic predictions
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about how a particular statistic (the psychophysical kernel as
measured by taking the difference between the choice-triggered
averages) should vary as a function of confidence for a bounded
decision formation process. We therefore next aimed to test these
predictions in monkeys performing a visual discrimination task
for which early psychophysical weighting was previously re-
ported (Nienborg and Cumming, 2009).

The animals exhibit early psychophysical weighting behavior
in this task

Two macaque monkeys performed a coarse disparity discrimina-
tion task (Fig. 2a), similar to that described previously (Nienborg
and Cumming, 2009). The animals initiated each trial by fixating
on a small fixation marker; and after a delay of 500 ms, a dynamic
random dot stimulus was presented for a fixed duration of 1500
ms. The stimulus was a circular random dot pattern defining a
central disk and a surrounding annulus. The animals’ task was to
determine whether the disparity-varying center was either pro-
truding (“near”) or receding (“far”) relative to the surrounding
annulus. Following the stimulus presentations, two choice targets
appeared above and below the fixation point: one symbolizing a
“near” choice, the other a “far” choice. Importantly, the positions
of the choice targets were randomized between trials such that the
animals’ choices were independent of their saccade direction.
While the animals performed this task, we measured their eye
positions and pupil size.

Our animals performed the task well (Fig. 2b). Similar to pre-
vious findings (e.g., Kiani et al., 2008; Nienborg and Cumming,
2009; Yates et al., 2017), the animals relied more strongly on the
stimulus early than late during the stimulus presentation. We

quantified this as a decrease in the PKA (see Materials and Meth-
ods) throughout the stimulus presentation (Fig. 2¢). To test the
model predictions separated by decision confidence in the ani-
mals’ data, we therefore sought to devise an approach to infer the
animals’ decision confidence from pupil size measurements in
this task.

Pupil size is systematically associated with experimental
covariates, consistent with pupil-linked changes in arousal
Pupil size has been linked to a subject’s arousal in both humans
(Bradley et al., 2008) and monkeys (Rudebeck et al., 2014; Ebitz
and Platt, 2015; Suzuki et al., 2016; Mitz et al., 2017). Our animals
performed a substantial number of trials in each session (mean;
Animal A: 828; Animal B: 1067). We therefore wondered whether
a signature of their decreasing motivation with increased satia-
tion during the behavioral session could be found in the animals’
pupil sizes. To this end, we split the trials of each session into five
equally sized bins (quintiles) and computed the average pupil size
aligned on stimulus onset (Fig. 3a). For these averages, only 0%
signal trials on which the available reward size was small (see
Materials and Methods) were used. Moreover, to allow for the
detection of slow trends throughout the session, the pupil size
data were not high-pass filtered for this analysis. We found that,
in both animals, pupil size systematically decreased throughout
the session, as expected for a decrease in arousal with decreased
motivation or task engagement with progressive satiation.

We next explored the effect of varying the available reward size
in a predictable way (see Materials and Methods). Consistent
with previous results (Cicmil et al., 2015), the animals’ psycho-
physical performance on large available reward trials exceeded
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Data are mean = SEM.

that on small available reward trials (Fig. 3d). When averaging the
time course of the pupil size for 0% signal trials separated by
available reward size, we found that pupil size for large available
reward trials increased progressively compared with that on small
available reward trials (Fig. 3b). The animals were rewarded after
correct choices following the stimulus presentation. The time
course of this pupil size modulation with available reward size is
therefore consistent with modulation related to the animals’ ex-
pectation of the reward toward the end of the trial. Indeed, the
difference in mean pupil with available reward size over the last

250 ms of the stimulus presentation was highly statistically reli-
able (Fig. 3e), similar to previous findings (Baruni et al., 2015).
Previous studies that revealed arousal linked pupil size mod-
ulation typically used long intertrial intervals (ITIs) lasting sev-
eral seconds (Rudebeck et al., 2014; Ebitz and Platt, 2015; Suzuki
et al., 2016; Mitz et al., 2017), which were deemed necessary to
stabilize pupil size before stimulus or trial onset. Conversely, our
task allowed for short ITTs (Animal A: 65—-4772 ms, median: 136
ms; Animal B: 115-3933, median: 146 ms) to yield a large number
of trials per session. Nonetheless, the above analyses revealed
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robust signatures of pupil size modulation with experimental
manipulations of arousal also for this task.

Given the relatively short ITIs and the sluggishness of the
pupil response, we performed a number of control analyses to
verify that these results did not merely reflect effects from the
preceding trials. First, we equalized the baseline pupil size before
stimulus onset across conditions (see Materials and Methods).
Second, we explored the effect of the preceding saccade direction,
ITI, and the mean pupil size during the last 250 ms of the stimulus
presentation on the preceding trial. While there was no system-
atic effect difference in pupil size as a function of the saccade
direction on the preceding trial (p = 0.75 and p = 0.92 for Mon-
key A and Monkey B, respectively), there was a systematic corre-
lation between ITT and mean pupil size in 1 animal (p = 0.50 and
p = 0.002, for Monkey A and Monkey B, respectively), and be-
tween the mean pupil size on the preceding and current trial in
both animals (p < 10 "®and p < 107, for Monkey A and Mon-
key B, respectively; for the distribution of Spearman’s correlation
coefficients across sessions). We therefore performed additional
analyses to verify that the effects of available reward size and task
difficulty were found, even when ITI or mean pupil size on the
preceding trial was matched. To this end, we divided trials into
five groups of similar average ITI or mean pupil size on the pre-
ceding trial each and repeated the analysis (Fig. 3b,c) for each of
these quintiles and found that the main characteristics in pupil
size modulation were robust.

Previous work in humans found that pupil size increased with
task difficulty, which is thought to reflect changes in arousal re-
lated to “cognitive load” or “mental effort” (Hess and Polt, 1964;
Kahneman and Beatty, 1966; Alnes et al., 2014). To explore
whether such a signature was evident for our task, we divided our
data into easy (=50% signal) and hard trials (<10% signal, ex-
cluding 0% signal trials) (Fig. 3¢). To remove effects of available
reward size, this analysis was restricted to small available reward
trials. Consistent with the expected modulation for cognitive
load, pupil size in hard trials weakly exceeded that for easy trials in
the initial period of the stimulus presentation (before ~750 ms
after stimulus onset). However, the more pronounced modula-
tion with task difficulty occurred in the opposite direction toward
the end of the trial.

Remarkably, plotting this modulation across training sessions
revealed that this late modulation only emerged once the animals
knew the task well (Fig. 4a) and was correlated with task perfor-
mance (Fig. 4). This late modulation appears to reflect the ani-
mals’ expectation to receive a reward based on their knowledge of
the probability of being correct given the stimulus difficulty. It
might thus be interpretable as a modulation based on the ani-
mal’s confidence to make the correct decision. We will show next
that this modulation indeed exhibits established key signatures
(Hangya et al., 2016; Urai et al., 2017) of decision confidence,
supporting this interpretation.

Pupil size in this task can be used to infer the animal’s
decision confidence

For a two-alternative sensory discrimination task analogous to
the one used here, decision confidence is monotonically related
to the distance to a category boundary (Kepecs et al., 2008;
Hangya et al., 2016), that is, the integrated sensory evidence, as
schematically shown in Figure 5a. From a statistical perspective,
decision confidence in such discrimination tasks should be sys-
tematically associated with evidence discriminability, accuracy,
and choice outcome (model predictions in Fig. 5b). Empirically,
we found that mean pupil size during the 250 ms before stimulus
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Figure 6.  Time window for signature of decision confidence in pupil size within the trial.

a-d, p values for different analyses are shown for different times within the trial (x-axis) and
lengths of the analysis window (y-axis) over which pupil size was averaged. Data for Animals A
and B are shown in the left and right columns, respectively. Red star indicates the time window
used for the analyses in this study. a, Bonferroni-corrected p values for comparison between
pupil size in easy versus hard trials, as in Figure 3c. b, p values for the Spearman’s correlation
between accuracy and mean pupil size within each window, as in Fig. 5¢ (left column). ¢, p
values derived by resampling for comparing psychometric thresholds for low- versus high-
inferred confidence trials, as in Fig. 5¢ (middle column). d, p values for the Spearman’s correla-
tion between mean pupil size in the respective window and the predicted confidence, as in
Fig. 5¢ (right column).

offset showed the three characteristics of statistical decision con-
fidence keeping reward size constant (Fig. 5¢): we restricted these
analyses to small available reward trials to eliminate the effect of
available reward size. The findings were qualitatively the same
when only analyzing large available reward trials (Fig. 5d). First,
in both animals, pupil size was correlated with performance ac-
curacy (Fig. 5¢,d, left column; p < 10 ~*and p < 0.01 for Animal
A and B, respectively, Spearman’s rank correlation). Second,
when separating trials based on pupil size (median split), the
animals showed better discrimination performance for trials on
which pupil size was larger, as expected for improved evidence
discrimination with higher decision confidence (Hangya et al.,
2016) (Fig. 5¢,d, middle column; p < 107> and p = 0.014 for
Animal A and B, respectively, by resampling). Third, as pre-
dicted, when separating correct and error trials, decision confi-
dence increased on correct and decreased on error trials (Fig.
5¢,d, right column; p < 10 " and p < 0.01 for Animal A and p <
0.001 and p < 0.05 for Animal B in Fig. 5¢ and Fig. 5d, respec-
tively; Spearman’s rank correlation with the model predictions in
Fig. 5b). Interestingly, we also observe a slight increase in pupil
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The animals’ psychophysical weighting on low- and high-confidence trials is compared with model predictions. a- d, Circles represent PKAs for high (yellow) and low (green) inferred

confidence trials (median split) for Animal A (top row) and Animal B (bottom row), plotted as a function of time (A: 213 sessions; B: 40 sessions). To avoid confounding the pupil size modulation for

available reward size with that for inferred decision confidence, the median split based on pupil size

available reward trials. Error bars indicate SEM derived by resampling. a, The integration-to-bound model in which trials were separated based on decision confidence defined as |decision variable

(ITB) provides a reasonably good fit to the animals’ data, including the characteristic higher PKA for

to assign trials to the high- or low-confidence bin was performed separately for small and large

lower confidence trials in the last time bin, resulting in a crossover of PKAs. b, The integration-

to-bound model with decision confidence depended on both |decision variable| and the model’s decision time on each trial yields improved fits, in particular for Animal A for which the crossover of
PKA was more pronounced. Both the neural sampling-based probabilistic inference model for which decision confidence is defined by the Bayesian posterior probability (c) and the early sensory
weighting model after Yates et al. (2017) based on a linear-nonlinear model reflecting the response dynamics (gain control) of sensory neurons (d) are unable to capture the crossover in PKA

separated by confidence late in the trial resulting in worse fits. Model performance is compared usi
normalized mean squared error (f).

size with signal strength for higher signal strengths in Animal B.
Such a pattern is expected if decision confidence is informed not
only by the strength of the sensory evidence, as described above,
but also by decision time as observed in human observers (Kiani
et al., 2014; see also Adler and Ma, 2017) for how increasing
confidence ratings may actually be compatible with Bayesian
confidence. Indeed, fits of the model by Kiani et al. (2014) corre-
lated well with the data (p < 10 "*and p <0.01 for Animal A, and
p < 107%and p < 0.01 for Animal B in Fig. 5¢ and Fig. 5d,
respectively; Spearman’s rank correlation).

To explore when within the trial pupil size could be used to
infer decision confidence, we systematically repeated the sta-
tistical analyses in Figures 3¢ and 5 when varying the time
within the trial and the duration over which pupil size was
averaged (Fig. 6). The results show that pupil size toward the
end of the trial over a range of analysis windows could be used
to infer decision confidence.

Because we used a white fixation marker, our results with
pupil size measurements might in principle have been affected by
the animals’ fixation precision. To control for this potential con-
found, we therefore performed a number of control sessions in
which, instead of a white fixation dot, we used a black fixation
marker. If our results were mostly driven by differences in lumi-
nance resulting from differences in fixation precision across con-

ng AAIC, the difference in AIC compared with the best performing model (ITB-dt) (e), and the

ditions, the modulation with our experimental covariates should
reverse. However, our results were robust when, instead of a
white fixation marker, we used a black fixation marker (Fig. 3f~h).
Together, these analyses support our conclusion that mean pupil
size at the end of the stimulus presentation can be used to infer
the animals’ decision confidence.

The animals’ data separated by inferred decision confidence
support the predictions of the integration-to-bound model
Having established the relationship between pupil size and deci-
sion confidence in our task, we now use it to test the confidence-
related predictions of the integration-to-bound model using our
data. To do so, we computed the animals’ psychophysical kernels
separately after categorizing high- or low-inferred decision con-
fidence trials (median split based on the pupil size metric). For
inferred high-confidence trials, we observed a decrease in PKA
for both monkeys (Fig. 7a—d). In contrast, for inferred low-
confidence trials, the PKA either stayed relatively constant
throughout the trial (Monkey B, Fig. 7a—d, bottom row), or first
increased and then decreased (Monkey A, Fig. 7a—d, top row).
Furthermore, the PKA at the end of low-confidence trials was
approximately equal (Monkey B) or higher (Monkey A) than the
PKA for high-confidence trials. We then fit the two variants of the
integration-to-bound model (compare Fig. 1) while allowing for
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noise in our assignment of trials as high versus low confidence (to
account for the imperfect relationship between pupil size and
decision confidence) before computing the models’ PKAs for
high- and low-confidence trials (Fig. 7a,b). Importantly, the
data for both monkeys best agree with the predictions of an
integration-to-bound model when subjective confidence is based
on both evidence and time (Kiani et al., 2014) (Fig. 7b,e,f) with
the difference between the 2 animals explainable by slightly dif-
fering internal integration bounds (compare Fig. 17 and Fig. 1j),
as well as different levels of noise to infer decision confidence
(Table 1). Interestingly, the noise to infer decision confidence is
lower for Animal A, which is plausible given this animal’s more
extensive learning of the task (compare Fig. 4).

We next wondered whether the data were also explainable by
two alternative accounts of the early psychophysical weighting:
(1) models with attractor dynamics resulting from recurrent
feedback; or (2) a purely feedforward account that includes
adaptation.

To test the first alternative account, we implemented a model
(Haefner et al., 2016) in which the decrease of the PKA results
from self-reinforcing feedback from decision neurons to sensory
neurons. Because of its recurrent connectivity, this model exhib-
its attractor dynamics, in which early evidence is effectively
weighted more strongly than evidence presented late in the trial.
Other recurrent models of perceptual decision making, whether
across cortical hierarchies (Wimmer et al., 2015), or proposing
attractor dynamics within the decision area itself (Wang, 2002;
Wong et al., 2007), share this attractor behavior. In these models,
the behavior of the decision variable after stimulus onset can be
described by a double-well energy landscape, where the mini-
mum of each well corresponds to a choice attractor (compare
Wimmer et al., 2015, their Fig. 2d, inset). As a result, the effect of
early evidence on the decision variable will be amplified by the
subsequent pull exerted by whatever attractor toward which the
early evidence had pushed the decision variable. While this be-
havior resembles that of the integration-to-bound model, it dif-
fers in its predictions when separating trials according to
confidence (Fig. 7c). Analogous to our fits of the integration-to-
bound models, we included a noise parameter to allow for an
imperfect assignment of trials to the high- or low-confidence
group when fitting this model to the monkeys’ data. These fits
were worse than those for the integration-to-bound models (Fig.
76,6,f). Specifically, we were unable to identify model parameters
for which the kernel amplitude in low-confidence trials exceeded
that for high-confidence trials at the end of the stimulus presen-
tation (Fig. 8a). To convince ourselves that an attractor dynamic
by itself is indeed unable to account for our data, we confirmed
this finding for two idealized attractor models in which attractor
strength and hence slope of the PKA were determined by a single
parameter (similar to the integration-to-bound model; Fig. 8b,¢).
As for the neural sampling-based probabilistic inference model,
varying this parameter did not yield kernels for which the kernel
amplitude in low-confidence trials exceeded that for high-
confidence trials at the end of the stimulus presentation. Indeed,
in the absence of confidence noise, the only way to achieve a
similar late-trial PKA for high and low confidence was to
strengthen the attractor dynamics in one of the models to a de-
gree that made the late-trial PKA close to zero, in contradiction to
the data (Fig. 8¢).

Finally, we tested the behavior of two versions of an early
sensory weighting model after Yates et al. (2017, their Figs. 4a,
6a), in which the decrease in PKA results from adaptation of
the sensory responses in a purely feedforward way. The model
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Table 1. Model parameters used in each figure”

Parameter Value

Integration-to-bound model (Figs. 1,9) Range (0, 20)

Decision bound
Integration-to-bound model (Fig. 7a,b)

Decision bound 8.24 (Fig. 7a, Animal A)
8.67 (Fig. 7a, Animal B)
8.77 (Fig. 7b, Animal A)
8.67 (Fig. 7b, Animal B)

Confidence noise (o) 0.02 (Fig. 7a, Animal A)
1.49 (Fig. 7a, Animal B)
1.36 (Fig. 7b, Animal A)
2.08 (Fig. 7b, Animal B)

Neural sampling-based probabilistic
inference model (Fig. 7¢)
Trial duration 15 (Fig. 7c, Animal A) (a.u.)
25 (Fig. 7¢, Animal B) (a.u.)
2.53 (Fig. 7¢, Animal A)
2.41 (Fig. 7¢, Animal B)

Confidence noise (o)

Neural sampling-based probabilistic
inference model (Fig. 7¢, 8a)

K 2

A 3

o 0.08

n, 256

ny 64

n, 20

Stimulus contrast 10

Evidence-accumulation toy model (Fig. 8b,¢)
« Range (0.04, 0.4) (Fig. 8b)

Range (0.01,0.1) (Fig. 8¢)
Trial duration Range (20, 1000) (a.u.)
Early sensory weighting model (Fig. 7d)

t,

max

411 ms (Fig. 7d, Animal A)
415 ms (Fig. 7d, Animal B)

T 26.7 ms (Fig. 7d, Animal A)
28.9 ms (Fig. 7d, Animal B)
a 0.493 (Fig. 7d, Animal A; for stimulus kernel)

0.584 (Fig. 7d, Animal B; for stimulus kernel)
0 (for contrast kernel)
b —0.0135 (Fig. 7d, Animal A)
—0.0160 (Fig. 7d, Animal B)
Weight of contrast kernel relative 1.08 (Fig. 7d, Animal A)
to stimulus kernel
0.78 (Fig. 7d, Animal B)
2.77 (Fig. 7d, Animal A)
2.98 (Fig. 7d, Animal B)

Confidence noise (o)

Early sensory weighting model (Fig. 8d)
t

max

Range (100, 500) (ms)

(
Range (10, 100) (ms)

r
a Range (0, 1.37) (for stimulus kernel),
0 (for contrast kernel)
b Range (—0.0375,0)
Weight of contrast kernel relative Range (0, 3)

to stimulus kernel

“For parameter description, see Materials and Methods., a.u., Arbitrary units.

generates choices based on the integrated inputs of stimulus-
selective sensory neurons, whose response decreases over the
time of the stimulus presentation. Such decrease in response
amplitude after response onset is typically observed for sen-
sory neurons and may reflect a gain control mechanism or
stimulus-dependent adaptation. As expected, we found a de-
creasing PKA across all trials. But like for the attractor-based
models investigated above, and unlike for our data, the ampli-
tude of the high-confidence PKA was consistently larger than
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Figure8. Exploring the parameter space of the models. Quantifying the PKA in the last time bin (PKA, ., for high- and low-confidence trials. Insets, PKAs separated by confidence (colors as in
Figs. 1, 7) predicted by each model. Values for Animal A and B are included for comparison. , Exploring parameters of the neural sampling-based probabilistic inference model (Haefner et al., 2016).
Model parameters were chosen such that the average PKA decreased. We then explored PKA, |, when systematically increasing the trial duration. While systematically decreasing with trial
duration, for high-confidence trials, PKA, 1, high_confidence = PKA( lastjow_confidence 31055 all parameters. b, Simplified model of evidence accumulation with confirmation bias (sigmoidal
acceleration; see Materials and Methods), mimicking the behavior of a or of a choice attractor (Wimmer et al., 2015) and a bimodal distribution of the decision variable late in the trial (double-well
energy landscape). Similar to @, PKA, 1,c; high confidence = PKA tasttow_confidence- Moreover, APKA, .. decreases with trial duration and with increasing the confirmation bias (parametrized by
acceleration parameter c) but consistently remains positive, contrasting with the monkeys’ data. ¢, Simplified model of evidence accumulation with confirmation bias (linear acceleration; see
Materials and Methods) but a consistently unimodal distribution of the decision variable, in contrast to Wimmer et al. (2015) and Wong et al. (2007). When increasing o PKA, ., approaches 0 for
both high- and low-confidence trials, in contradiction with the animals’ data. d, Exploring parameters of the early sensory weighting model after Yates et al. (2017). We systematically changed the
relative weights and the width of the stimulus and contrast kernel (parameters g, b, ., 7), thereby varying the degree and time course of the adaptation. The level of adaptation was evaluated
in response to the preferred stimulus and quantified as the response at the end of the stimulus presentation relative to the peak response. Negative values for adaptation correspond to adaptation
below baseline. Vertical dashed line indicates the degree of adaptation observed by Yates et al. (2017) for MT neurons. Only simulations for which a decrease in the overall kernel amplitude over time
is observed, and for which the PKA in high-confidence trials exceeds that for low-confidence trials in the first time bin were included. We plot APKA, .., (color code as defined in b, right) as a function
of the degree of adaptation (abscissa) and the neuron’s correlation with the choice of the model (choice correlation, quantified as defined by Pitkow et al., 2015). Choice correlation was evaluated
for the entire trial (left) and the first (middle) and last (right) time bin. We found that APKA, |, << 0 (blue data points) only for sensory responses that were otherwise inconsistent with empirical
data (i.e., suppression of the sensory response below baseline or negative correlation with choice early during the trial; compare middle panel).

the low-confidence PKA (Fig. 7d). As for the previous model  wide range of model parameters that yielded plausible sensory
fits, we additionally included a noise parameter to allow foran  responses (compare Fig. 8d).

imperfect assignment of trials into the high- and low- Together, these results indicate that, while each of these mod-
confidence groups. This pattern remained unchanged over a  els could account for early psychophysical weighting, a decision
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performance is shown for integration-to-bound models with different decision bounds (color
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bound for model its to the animals’ datain Fig. 7a, b. It shows that their decision bound is close
towhere performance asymptotes, and supports the view that the cost of the decision bound on
performance is small.

bound was necessary to account for the monkeys’ behavioral
differences with inferred decision confidence.

Given the importance of a decision bound to account for the
data, we explored the cost of a decision bound on performance in
our task (Fig. 9). The psychophysical performance is shown for
models with different decision bounds and best in the absence of
a decision bound, as expected (Fig. 94, red curve). The cost on
performance (percent correct) resulting from the decision bound
is depicted in Figure 9b. The vertical red bar marks the range of
the animals’ decision bounds obtained from the model fitting
(compare Fig. 7a,b). The performance for this value has reached
asymptotic values (exceeding 95% maximal performance), sug-
gesting that the cost on performance for the animals is small (see
Discussion).

Discussion

The frequently observed (Kiani et al., 2008; Neri and Levi, 2008;
Nienborg and Cumming, 2009; Yates et al., 2017) early weighting
of sensory evidence in perceptual decision making tasks has clas-
sically been explained to reflect an integration-to-bound decision
process (Mazurek et al., 2003; Kiani et al., 2008). Here, we first
derived decision confidence-specific predictions for this account.
Second, to test these predictions, we devised a metric based on
pupil size that allowed us to estimate 2 macaques’ subjective de-
cision confidence on individual trials without the use of a wager-
ing paradigm. Finally, we compared our confidence-specific data
with two alternative accounts of early weighting (attractor dy-
namics and response adaptation) and found that neither of those
models could explain our data. This combined approach pro-
vided new insights into the animals’ decision formation process.
It revealed that the frequently observed (Kiani et al., 2008; Neri
and Levi, 2008; Nienborg and Cumming, 2009; Yates et al., 2017)
early weighting of the sensory evidence was largely restricted to
high-confidence trials, approximately consistent with findings in
humans (Zylberberg et al., 2012), and that the shape of the PKA
confirmed our predictions based on the integration-to-bound
model. Indeed, the match between data and model was best when
we incorporated a recent proposal about how subjective confi-
dence was not just based on the strength of the presented evi-
dence, but also integration time (Kiani et al., 2014). Moreover,
our data could not be fully explained by other computational
accounts for early psychophysical weighting, such as sensory ad-
aptation (Yates et al., 2017) or models of perceptual decision
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making with recurrent processing (Wong et al., 2007; Wimmer et
al., 2015; Haefner et al., 2016). We note that our findings do not
preclude the contribution of these alternative models. However,
our results highlight that none of these accounts is sufficient to
explain the data by itself and that a decision rule that implements
an early stopping of the evidence integration process appears
necessary.

Our analysis of pupil size showed that, even without the sta-
bilizing effect of long ITIs, pupil size was reliably correlated with
experimental covariates and could be used to infer the animal’s
decision confidence. The correlation of pupil size with decision
confidence is similar to that in a recent psychophysical study in
humans (Krishnamurthy et al., 2017) that queried decision con-
fidence directly. As we did here, this study found a positive cor-
relation between subjects’ pupil size before they made their
judgment and their reported decision confidence. Previous work
inferring an animal’s decision confidence typically relied on be-
havioral measurements, such as postdecision wagering (Kiani
and Shadlen, 2009; Komura et al., 2013) and the time an animal is
willing to wait for a reward (Lak et al., 2014), which increases the
complexity of the behavioral paradigm and hence the required
training of the animals. To our knowledge, the present study is
the first to relate pupil size measurements in animals to decision
confidence. Such a pupil size-based metric opens up studies of
decision making in animals to include decision confidence with-
out increasing the complexity of the behavioral paradigm.

In our task, the animals were rewarded on each trial directly
after making their choice. Consistent with modulation of pupil-
linked arousal due to reward expectation (Baruni et al., 2015;
Varazzani et al., 2015), pupil size was progressively larger toward
the end of the trial when the (known) available reward was large
compared with when it was small (compare Fig. 3b). Such
reward-based interpretation of the pupil size modulation associ-
ated with decision confidence may explain our findings here and
those of Krishnamurthy et al. (2017), which contrasts with stud-
ies associating increases in pupil size with uncertainty (e.g., Sat-
terthwaite et al., 2007; Nassar et al., 2012; Lempert et al., 2015; de
Berker et al., 2016; Urai et al., 2017). Specifically, a recent study
(Urai et al., 2017) observed the opposite relationship between
inferred decision confidence and pupil size, measured after the
subject’s perceptual report: larger pupil size after the subject’s
report, and before receiving feedback, was associated with higher
decision uncertainty. Access to information (e.g., whether or not
a choice is correct) can be rewarding by itself (Behrens et al., 2007;
Bromberg-Martin and Hikosaka, 2009). It may therefore be that,
in Urai et al. (2017), the reward was such access to information
(i.e., the feedback on each trial). When the confidence about the
correct choice is low, the information is more valuable, hence
resulting in the observed negative correlation with pupil size.
Alternatively, this discrepancy may also reflect methodological
differences, such as the time interval used for the analysis (before
or after the choice was made) (but see also Lempert et al., 2015).
More generally, these findings underscore the importance to con-
sider a subject’s motivational context when interpreting pupil
size modulation.

Moreover, pupil size modulation by cognitive factors has been
linked to a number of neural circuits mirroring the complexity of
the signal. These include the locus coeruleus noradrenergic sys-
tem (Aston-Jones and Cohen, 2005; Joshi et al., 2016), a brain-
wide neuromodulatory system involved in arousal, the inferior
and superior colliculi, which mediate a subject’s orienting re-
sponse to salient stimuli (Wang et al., 2012; Wang and Munoz,
2015), but the dopaminergic system has also been implicated



Kawaguchi et al. ® Models of Perceptual Decision Making Using Pupil Size Inferred Confidence

(Lak et al., 2017; Colizoli et al., 2018), and there is evidence for an
association with cholinergic modulation (Polack et al., 2013; Re-
imer et al., 2016), which is also linked to attention.

The emergence of a reliable signature of decision confidence
required that the animals performed the task well (compare Fig.
4). We propose two possible, not mutually exclusive, accounts for
this. First, in line with the notion that the observed pupil size
modulation linked to decision confidence is driven in part by
reward expectation, it may reflect the animal’s improved knowl-
edge of the timing of the task and hence the anticipation of the
reward. Second, it may reflect the fact that to engage the pupil-
linked arousal circuitry a certain threshold of decision confidence
needs to be exceeded. Such an interpretation would mean that,
once the signature of decision confidence emerges, a higher level
of decision confidence is reached at least on some trials.

Our animals’ psychophysical behavior separated by inferred
decision confidence was well described by a bounded accumula-
tion decision process. These results imply that in a subset of trials
sensory evidence was ignored after a certain level of decision
confidence had been gained. We find that, in our task, across all
difficulty levels, the loss in performance is small for the bounds
required to explain our data (Fig. 9). Because the overall loss will
differ between different experiments, it might explain some of the
differences seen in the temporal profile of PKAs across studies
(e.g., Kiani et al., 2008; Neri and Levi, 2008; Nienborg and Cum-
ming, 2009; Wyart et al., 2012; Brunton et al., 2013; Drugowitsch
et al., 2016; Yates et al., 2017).
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