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Grid-Cell Activity on Linear Tracks Indicates Purely
Translational Remapping of 2D Firing Patterns at Movement
Turning Points

X Michaela Pröll, X Stefan Häusler, and X Andreas V.M. Herz
Bernstein Center for Computational Neuroscience Munich and Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried,
Germany

Grid cells in rodent medial entorhinal cortex are thought to play a critical role for spatial navigation. When the animal is freely moving in
an open arena the firing fields of each grid cell tend to form a hexagonal lattice spanning the environment. For movements along a linear
track the cells seem to respond differently. They show multiple firing fields that are not periodically arranged and whose shape and
position change when the running direction is reversed. In addition, peak firing rates vary widely from field to field. Measured along one
running direction only, firing fields are, however, compatible with a slice through a two-dimensional (2D) hexagonal pattern. It is an open
question, whether this is also true if leftward and rightward runs are jointly considered. By analyzing data from 15 male Long–Evans rats,
we show that a single hexagonal firing pattern explains the linear-track data if translational shifts of the pattern are allowed at the
movement turning points. A rotation or scaling of the grid is not required. The agreement is further improved if the peak firing rates of the
underlying 2D grid fields can vary from field to field, as suggested by recent studies. These findings have direct consequences for
experiments using linear tracks in virtual reality.
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Introduction
When a rodent explores an open arena, grid cells in its medial
entorhinal cortex discharge in spatial firing patterns that resem-
ble hexagonal lattices (Hafting et al., 2005). The spatial scales of

these lattices approximate a geometric series so that discrete grid-
cell modules arise (Stensola et al., 2012). The grid patterns of cells
within the same module are aligned and differ only by a global
phase offset. When the animal moves along a linear track, grid
cells seem to respond differently. Their spike activity is still spa-
tially modulated but no longer periodic. In addition, the peak
firing rates of a given grid cell differ strongly from field to field
(Lipton et al., 2007; Brun et al., 2008; Derdikman et al., 2009;
Gupta et al., 2014). Firing fields recorded along one running
direction are, however, compatible with a slice through a two-
dimensional (2D) hexagonal lattice (Yoon et al., 2016). This sug-
gests that the animal interprets the one-dimensional (1D) linear
track as part of a two-dimensional environment, and supports
the view that grid cells provide a universal metric for spatial
navigation.

Received Feb. 14, 2018; revised June 21, 2018; accepted June 24, 2018.
Author contributions: M.P., S.H., and A.V.M.H. designed research; M.P., S.H., and A.V.M.H. performed research;

M.P. analyzed data; M.P., S.H., and A.V.M.H. wrote the paper.
This work was supported by the German Federal Ministry for Education and Research Grants 01GQ0440. We thank

M.-B. Moser and E. I. Moser for making data recorded by V. H. Brun and coworkers publicly available. We also thank
F. Kempf for an initial analysis of the data, and M. Stemmler for stimulating discussions.

The authors declare no competing financial interests.
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Significance Statement

Various types of neurons support spatial navigation. Their response properties are often studied in reduced settings and might
change when the animal can freely explore its environment. Grid cells in rodents, for example, exhibit seemingly irregular firing
fields when animal movement is restricted to a linear track but highly regular patterns in two-dimensional (2D) arenas. We show
that linear-track responses of a cell for both leftward and rightward running directions can be explained as cuts through a single
hexagonal pattern if translational remapping is allowed at movement turning points; neither rotations nor scale transformations
are needed. These results provide a basis to quantify grid-cell activity in 1D virtual reality and could help to detect and categorize
grid cells without experiments in 2D environments.
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This view is challenged by the observation that grid fields
measured along a linear track vary between left-to-right and
right-to-left runs (Lipton et al., 2007; Brun et al., 2008; Derdik-
man et al., 2009; Gupta et al., 2014; Pérez-Escobar et al., 2016),
suggesting that the one-dimensional activity patterns of a grid cell
cannot correspond to a single slice through the same fixed two-
dimensional lattice. Instead, translations, rotations, or even scale
transformations might be needed to explain the experimental
data. Because the study of Yoon et al. (2016) was restricted to runs
in one direction, it could not address this important aspect.

To analyze how direction-dependent 1D activity patterns are
embedded in 2D lattices, we investigated four different scenarios.
First, grid-cell responses could, in principle, correspond to slices
through the same one lattice (OL) for both running directions
(Fig. 1A). Given the experimental evidence (see Brun et al., 2008),
this is an unlikely scenario. Nevertheless, it provides a helpful null
hypothesis. Next, we considered two scenarios motivated by re-
mapping experiments in 2D environments. Larger changes (e.g.,
moving the animal to a new room) can cause a translation and
rotation, while smaller changes to the environment, such as
changing the enclosure but not the room (Fyhn et al., 2007) or
nonmetric context changes (Marozzi et al., 2015) typically lead to
a pure translational shift of the grid pattern within the enclosure.
Taking such remapping experiments into account, we hypothe-
sized that when considering two opposite running directions, the
underlying 2D patterns could be identical except of a transla-
tional (S) shift or an additional rotation (S�R), as shown in Figure
1, B and C. Note that rotations by multiples of 60° are equivalent to
pure shifts (S). Finally, the two hexagonal lattices might also be scaled
differently (S�R�Sc), as depicted in Figure 1D.

Here, we show that a joint hexagonal firing pattern explains
the linear-track data for both running directions as soon as a
translational shift (S) is allowed. Importantly, added rotations
(S�R) or additional scalings (S�R�Sc) of the grid are not
needed. The agreement between measured data and the model
framework improves further if the firing rates of the underlying
2D grid field can vary from field to field, as has been suggested
recently (Diehl et al., 2017; Dunn et al., 2017; Ismakov et al.,
2017).

These findings reveal that the hexagonal firing-field structure
of grid cells can persist even in quasi one-dimensional environ-
ments. This does not imply that the same is true in enclosures
with strong asymmetries, as is evident from the seemingly irreg-
ular arrangement of grid fields in trapezoidal arenas (Krupic et
al., 2015). Our results do, however, provide a basis to quantify
and interpret the grid-cell activity of animals running on linear
tracks in virtual reality (Domnisoru et al., 2013; Schmidt-Hieber
and Häusser, 2013) and could help to detect and categorize grid
cells without experiments in two-dimensional arenas.

Materials and Methods
Data. We analyzed spike-train data from Brun et al. (2008). These au-
thors recorded grid cells from 15 male Long–Evans rats on a linear track
that was 18 m long and extended over three successive rooms. The track
passed through two doorways located 9.5 and 12 m from the west end of
the track; the starting position was located at the east end. To avoid
artifacts associated with the doors, we focused our analysis on data from
within the largest room. Therefore, and to avoid contamination by
sharp-wave-related firing, spikes that were recorded �40 cm from the
west and east walls of this room were excluded from further analysis,
resulting in the same effective track length of 8.7 m for all recording
sessions.

Grid cell selection. Although all recorded cells were classified as grid
cells in 2D, not all showed spontaneous activity and sufficiently spatially

modulated firing along the linear track. We therefore excluded cells if
they did not spike at all for �70 cm in a row or if the mean-to-maximum
firing rate ratio was �0.2 in the analyzed room. From the data on 143
cells provided to us, 67 cells were left.

Figure 1. Four scenarios. A, One Lattice (OL): a joint hexagonal firing pattern underlies
grid-cell activity on both left-to-right runs (orange firing fields) and right-to-left runs (blue
firing fields) along a linear track, which is shown as a gray horizontal bar in all subpanels. B, Shift
(S): compared with A, the joint hexagonal firing patterns may be shifted differently for both
running directions. Notice that within this scenario a rotation of the lattice by multiples of 60°
can be described by a pure shift. C, Shift�Rotation (S�R): apart from translational shifts (S)
rotations are now allowed, too. D, Shift�Rotation�Scale (S�R�Sc): in addition to shifts (S)
and rotations ( R), the scales (Sc) of the underlying hexagonal grids may vary between the two
running directions.
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Firing rate. We divided the track into bins of 1 cm. Similar to Brun et al.
(2008), we calculated rate maps using spatial smoothing with a Gaussian
kernel. The rate at each position is as follows:
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with the mean firing rate �(x) for bin x and a Gaussian kernel, g, with a
smoothing factor of 3.5 cm; n is the number of spikes, si is the position of
the ith spike, h is the spatial smoothing factor, T is the length of session,
and y(t) is the position of the rat at time t.

Error measurement. To determine the quality of the fit, we use the
mean squared error between the firing rate along the linear track and the
fit, normalized by the firing rate, as follows:

error �
�(firingrate(t) � fit(t))2

�(firingrate(t))2
.

Consequently, the error for each recording is the sum of the error for
left-to-right and right-to-left runs divided by 2.

Slices. To test the hypothesis that firing rates along a linear track can be
interpreted as one-dimensional slices through a two-dimensional hexag-
onal lattice, we assumed periodic von Mises tuning curves (Herz et al.,
2017) in 2D. The 1D slices can then be parametrized with the following
parameters: �, period of the hexagonal lattice; �, width of the firing fields

of the lattice; f̂, peak firing rate for the grid; (x, y), starting point; and �,
angle of the grid rotation, confined (without loss of generality) to the
interval [0°, 30°].

x, y, and � describe the position of the stripes in the lattice. The pa-

rameters �, �, and f̂ determine the hexagonal lattice. So, the firing rate in
a point in the hexagonal lattice is given by the following:
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Apart from the lattice transformations considered here—purely transla-
tional shifts (S), added rotations (S�R), as well as additional scaling
transformations (S�R�Sc)— one could in principle also study pure R or
Sc operations and R�Sc combinations. For those mappings, however,
one has to specify an “anchor point” (i.e., the fixed point of the R and/or
Sc operation). As this involves an arbitrary choice, we do not systemati-
cally study such scenarios.

Fitting procedure. To minimize the error between the slice model and
the measured firing rates, we first used an extensive search procedure at
an intermediate parameter resolution (brute force search). Grid-field
spacing and field size could vary between 80% of the smallest values and
120% of the largest values reported by Brun et al. (2008). No restriction
was applied to the rotation angles; because of the sixfold and mirror
symmetries of the hexagonal grid, only angles between 0° and 30° had to
be considered. The search intervals were divided into 10 –50 bins de-
pending on their size and the number of different parameters explored in
one run.

This procedure resulted in sets of approximate parameters for the
preliminary error minima. We then took the parameters for the 15 small-
est errors with a pairwise different lattice period, �. These sets were used
as initial conditions for Powell’s method (scipy package) to find local
minima. To avoid solutions where one running direction would be fitted
perfectly and the other only poorly, the errors of both running directions
were not allowed to differ more than three times the SD of the errors
between left and right runs in the model S�R�Sc. To find a robust
minimum, we first varied the parameters of the local minima slightly and
used them again as initial conditions for Powell’s method. This proce-
dure was repeated 500 times. To further improve the search process, we
then picked the eight fits with the smallest error and used them as initial
conditions for another run of Powell’s method. This procedure was re-
peated 100 times. The slice with the smallest error is called best fit. To
study the robustness of the fitting procedure, we doubled the number of
parameters in the first step for three cells used as test cases and repeated
the second step of the minimization process as described before. The
results were stable.

Random rotations. We tested the influence of rotations by rotating the
best fits of each recording 1000 times randomly. The resulting mean
errors are given in the Results.

Experimental design and statistical analysis. We reanalyzed data originally
recorded by Brun et al. (2008) and refer the reader to that publication for
details on the experimental design. All our analyses were performed in Py-
thon (RRID:SCR_008394). Specific statistical tests used are stated through-
out the text. The Wilcoxon rank-sum test as well as the linear regression
were taken from Python scipy.stats (RRID:SCR_008058) and the Rayleigh
test and the circular–circular correlation from Matlab circstats (RRID:
SCR_001622). To show that the shifts do not have a preferred length, we
used the Wilcoxon rank-sum test for samples drawn from a uniform distri-
bution and the distribution of the length of the shifts. We repeated the test
1000 times with different samples and give the mean p value in the text.

Shift along the track for the model shift. We analyzed the offsets in the
slices of right-to-left and left-to-right runs for simultaneously recorded
cells from the same module. The offsets were optimized as described
above (see Fitting procedure); spacing as well as the rotation had to be the
same for all cells from the same module.

Bootstrapping. We bootstrapped the firing rates of each direction of a
cell by using sampling with replacement. We randomly drew a single run.
The selection process was repeated until there were as many runs as in the
original session. We then calculated the firing rates and the error between
the original and the bootstrapped firing rates.

Results
When rodents move along a linear track in one direction, their
grid-cell activity profiles are consistent with slices through two-
dimensional hexagonal firing patterns (Yoon et al., 2016). This
study did, however, not address the key question of how the 2D
lattices for movements in opposite directions are related to each
other. The lattices could be identical or differ in some or all grid
parameters, as shown by the four scenarios sketched in Figure 1,
with important consequences for the principles underlying grid-cell
coding.

To distinguish between these alternatives, we reanalyzed grid-
cell data recorded by Brun et al. (2008) (Materials and Methods:
Data and grid-cell selection) and tested for the four scenarios
shown in Figure 1. For each model, we searched for slices through
2D hexagonal lattices that optimally fit the measured 1D firing
fields on the linear track. The fit quality was assessed by the nor-
malized mean squared error between the fit and the measured
data (Materials and Methods, Error measurement), as illustrated
in Figure 2. To find optimal lattices, we first applied an exhaustive
search procedure at an intermediate parameter resolution, fol-
lowed by an iterative scheme based on Powell’s method (Materi-
als and Methods, Fitting procedure).
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A single hexagonal lattice cannot explain the linear-track data
The mean error of S�R�Sc models averaged over all grid cells
and animals is 0.24 (Fig. 3A). This value serves as a reference for
the goodness of fit for the other three scenarios and can largely be
explained by measurement noise and potential deviations from a
prefect grid (see below). The mean errors for the other three
scenarios S�R, S, and OL are 0.28, 0.33, and 0.49. The large drop
in fit quality from S to OL suggests that the OL model does not
capture the one-dimensional firing-field data. The somewhat
higher errors of the S�R and S models compared with the
S�R�Sc model presumably can be attributed to distorted grid
patterns or measurement noise that differs for both running di-
rections. The significance of these errors is evaluated in the next
section.

To understand the model differences cell by cell, we per-
formed a regression analysis (Fig. 3B). This is applied to the errors
of the best fits in the scenarios S�R�Sc/S�R, S�R/S, and S/OL.
The large slope of 0.96 and the small intercept of 0.05 (r � 0.87,
p � 6.36e-22, SE � 0.07) in the relation between the S�R�Sc and
S�R models (Fig. 3B, left) implies that for each cell the fit quality
deteriorates only marginally when the grid scales are identical for
left-to-right and right-to-left runs. Similarly, if the rotational de-
gree of freedom is removed when switching from the S�R to S
model (Fig. 3B, second panel), the slope is still large (0.97) and
the intercept is still small (0.06; r � 0.91, p � 3.64e-26, SE �
0.06). Once grid translations are no longer allowed (Fig. 3B, third
panel), the slope approaches a small value (0.24) with large inter-
cept (0.41; r � 0.22, p � 0.17, SE � 0.13). As shown in Figure 3C,

there is no systematic relation between the fit quality and the
relative lattice rotation for right-to-left versus left-to-right runs.
However, there are numerous low-error solutions in the S�R
scenario so that a restriction to shifts results only in a small in-
crease of the mean error (0.33 instead of 0.28). This increase is not
the result of a small impact of rotations on the fit quality. In fact,
random rotations of the best fits lead to a large mean error (1.34;
see Materials and Methods, Random rotations). Furthermore,
the shifts for the S model are random in direction (Rayleigh test:
p � 0.20, n � 67) and length (Wilcoxon rank-sum test: p � 0.17,
n � 67; see Materials and Methods) and not animal specific (Fig.
3D). The same applies to the shift along the track even for cells
from the same module that were simultaneously recorded (Fig.
3E). The distribution of the angles between the shifts of one ses-
sion does not differ from the angular distribution of the surrogate
data (circular– circular distribution: p � 0.02; see Materials and
Methods, Shift along the track, statistical analysis). Thus, the dif-
ference in the mean error for the S and the OL models cannot be
explained by a uniform field shift of all the grid fields of one
animal. We expect uniform shifts within a single module (Yoon
et al., 2013) but do not have a sufficient amount of data to test this
hypothesis.

Translational remapping alone is sufficient to explain grid
cell activity
In general, the more model parameters are optimized, the lower
the model error. Thus, the small error of the S�R�Sc model
could be due to the large number of 12 parameters compared
with the S�R and S models with 10 and 9 parameters, respec-
tively. The decrease in the error reflects either an improvement in
the description of the underlying data structure or overfitting of
noise.

To address this issue, we generated surrogate data with par-
tially identical grid parameters for both running directions. We
constructed three datasets by combining firing patterns from
specific left-to-right and right-to-left runs from different ani-
mals. The first dataset consists of randomly chosen firing patterns
for each direction so that their optimal grid parameters are inde-
pendent. We refer to this dataset as DS�R�Sc (Fig. 4A). The second
and third datasets consist of combinations of firing patterns that
share the same scale parameters, or the same scale and orientation
parameters for the grids of both running directions, respectively.
We denote these datasets as DS�R (Fig. 4B) and DS (Fig. 4C).

S�R�Sc models optimized for each of the three datasets
DS�R�Sc, DS�R, and DS have approximately the same quality as
for the original data with mean errors of �0.24 for all three da-
tasets. The error distributions are also not statistically different
[Wilcoxon rank-sum test: p (DS�R�Sc) � 0.95, p (DS�R) � 0.87,
p (DS) � 0.93, n � 67].

S�R models optimized for the DS�R dataset have nearly the
same mean error (0.29) as for the original data (0.28), and the
corresponding error distributions (Fig. 4B) are not statistically
different (Wilcoxon rank-sum test: p � 0.70, n � 67). Thus, we
observe a similar performance difference between the S�R�Sc
and the S�R models for the DS�R dataset compared with the
original data. For the DS�R dataset, this difference cannot be
attributed to different scale parameters of the grids for both run-
ning directions but rather suggests overfitting.

Likewise, the errors of S models optimized for the DS dataset
have the same mean value (0.33) as for the original data (0.33; Fig.
4C), and the corresponding error distributions are not statisti-
cally different (Wilcoxon rank-sum test: p � 0.76, n � 60). Again,
we observe a similar performance difference between S�R�Sc
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Figure 2. Three examples of best fits of the firing rate along a linear track: left/right panels
show the measured firing rates along the track (black lines) and the firing rates predicted from
cuts through two-dimensional hexagonal patterns (blue/orange) for left-to-right/right-to-left
runs.
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and S models for the DS dataset and the original data. For the DS

dataset, this difference cannot be attributed to different pa-
rameters of the grids for both running directions but again
points to overfitting. These results indicate that the S model is
sufficient to describe the structure of the firing rate patterns
given that the noise on the surrogate data and the original data
is the same.

To show that hexagonal lattices indeed capture the structure
of the firing rate patterns for runs in opposite directions, we
compared the performance of S�R models for the DS�R�Sc da-
taset and the original data. A difference in the mean errors indi-
cates that the scale parameters of the hexagonal lattices for both
running directions depend on each other. We measured a mean
error of 0.35 for the DS�R�Sc dataset (and 0.28 for the original
dataset). Furthermore, the error distributions of the original data
and the DS�R�Sc dataset are significantly different (Wilcoxon
rank-sum test: p � 3.91e-06, n � 67), as illustrated in Figure 4A.

Similarly, a difference in the mean errors of S models for the
DS�R dataset and the original data indicates that the rotation

parameters of the hexagonal lattices of both running direc-
tions depend on each other. Here, we assume that the S�R
model is sufficient to describe the structure of the original data (as
shown above) so that the scale parameters of grids for both running
directions are the same for the original data and the DS�R dataset.
We measured a mean error of 0.47 for the DS�R dataset (and 0.33 for
the original dataset), and the error distributions of the original data
and the DS�R dataset are significantly different (Wilcoxon rank-sum
test: p � 2.10e-08, n � 67), as illustrated in Figure 4B.

Overall, these findings imply that the parameters of grids for
left-to-right and right-to-left runs have a specific relationship
that is sufficiently captured by the S model when compared with
the S�R and S�R�Sc model.

Data suggest only small deviations from perfect grids
To estimate the impact of measurement noise on the results, we
bootstrapped the firing rates (see Material and Methods, Boot-
strapping) 100 times in each running direction and calculated the
errors as before. For the S�R�Sc model, the average error be-

Figure 3. A, Error distributions for the best fits in the four model scenarios: Shift�Rotation�Scale, Shift�Rotation, Shift and One Lattice. The light gray dotted lines denote the mean of each
distribution. B, Cell-by-cell analysis. Each dot in the scatter plots represents the best fits for one grid cell and the two scenarios indicated by the axis labels. Red lines indicate linear regressions with
confidence intervals in light red. C, Rotation angles of the two-dimensional grid for left and right runs (Shift�Rotation). The color indicates the fit error. D, The two offsets (filled circles) in a pair of
parallel slices (model S), within a rhomboidal unit cell of the unit lattice. Cells from the same animal have the same color. E, Offsets in a pair of parallel slices (model S) relative to the left end of the
track, which is shown as a gray arrow. Simultaneously recorded cells from the same module have the same color.
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tween the bootstrapped samples and the original firing rate pro-
files is 0.12, with an SD of 0.08. As the mean error of the S�R�Sc
model is 0.24 (Fig. 3A), approximately half of this value can be
explained by measurement noise.

Recent work has shown that the firing rate maxima of grid
cells in two-dimensional environments vary from field to field
(Diehl et al., 2017; Dunn et al., 2017; Ismakov et al., 2017). To
take this structural variability of the data into account, we fitted

Figure 4. Error distribution for surrogate data for the scenarios Shift�Rotation and Shift. Each light gray dotted line indicates the mean of the error distribution. A, Creation of surrogate data
DS�R�Sc for the model Shift and Rotation by combining left-to-right and right-to-left runs from different animals and fitting these for the models Shift�Rotation�Scale and Shift�Rotation. B,
Creation of surrogate data DS�R for the model Shift were fitted for Shift�Rotation and Shift. Error distributions of the original (gray) and surrogate (green) data. C, Creation of surrogate data DS by
combining left-to-right and right-to-left runs with similar grid spacings and rotations from different animals and fitting these for the models Shift.
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the measured data as before and subsequently optimized the size
of the local peak firing rates by minimizing the mean squared
error for each firing field (Fig. 5B). This approach was chosen to
avoid overfitting that results from optimizing all parameters si-
multaneously. All models improved their performance com-
pared with the original scenarios (S�R�Sc: mean error, 0.19;
improvement, 0.05 or 21%; Wilcoxon rank-sum test: p � 1.81e-
03, n � 67; S�R: mean error, 0.21; improvement, 0.07 or 25%;
Wilcoxon rank-sum test: p � 3.12e-08, n � 67; S: mean error,
0.24; improvement, 0.09 or 27%; Wilcoxon rank-sum test: p �
2.63e-08, n � 67). The model S benefits most from the variability
of the peak firing rates in 2D in absolute and relative terms.

The improvement of the performance of the model S cannot
be explained by overfitting. To show this, we estimated the effect
of overfitting using bootstrapped firing rates. Optimizing the size
of the local peak firing rates for the bootstrapped data leads to a
mean error improvement of 0.04 compared with the true error
for the sampling distribution (mean error, 0.24). As the perfor-
mance of the S models with and without varying peak heights
differs by 0.08, it is highly unlikely to be due to overfitting alone
(p � 2.07e-3). Grid cells exhibit strikingly periodic firing patterns
in rectangular or circular arenas that seem to break down in
polarized environments (Krupic et al., 2015). We hypothesize
that the residual errors of the S models might be ascribed to such
displacements of the firing rate peaks. In fact, a displacement of
only 15 cm explains the residual mean error of 0.12 (average field
size, 86 cm).

Discussion
Grid cells have been hypothesized to provide a universal metric
for space (Hafting et al., 2005), based on their highly regular

firing fields in open arenas. This raises the question whether the
seemingly irregular arrangement of grid fields along linear tracks
is compatible with a hexagonal lattice structure.

Indeed, as shown by Yoon et al. (2016), the firing fields from
runs in one direction are compatible with slices through two-
dimensional hexagonal firing fields. This study did, however, not
address the relation between firing fields of left-to-right versus
right-to-left runs. To relate the lattices underlying both running
directions, we analyzed four models that decreased stepwise in
complexity. We started with a scenario including shifts, rotations,
and scale transformations and went to one where a single lattice
directly governs grid-cell firing in the two opposite movement
directions. Only in this last scenario could the firing activity be
interpreted as a slice through a single fixed lattice. Our analysis
shows, however, that this is not the case. Instead, the lattice needs
to be shifted when the animal turns around for the next lap— but
rotations or scale transformations of the grid are not required.
Similar conclusions hold for an extended scenario that takes the
field-to-field variability of 2D firing rate maxima (Diehl et al.,
2017; Dunn et al., 2017; Ismakov et al., 2017) into account. To-
gether, these findings imply that there is significant remapping at
the movement turning points and that this remapping respects
the geometric properties that define a single grid-cell module
(same orientation, same spatial scale, but variable spatial phases).

A purely translational shift seems to be plausible because
the animals run through a cue-rich, familiar environment.
Scale transformations are expected only if the environment is
familiar to the animal in one direction and is novel in the other
direction (Barry et al., 2012), and rotations are only expected
for larger changes of the environment (Fyhn et al., 2007).

Figure 5. A, Visualization of the cases Shift and Shift�Rotation if peak firing rates differ for each firing field. B, Visualization of the approach. The normalized firing rate for the left-to-right runs
is shown in black, and the best fit in blue. The vertical lines define single bins that extend from one minimum of the fit to the next one. The arrows indicate whether the peak firing rate of the particular
firing field should be higher or lower, or should remain constant. C, Error distribution for the cases Shift�Rotation�Scale, Shift�Rotation and Shift. The light gray dotted lines indicate the mean
error of each error distribution.
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Nonmetric cues could be perceived differently while running
in different directions, and that could lead to a translational
realignment of the grid pattern (Marozzi et al., 2015). Note in
this context that grid-cell responses on circular 1D tracks (Yo-
ganarasimha et al., 2011; Newman et al., 2014) seem to be
consistent with circular slices through 2D lattices, while re-
mapped responses on a circular track may result from shifts in
the phase of the circular slice (Neunuebel et al., 2013).

When the animal turns around at the ends of the track, the
two-dimensional lattices of each grid cell may rotate by 180° due
to the input of head-direction cells. Such a rotation can also be
described by a pure shift within the S scenario. At the population
level, the relation between the shifts of different grid cells depends
on whether the grids rotate or stay the same. Imagine, for exam-
ple, two cells with the same spacing and partly overlapping firing
fields. Under a 180° rotation, the temporal order of their activa-
tion is identical in the two running directions—and reversed if
there is no rotation. This observation shows how to detect 180°
rotations on linear tracks. As the available dataset contained only
a handful of simultaneously recorded cell pairs from the same
module, we could not investigate this issue, which remains an
open question for future studies.

The investigated dataset (Brun et al., 2008) does not contain
grid-cell data from open arenas so that we could not compare the
grid parameters estimated from linear-track data with those from
movements in open arenas. An alternative dataset from Pérez-
Escobar et al. (2016) provides data recorded on a linear track and
in 2D environments, but the linear track is too short to unambig-
uously reveal an underlying hexagonal pattern. Note also that the
number of simultaneously recorded cells in the study by Brun et
al. (2008) is rather low so that phenomena at the population level
could not be studied. Regardless of these limitations, our results
provide a basis to quantify and interpret the grid-cell activity of
animals running on linear tracks in virtual reality (Domnisoru et
al., 2013; Schmidt-Hieber and Häusser, 2013). Once validated
with data recorded from animals moving on linear tracks and in
open arenas, this approach will help to detect and to characterize
grid cells in one-dimensional virtual reality without the need of
additional recordings in real two-dimensional environments.
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