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Animals successfully thrive in noisy environments with finite resources. The necessity to function with resource constraints has led
evolution to design animal brains (and bodies) to be optimal in their use of computational power while being adaptable to their environ-
mental niche. A key process undergirding this ability to adapt is the process of learning. Although a complete characterization of the
neural basis of learning remains ongoing, scientists for nearly a century have used the brain as inspiration to design artificial neural
networks capable of learning, a case in point being deep learning. In this viewpoint, we advocate that deep learning can be further
enhanced by incorporating and tightly integrating five fundamental principles of neural circuit design and function: optimizing the
system to environmental need and making it robust to environmental noise, customizing learning to context, modularizing the system,
learning without supervision, and learning using reinforcement strategies. We illustrate how animals integrate these learning principles
using the fruit fly olfactory learning circuit, one of nature’s best-characterized and highly optimized schemes for learning. Incorporating
these principles may not just improve deep learning but also expose common computational constraints. With judicious use, deep
learning can become yet another effective tool to understand how and why brains are designed the way they are.

Introduction
At the cusp of a new technological era ushered in by the resur-
gence of artificial intelligence, machines are now, more than ever,
close to achieving human levels of performance (LeCun et al.,
2015; Goodfellow et al., 2016). This performance breakthrough is
due to a new class of machine learning algorithms called deep
learning (LeCun et al., 2015), whose architecture is closer
(though still not the same) to that of animals. It has allowed
machine learning to become part of our everyday lives, to the
extent that we are unaware of even using it, from voice assistants
on our smartphones to online shopping suggestions.

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016), a
descendent of classical artificial neural networks (Rosenblatt,
1958), comprises many simple computing nodes organized in a
series of layers (Fig. 1). The leftmost layer forms the input, and
the rightmost layer or output spits out the decision of the neural
network (e.g., as illustrated in Fig. 1a, whether an image is that of
Albert Einstein). The process of learning involves optimizing
connection weights between nodes in successive layers to make
the neural network exhibit a desired behavior (Fig. 1b). This op-
timization procedure moves backwards through the network in
an iterative manner to minimize the difference between desired

and actual outputs (backpropagation). For each layer, errors are
minimized at every node one weight at a time (gradient descent).
In deep learning, the number of intermediate layers between in-
put and output is greatly increased, allowing the recognition of
more nuanced features and decision-making (Fig. 1a).

Artificial neural networks originated with the need for algo-
rithms to classify images. Frank Rosenblatt, in the late 1950s, had
the ingenious idea of using nervous system-like networks that he
called “perceptrons” (Rosenblatt, 1958) to solve this problem. He
built on earlier ideas by McCulloch and Pitts (1990), who used a
linear threshold function (the neuron is activated when the input
exceeds a threshold) to artificially simulate neurons. Rosenblatt
felt that the brain is an existence proof model that we can build a
system that can sense the environment and take appropriate ac-
tion. Even at this early stage, he envisioned that perceptrons
would one day, “walk, talk, see, write, reproduce itself and be
conscious of its existence” (Olazaran, 1996). Although original
and transformative, perceptrons had limitations as they could
only classify data that were linearly separable (e.g., in two dimen-
sions, data would be separated by a line, in three dimensions by a
plane, and so on). This problem was, however, solved with the
invention of multilayer perceptrons (Grossberg, 1973) and non-
linear activation functions.

The innovations and discoveries that paved the way for
current-day neural networks began in the 1980s. The classifica-
tion problem was essentially one of mathematical optimization
and involved finding connection weights that gave the highest
fraction of correct results during training. An issue with optimi-
zation problems is that they often get stuck in local minima (the
best solution for a limited set of conditions), whereas the solution
we desire is a global minimum (i.e., the best solution under
all possible conditions). The advent of Hopfield networks
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(Hopfield, 1982) showed how content-addressable memory net-
works could be used to escape a local minimum, thus increasing
the range of optimization problems that could be solved. Subse-
quently, another study showed that, by using a specialized opti-
mization cost function, it was possible to nearly achieve a global
minimum (Ackley et al., 1985). What then emerged, in one of the
most important discoveries, was a simple process known as back-
or error-propagation that reduced errors and converged quickly
onto an optimized state (Werbos, 1974; LeCun, 1985; Parker,
1985) and forms the heart of today’s deep learning algorithms. An
influential 1986 study then experimentally demonstrated the ef-
fectiveness of backpropagation in multilayered networks, con-
tributing significantly to its popularization (Rumelhart et al.,
1986). Not coincidentally, algorithms that could passably pro-

duce human-like outputs, such as Nettalk (Sejnowski and Rosen-
berg, 1988), started making their appearance following these
innovations. Although current deep learning systems are more
sophisticated, the basic engines are not drastically different from
earlier ones. Despite the impressive progress, there remained
constraints on the performance of deep learning, which were
ameliorated only recently because of the exponential increase in
computing power.

Computer scientists distinguish among three types of ma-
chine learning algorithms, and deep learning algorithms dis-
cussed above fall under a category known as supervised learning.
It contrasts with two other types, which are called reinforcement
and unsupervised learning. These algorithms can be easily illus-
trated with a real-world example (Sutton and Barto, 1998; Barto

Figure 1. A schematic of a deep learning neural network for classifying images. a, The network consists of many simple computing nodes, each simulating a neuron, and organized in a series of
layers. Neurons in each layer receive inputs from neurons in the immediately preceding layer, with inputs being weighted by the connection strengths between neurons. Each neuron is activated
when the sum of input activity exceeds a threshold, and in turn contributes to the activity of neurons in successive layers. In the figure, the leftmost layer encodes the input, in this specific case, faces.
The rightmost layer spits the output, in this case, whether the photo is that of Albert Einstein. The weights between neurons are pruned and perfected by training with millions of labeled trial faces.
During each trial, the connection weights are adjusted by backpropagation to produce the right output. After sufficient training, the network evolves to a point where each successive layer in the
neural network learns to recognize more complex features (e.g., from lips, nose, eyes, etc., to faces) and classifies correctly. The layer features are adapted from Lee et al. (2009). b, Schematic
indicating how connection weights between successive layers are altered during training by the backpropagation algorithm to minimize error and produce the right output. This alteration proceeds
backwards through the network using a gradient descent approach.
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et al., 2004). Consider a scenario where a tourist visits a city for
the first time and would like to find the best restaurants for a
certain cuisine. One option to generate a list of those that were
good would be to randomly pick places. Another option could be
to ask a local for their list of recommended places. In the first case,
the tourist would arrive at a list by trial-and-error exploration.
Although we do not know going in if a restaurant might meet our
expectations, we can judge its quality after sampling the food. We
observe features that might be representative of the quality of the
food (e.g., was there a line out the door, were there locals eating
there, etc.), and we might use these indicators when choosing to
eat at another place. In essence, the quality of the food reinforces
a feature’s efficacy, and this type of learning is termed reinforce-
ment learning. In the alternative scenario, we would be given a list
of restaurants that have stellar reviews, and by visiting them we
can determine for ourselves what makes them great. This form of
learning where we develop an intuition for selecting a quality
establishment based on a set of examples is supervised learning.
With the third category of unsupervised learning, we are given
the names of restaurants and asked to classify them. It is up to us
to recognize and explain the defining features of a class (e.g.,
whether a restaurant falls in the category of American diners or
taquerias). These three types of learning in machines are subtly
different from the two forms of animal learning, classical and
operant conditioning, that we describe below.

In the following sections, we first explore the constraints on
the performance of deep learning, the reasons for its success and
drawbacks. Next, we describe animal learning strategies, with a
specific focus on fly olfactory learning. We then suggest ways in
which animal brains could inspire further improvements to deep
learning. And finally, we propose a fly-inspired algorithm suit-
able for diverse classification and recognition problems.

The future of deep learning
The first constraint on deep learning is the amount of training
data. The bigger the universe of possible scenarios that are fed to
the computer, the more it can learn, and the better its predictive
performance in associating an unseen example to something al-
ready encountered. The second factor is the size of the network.
The neural network collectively encodes the rules of association.
The bigger the network, the more rules it can store. The third
constraining factor is that a massive amount of computing power
is required to accommodate the first two factors. The principal
reason behind deep learning’s success is that it overcame these
constraints because of three advances: the availability of huge
databases of training examples on the internet, improvements in
activation functions to optimize performance, and the emer-
gence of powerful graphical processing units, courtesy of Moore’s
law, for crunching through huge quantities of data (Koch, 2016).

Because of these advances, when a deep learning algorithm
runs on powerful graphical processing unit hardware architec-
ture, it learns associations between features in the data, which it
then uses to make decisions. It adapts without the need for ex-
plicit programming. It is this feature that allows deep learning to
shine when it comes to complex real-world problems. But deep
learning’s dependence on computational power also exposes one
of its weaknesses. It may need to be deployed on machines that
have constraints on processing power and network connectivity
to the Cloud (edge computing), which nevertheless have to solve
real-world tasks, such as image classification, natural language
processing, and speech recognition. These three specific tasks
have already been perfected by another architecture with parallels
to deep learning’s layered architecture: animal brains. Animal

brains or natural deep learning systems have been designed by
evolution over millions of years to be adapted to the specific task
at hand in the face of often constrained resources. Given this level
of exquisite optimization, it is likely that we can exploit our
knowledge of animal learning architectures to optimize deep
learning algorithms.

The best-known example of the nervous system’s ability to
learn and incorporate experience in decision-making is Pavlov-
ian conditioning. In 1889, Ivan Pavlov showed that a dog repeat-
edly exposed to the sound of a bell and the aroma of food would
salivate to the bell, even in the absence of food (Striedter, 2015).
This behavior showed that the dog’s brain had created an associ-
ation between the bell sound and food. The experiment high-
lights a property central to animal learning: the ability to associate
a conditioned stimulus (bell sound) and unconditioned stimulus
(food odor) based on experience (repeated trials). The way the
brain does Pavlovian conditioning is at the root of much of our
learning and memory.

In the century since Pavlov, such conditioning has been ob-
served in myriad animals, ranging from humans to mice and even
fruit flies (Tully and Quinn, 1985). The quest has been to under-
stand the molecular, cellular, and circuit-level mechanisms that
enable Pavlovian conditioning. One of the best systems where
studies have mapped and linked mechanisms at these three levels
is the fruit fly. The fly’s brain is numerically simpler than mam-
mals, has excellent genetic malleability, and its architecture is
known. Researchers have shown that a fly simultaneously ex-
posed to a previously neutral odor and punishment (electric
shock) or reward (sugar) remembers the association for long
periods of time and avoids or approaches the odor source on
subsequent exposures (Tully and Quinn, 1985). In the next
section, we build a picture of how the fly learning system
works and how this knowledge can inspire improvements to
machine learning.

Fly associative learning
Neuroscientists have identified the two circuits responsible for
implementing olfactory learning behavior in the fly: the olfactory
circuit that senses odors and the higher processing region that
associates odors with punishment or reward (i.e., valence). Al-
though a full functional characterization of these circuits is on-
going, much of their architecture and function is known (Aso et
al., 2014a; Owald and Waddell, 2015; Shih et al., 2015). Most
odors are mixtures of many chemicals. Mammals and flies use a
set of olfactory sensory neuron (OSN) types to detect individual
chemical components of these odors. The odors are encoded as
50 dimensional objects by the fly’s olfactory system as it has 50
OSN types in its nose, the antennae, and the maxillary palp (Hal-
lem et al., 2004). OSNs pass odor information onto glomeruli
(neuropil) at the next stage of the olfactory circuit in the antennal
lobe (AL) (Vosshall et al., 2000; Wilson, 2013). Because each
glomerulus is OSN-type specific, odors can be distinguished by
the unique set of OSN types or glomeruli they activate. Glomer-
uli, in turn, send odor information, via projection neurons, to the
next stage of the circuit, the mushroom body (MB), where infor-
mation is assembled in a form suitable for learning and memory
formation (Eichler et al., 2017).

Unlike the first two stages, AL-MB connections are not topo-
graphic. Glomeruli, via projection neurons, seem to contact Ke-
nyon cells (KCs) distributed over the MB without any spatial
preference (Caron et al., 2013). While this distributed connectiv-
ity is stable over the long term, it differs across animals and even
across the two halves of the brain. Although there might be hid-
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den structure in connectivity patterns be-
tween glomeruli and MB neurons, an
analysis of connectivity has shown that
it is not significantly different from in-
stances where connections are assigned
randomly (Caron et al., 2013). For practi-
cal purposes, these connections can be
mimicked by a probability distribution.
This distributed connectivity is reflected
in MB responses to odors, wherein acti-
vated KCs are spread over the MB without
any preference (Fig. 2) (Turner et al.,
2008; Aso et al., 2014a).

Such representation carries three ad-
vantages: (1) a potentially large number of
odors can be encoded with just 2000 neu-
rons; (2) creating odor tags by activating a
sparse set of neurons that seem randomly
distributed across the MB ensures that
two distinct odors are highly likely to have
nonoverlapping odor tags (i.e., they are
discriminable) (Lin et al., 2014; Hige et al.,
2015; Stevens, 2015); and (3) despite ran-
dom assignment, theoretical analyses as-
suming linear rate firing models suggest
that no odor information is lost (Stevens,
2015). If neuronal activation is nonlinear,
it is possible that some odor information
might be lost. Experimental evidence so
far suggests that most of the odor infor-
mation is maintained (Campbell et al.,
2013). Thus, while distinct odors have lit-
tle overlap in activity patterns in the antennal lobe and MB, sim-
ilar odors will have significant overlap (Schaffer et al., 2018;
Srinivasan and Stevens, 2018). This scheme of using sparse and
distributed tags for encoding information also affects how more
complex objects, such as the association between an odor and
valence (e.g., punishment) inputs (Han et al., 1996).

The encoding of odor-valence associations is handled by the
circuit downstream from the MB and is responsible for driving
the fly’s approach or avoidance behavior (Fig. 2) (Aso et al.,
2014a; Hige et al., 2015; Owald and Waddell, 2015; Waddell,
2016). The circuit comprises three components. The first com-
ponent is the collection of MB output neurons (MBONs), which
receive the outputs of KCs within 16 segregated compartments.
There are 21 types of MBONs, and each one receives input
(mostly) from 1 of the 16 compartments (Fig. 2, line of synapses
between a dopaminergic neuron [DAN] and an MBON). These
compartments form the second component. Within each com-
partment, a KC’s axonal output synapses (communicates) with
the dendrites or inputs of MBONs: a KC usually innervates mul-
tiple compartments contacting MBONs in each compartment.
MBONs collectively (by increased and/or decreased activation of
certain subsets) supply information contributing to an approach
or avoidance behavior.

Detailed measurements of two such compartments have re-
vealed that MBON dendrites arborize the compartment, making
multiple synapses with each innervating KC (Takemura et al.,
2017). A careful analysis has shown that the number of synapses
(20 and 28 on average) that each KC makes with an MBON
follows a Poisson distribution. Thus, it is highly likely that an
odor will activate �5% of synapses, which will be distributed
throughout the compartment (Takemura et al., 2017), recapitu-

lating the distributed organization and activation of odor tags.
Consequently, the advantages of distributed coding in the MB
that we outlined above for KCs apply to odor-valence tags too
(e.g., the odor-valence tags for two distinct odors are unlikely to
overlap, like their KC odor tags). An important caveat is that
Takemura et al. (2017) also showed that, in one compartment,
which receives non– odor-coding KC axons, MBON dendrites
were segregated into subcompartments. This suggests a possible
mechanism for segregating learning and memory across sensory
modalities.

The third component, the one that creates an association, is a
set of 20 types of DANs, which also innervate all compartments.
Most DANs convey a specific type of valence; for instance, there is
a DAN activated by electric shock, and another that is activated by
sugar. When the fly is shocked, the DAN that responds to electric
shock gets activated and releases dopamine in the compartment
that it innervates (Cohn et al., 2015; Hige et al., 2015). Dopamine
has the quality of modifying synapse efficacy, and thus all KC-
MBON synapses activated by a particular odor get modified.
When done repeatedly, the synapses stay altered over a long term,
leading to an association between odor and valence. Ultimately,
presentation of the odor alone leads to an avoidance behavior
(Fig. 2). Notably, the MBON-DAN-KC network includes feed-
forward loops (Aso et al., 2014a) that have yet to be functionally
characterized. Here, too, detailed measurements have shown that
DAN axons, at least onto KCs, mimic a Poisson distribution. But
as dopaminergic modification of KC synapses occurs by volume
transmission, DANs would influence nearly all KC synapses.

A notable feature of this circuit and the DANs in particular is
that they act as negative or positive reinforcers. For example, as
shown in the experiments above, repeated shocking in the pres-

Figure 2. Fly olfactory associative learning schematic. Odor information from the fly’s nose filters down to the MB, activating a
sparse set of KCs that code for a particular odor. These KCs, in turn, synapse with MBONs that influence approach or avoidance
behavior. During olfactory conditioning, simultaneous presentation of an aversive stimulus, such as an electric shock, and a neutral
odor activates the DAN for shock and KCs encoding the odor. The DANs release dopamine, which modulates the KC/MBON synapse
(inset). Repeated training alters the strength of the synapse over the long term. Thus, following training, odor presentation alone
is sufficient to activate the MBON that influences an aversive response. Black circles represent active neurons and synapses. Gray
circles represent inactive neurons and synapses. Each line of synapses between a DAN and MBON indicates a separate compart-
ment. Increasing the gain of the hypothesized recurrent circuit from MBONs to DANs (as indicated by a dotted line) reduces the
amount of training required for learning.
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ence of a particular odor progressively weakens the KC-MBON
synapse, thereby reinforcing the negative association. It is likely
that a similar scheme would reinforce positive associations. This
reinforcement ability is fundamental to another form of learning
in addition to Pavlovian conditioning, called operant condition-
ing, which involves learning from the consequences of our actions
rather than associations between events. Operant conditioning was
first postulated by the psychologist Edward Thorndike in 1908 when
he shut a cat in a box that could only be opened by the cat
pressing a lever. Thorndike found that the cat’s ability to open
the box improved over trials as the efficacy of pressing the
lever was reinforced, leading to his theory on the law of effect.
This theory was taken up by behavioral psychologists, such as
Skinner (Skinner, 1963), and has also been shown to operate
in fruit flies (Wolf and Heisenberg, 1991), implicating the MB
circuitry we described above (Heisenberg, 1998; Liu et al.,
1999). Thus, the MB-MBON-DAN circuitry presents a highly
flexible machinery for both associative and operant-based
conditioning.

Coincidentally, operant conditioning, like other forms of
learning, has also made its way to computer science, where it is
known as reinforcement learning. In reinforcement learning, the
function that is learned is value-based, unlike supervised learn-
ing, which is classifier- or predictor-based. With this definition in
mind, both operant and classical conditioning are instances of
reinforcement learning as both use value-based labels (e.g., heat
or sugar rewards) (Barto et al., 2004). However, in classical con-
ditioning, the experimenter controls the association to be formed
akin to the training phase of a supervised learning algorithm in
computer science (Barto et al., 2004). Thus, the animal condi-
tioning paradigms that we have described do not neatly fit into
the three categories of learning envisioned by computer scien-
tists. These nuanced differences might be the reason why animals
and machines have so far exceled at different computations.

What we have outlined is nature’s scheme to link a wide vari-
ety of states to an equally wide variety of valences depending on
context. There are three signatures of this circuit. One is that the
stimulus (odor) is encoded by a sparse and distributed neuronal
ensemble. Second, the connectivity into these neurons and be-
tween them and the downstream MBONs seems to be distributed
without any spatial preference. Third, downstream synapses onto
MBONs are plastic, providing a flexible way to associate stimuli
and valence. This network motif has been elaborated by evolution
in other circuits and brain regions across myriad species.

The circuit closest to the MB in terms of structure and func-
tion is the primary olfactory cortex in mammals (Bekkers and
Suzuki, 2013) and its fish homolog, the dorsal posterior telen-
cephalon (Yaksi et al., 2009). Like the MB, connectivity into and
from olfactory cortex neurons is distributed without any spatial
preference, and this connectivity is reflected in the activity pat-
terns that are similarly distributed and sparse. Moreover, the as-
sociation layer formed by the outputs of piriform neurons has
shown evidence of synaptic plasticity that is driven by descending
inputs from the orbifrontal cortex (Strauch and Manahan-
Vaughan, 2018).

The next best example of a brain region with the MB motif is
the cerebellum and cerebellar-like circuits across vertebrate spe-
cies (Marr, 1969; Oertel and Young, 2004; Bell et al., 2008; Farris,
2011). Here, Purkinje cells function as the output neurons of the
circuit and receive input from deep cerebellar nuclei via granule
cells. Each granule cell extends parallel fibers into the molecular
layer where they contact Purkinje cells along the foliol axis. These
synapses seem randomly distributed and intriguingly show evi-

dence of synaptic plasticity of the form encountered in MB com-
partments: associations are formed by the weakening of synapses
between granule and Purkinje cells (Bell et al., 2008). This intri-
cate architecture, also termed the Marr motif (Marr, 1969; Ste-
vens, 2015), has been shown to function as an adaptive filter; for
example, in weakly electric fish, it allows the fish to filter out the
electrical field imbalances caused by itself and isolate external
electrical signals from the environment (Bell et al., 2008).

Hallmarks of the MB are also found in three other regions
involved in learning: the hippocampus and prefrontal cortex in
mammals, and the vertical lobes in molluscs. In the hippocam-
pus, input from the entorhinal cortex to CA3 mirrors the connec-
tivity from the AL to MB, and activity in the CA3 region is sparse
and distributed (Haberly, 2001). Additionally, CA3 contains a
winner-take-all circuit just like the MB and olfactory cortex. Sim-
ilar activity patterns are also observed in the prefrontal cortex,
and studies have suggested that these circuits perform similar
computations as the olfactory cortex and MB (Barak et al., 2013).
Last, the connectivity of the vertical lobes in molluscs with their
fan-in fan-out networks that experience synaptic plasticity re-
sembles the MB (Shomrat et al., 2011).

Finally, the way the fly association network encodes reward
and punishment has parallels with mammalian systems. In the
fly, the MB, which encodes odors, coordinates with DANs, the
superior medial protocerebrum, crepine neuropil, and lateral
horn regions to drive reward and motivated behavior. Similarly,
in mammals, the olfactory cortex, which encodes odors, commu-
nicates with the basal ganglia (substantia nigra, nucleus accum-
bens, dorsal raphe nucleus) and prefrontal (orbifrontal) cortex to
drive similar behavior (Scaplen and Kaun, 2016; Waddell, 2016).

The fly learning system contains all of �2000 neurons (Aso et
al., 2014a), housed within the brain that contains on the order of
100,000 neurons: a trivial number compared with the computa-
tional power of current day deep learning machines, such as
Google translate or AlphaGO (Silver et al., 2016). Even though
flies live for only a few weeks, their sophisticated behavioral rep-
ertoire would be the envy of any artificial intelligence system.
They are capable of remarkable aerobatic feats, exhibit both
sensory-evoked and socially evoked behaviors in a complex
world, and are capable of higher cognitive processes, such as
sleep, attention, various forms of associative conditioning, and in
some cases even abstract generalization. Therefore, it is quite
reasonable to expect that animal systems, such as the humble fruit
fly, might yet have a few tricks up their sleeve that might benefit
machines.

Advantages of natural deep layered architectures
We now highlight five features of animal systems that might serve
as inspiration for improvements to deep learning and artificial
neural networks in general.

Performance
Compressing memory
Machines face constant increases in size and complexity of data to
be processed. A possible solution, for efficient processing, could
come from the way flies and other animals store a huge amount of
information with a small set of neurons, by using a randomly
distributed connection network (Ganguli and Sompolinsky,
2012; Stevens, 2015).

The potential number of odors that a fly can encode is �2 50, as
there are 50 types of OSNs. The number of neurons dedicated to
storing this information in the MB is, however, only 2000. Fly
MBs serve as a compressed storage space because evolution has
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designed an algorithm resembling a technique pioneered by
mathematicians in the field of random projections called com-
pressed sensing (Candès et al., 2006a; Donoho, 2006; Ganguli and
Sompolinsky, 2012). Whenever a signal is transmitted between
two vector spaces (e.g., AL space to KC space), if the input signal
is sampled at random (i.e., multiplied by a random matrix), the
resulting signal is called a random projection. When the input
signal is sparse and the random matrix has certain specific prop-
erties (e.g., a Gaussian matrix), the random projection can be
much smaller while still retaining all the information present in
the input signal: hence the term compressed sensing. Because the
connection matrix from the AL to MB seems randomly distrib-
uted, the MB odor tag is akin to a compressed sensing measure-
ment, providing a compact representation of the odor, and in
turn, an efficient storage scheme.

Robustness of classification
The fly MB distributed connection network (Caron et al., 2013;
Takemura et al., 2017) has another advantage. As theoretical
studies have shown, such a network robustly maintains informa-
tion transmitted between layers (Candès et al., 2006b; Barak et al.,
2013; Krishnamurthy et al., 2017; Litwin-Kumar et al., 2017). In
the fly and the mammalian olfactory circuit, the connection net-
work mimics a Poisson-Gamma distribution (Stevens, 2015;
Srinivasan and Stevens, 2018). This distribution ensures that,
while most neurons have low-level activity, a small fraction of the
population is highly active for any particular odor. Further, evo-
lution has used another trick to ensure robust classification by
suppressing the activity of all but the top 5%–10% of neurons in
the population. In the fly, this is implemented as a negative feed-
back loop between the MB KCs and the inhibitory anterior-
paired-lateral neuron (Papadopoulou et al., 2011; Lin et al.,
2014). As more KCs are activated, they receive more inhibition
from the anterior-paired-lateral neuron, thereby maintaining a
sparse odor code. As this sparse neuronal population is randomly
distributed (because of the connection network), the chance of
overlap between distinct odors is extremely low.

These two mechanisms ensure that the fly can robustly classify
odors, even in the presence of transmission noise. Such efficient
and robust classification schemes can be easily incorporated into
existing algorithms. A recent paper took this precise network and
showed theoretically and practically (Dasgupta et al., 2017;
S. Navlakha, personal communication) that it could be used to
improve search algorithms.

Pruning
In deep learning, a naive system starts with an all-to-all network
and lets training prune the connections to improve decision-
making. Pruning is, however, a computationally expensive task.
With more layers, the computational requirement increases
(nonlinearly), and so does the time for propagation of informa-
tion between distant nodes (Hochreiter et al., 2001). If deep
learning is to be deployed on machines that have constraints on
processing power and network connectivity to the Cloud, com-
putational requirements must be optimal.

The way the synapses between odor encoding KC neurons and
downstream decision-making circuit neurons are pruned in the
fly circuit suggests a solution to this issue. These synapses receive
DAN input associated with a punishment or reward (Aso et al.,
2014b). If the concept of DANs was to be implemented in deep
learning, these DANs would feed directly into intermediate layers
bypassing the input layer. They would adjust the connections
between the sets of computing nodes in different layers, acting as

a knob that can be tuned to adjust the level of learning. A varia-
tion of this scheme might reduce some of the computational costs
involved with pruning and backpropagation.

Scaling
Another lesson that animal systems can provide toward improv-
ing performance is in determining the optimal size of the system
required for the task at hand. Evolution has provided an
existence-proof example of how this can be done with the visual
system, which comes in a range of sizes depending on the ani-
mal’s environmental niche (Stevens, 2001; Srinivasan et al.,
2015). Some (e.g., mice or rats) have small visual circuits and
limited visual acuity, whereas others (e.g., primates) have enor-
mous visual circuits and correspondingly high visual acuities
(Srinivasan et al., 2015). Remarkably, the number of neurons and
visual acuity can be accurately predicted for any system. This
phenomenon, known as scaling, has two properties. First, the
architecture of the visual circuit (i.e., the hardware) is similar
across mammals. Second, the number of processing elements in
the circuit and visual ability have the same (power-law) relation-
ship across different brain sizes. Therefore, we can determine the
optimal size for any task at hand because we know the design
constraint (i.e., the size-performance relationship). Such design
constraints would help build optimally sized machine learning
systems.

Context-dependent learning
Evolution has designed three forms of memory needed for an
animal to thrive in the natural world. The first operates over
evolutionary timescales, containing mechanisms hardwired in
the brain as they are integral to survival and propagation of the
species. A fitting example is the response to pheromones, wherein
characteristic scents are programmed to elicit a stereotypic be-
havior (e.g., approaching potential mates or avoiding predators).
These responses are encoded by circuits whose connections
are similar across individuals (e.g., in mammals); pheromone-
sensing neurons target stereotyped locations in the amygdala. In
flies, pheromone-sensing neurons contact the MB along with
stereotyped locations to the lateral horn. The parallels in terms of
stereotypic organization suggest that the lateral horn might drive
similar programmed behaviors in flies (Keene and Waddell,
2007; Nagayama et al., 2014; Root et al., 2014). Intriguingly, a
recent study suggests that the lateral horn also plays a role in
mediating some learned behaviors (Dolan et al., 2017).

The next two forms of memory are dynamic and implemented
by mechanisms that enable the animal to learn and respond
appropriately to situations in an ever-changing environment:
(1) mechanisms that enable learning from very few experiences
(e.g., we quickly learn to avoid fire); and (2) mechanisms that
require repeated exposure (e.g., musicians practice for years to
become exceptional). This phenomenon, first identified by Her-
bert Simon (Chase and Simon, 1973; Charness et al., 2005) has
since become popular as the 10,000 hour rule. The fly olfactory
association network suggests how a system can be adapted for
both forms of learning.

In the fly, some associations are learned with a single trial
(Ichinose et al., 2015; Lewis et al., 2015). For one such association
involving sugar reward learning (Ichinose et al., 2015), research-
ers showed that the axons of the MBON and the dendrites of the
DAN that implement learning, overlap. They suggested that a
recurrent circuit between the DAN and MBON (Fig. 2) leads to
increased activation of the DAN, which further alters the strength
of KC-MBON synapses, mimicking effect of multiple trials with
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just one trial. Although further experiments showing synaptic
connections from MBON axons to DAN dendrites are required,
the study presents an intriguing mechanism for implementing
one trial learning in a deep learning network. Recent research in
machine learning has explored the use of feedback to dynamically
change learning capability. This includes variations of recurrent
neural networks that include a memory component (Weston et
al., 2014). Interestingly, a recurrent circuit was not found in the
second association network (Lewis et al., 2015), suggesting the
presence of alternative or additional mechanisms for implement-
ing one-shot learning.

Such one-shot learning algorithms are apt for tasks where
event sequences have structure (e.g., handwriting and speech rec-
ognition). But even these algorithms do not tailor the amount of
training to the event’s relative importance (e.g., life-threatening
vs rote tasks). Most of our learned experiences fall somewhere in
between avoiding fire and becoming a musician. With many of
these activities, it is possible to shorten or lengthen the learning
time, and a key facilitator of this process is emotion.

The relation between emotion and learning is a key differen-
tiator between animals and machines. A large cohort of studies
have shown that emotion can effectively tune our ability to learn.
Experiences that emotionally engage us elicit greater levels of
attention, which lead to quicker and longer-lasting memories.
Furthermore, as emotions go, painful experiences seem to have
more salience for memories than joyful ones (Kahneman and
Tversky, 1982). This might be a byproduct of evolution as the
value of learning an experience that could be lethal might be the
difference between life and death. While deep learning variations,
such as one shot (Fei-Fei et al., 2006) and convolutional networks
(Krizhevsky et al., 2012), have incorporated concepts of faster
learning, the next step would be to mimic animal learning sys-
tems, wherein a system that flexibly learns is paired with one that
assigns priorities to the learning tasks (emotional centers). The fly
associational network provides a blueprint for building such a
neural network.

Priming
Computers find it challenging to learn and generalize from ex-
amples without the need for supervision. Here again, animal sys-
tems provide a solution, which might come from understanding
the neural basis of a phenomenon known as priming.

Priming, discovered by cognitive neuroscientists in the 1970s
(Tulving et al., 1990; Schacter and Buckner, 1998), was observed
when subjects were asked to perform word associations. They
were first exposed to a series of words without any instructions
being given about what the words meant or what they had to do.
When later asked to make associations between words, research-
ers found that word associations were much easier for those
words that subjects had previously encountered, even though
there was no contextual (instructional) underpinning to the
exposure.

A recent study in the fly sheds light on the kind of molecular
circuitry that might be used in priming. Not surprisingly, it in-
volves the fly association network outlined previously (Hattori et
al., 2017). In this case, however, the odor serves both as a condi-
tioned and unconditioned stimulus. The odor activates the spe-
cific set of KCs in the MB for that odor, which in turn drive the
activity of a specific MBON. The odor also activates the DAN that
innervates this compartment, and repeated exposure to the odor
weakens the synapse between the KCs and the MBON. This re-
sults in the MBON not being activated after repeated exposure. In
this way, without any explicit instruction, the fly can distinguish

previously experienced odors from new ones, providing a mech-
anistic basis for priming and a possible algorithm for machines to
implement it.

Specialization of function in animal systems
Fly and other complex brains are highly modular. They have
specialized circuitry for capturing and extracting relevant fea-
tures of the environment. This modularity extends to centers of
the brain that enable higher cognitive function. For instance, in
the fly, the MB integrates information from olfactory and visual
circuits and then collaborates with valence and decision-making
centers in the brain. Correspondingly, in mammals, peripheral
sensory information forms one part of the input, along with in-
formation from memory and valence and motivation signals
from the prefrontal cortex and the basal ganglia. In general,
modularization has been proposed (Striedter, 2005) to be an ef-
ficient way for brains to solve complex problems by breaking
them up into simpler components.

Machines, too, have used this feature of modularity to im-
prove performance. An excellent example comes from compar-
ing AlphaGO (the deep learning system that beat Lee Sedol, the
GO champion) to its predecessors. Unlike its predecessors, Al-
phaGO used two networks to get better at playing GO (Koch,
2016; Silver et al., 2016): a value network and a policy network.
The value network gives the reward value of a particular move,
and the policy network chooses, from among all possible moves,
the one that gives the highest reward. Both ran deep learning
algorithms on similar hardware (but geared to different objec-
tives) that in concert produced a champion GO player.

In the future, there will be a need for deep learning systems
to handle more complex tasks than playing GO (e.g., a driver-
less car). It will comprise many subsystems that need to col-
lectively collaborate to achieve a goal. The brain’s architecture,
and the way its individual substructures encode and exchange
information, is a template for more holistic deep learning
systems.

Reinforcement learning
Reinforcement learning, in both animals and machines, is a
learning process that uses previous experiences to improve future
outcomes. The implementation of reinforcement learning in ma-
chines can be broken down into three major components (Sutton
and Barto, 1998). The first, called a policy module, oversees what
the machine will do next based on its current state and input (i.e.,
how it should handle every possible situation). The second, the
reward module, gives a numerical value for every possible state
that the machine can take. The machine then attempts to choose
transitions that land it in a state with the highest reward, although
there is a caveat. A high reward in the short-term may not neces-
sarily lead to a high reward in the long-term. To guard against
this, there is a third and probably the most important module
called the value module. It gives the long-term value of being in
any particular state. Thus, the decision of transitioning to a dif-
ferent state is made not by the state that gives the highest reward
but by the state that has the highest value. For instance, while
playing chess it might be okay to kill a pawn for a win in the longer
term. Furthermore, these states are continually reestimated as the
machine experiences more of the world.

Although machines use the policy module in making deci-
sions on which state to transition to next, they occasionally make
random choices. Such choices enable them to fully explore the
environment and sample hitherto untested states that might yield
higher reward values in the short- or long-term.
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The efficacy of reinforcement learning becomes apparent if we
again consider the AlphaGO system. Unlike previous iterations of
deep learning systems, AlphaGO used reinforcement learning to
learn and improve its game strategy (Silver et al., 2016). Before
each move, it played the remainder of the game many times over
using a strategy known as Monte-Carlo tree search. Using a deep
neural network to guide its search, AlphaGO chose the move that
was most successful in simulation. To do this, it used two net-
works: a policy network to suggest the moves it should make and
a value network to evaluate the reward (winning the game) for the
move. Both the policy and value networks were improved during
initial training by using trial-and-error reinforcement learning. It
is this incorporation of the consequences (as probabilities) of
every move with almost limitless memory and computing
resources that resulted in Lee Sedol’s defeat. Thus, the use of
reinforcement learning was instrumental in improving the per-
formance of a GO playing machine, and its computational effec-
tiveness might be one reason for evolution to have used this
strategy in animals.

The reinforcement learning of AlphaGO differs from rein-
forcement learning in flies and other animals in one important
aspect. AlphaGO’s implementation closely resembles temporal
difference learning (Sutton and Barto, 1998), wherein learning is
a multistep process and learning at each step depends on the
difference between expected and actual rewards. This multistep
learning process bears some resemblance to how we learn: we can
remember a sequence of events that leads to a reward as opposed
to a single event. The MB structure in flies, which exhibits oper-
ant conditioning, has parallels with one-step temporal difference
learning, but whether a fly is capable of multistep learning, such
as AlphaGO, remains to be seen. Interestingly, other insect spe-
cies, such as bees and ants (e.g., mammals), do possess multistep
learning mechanisms and use it for food search and navigation
(Collett, 1996; Menzel et al., 2005; Neuser et al., 2008; Ardin et al.,
2016; Schwarz et al., 2017).

Recent work in machine learning has outlined how one can
take advantage of a network like the fly that does classical
conditioning (or correlational learning in computer science
parlance). As shown by others (Sutton and Barto, 1998;
Wörgötter and Porr, 2005; Florian, 2007), one way to do this is
by using a reward function that is delayed by several steps, so that the
one-step reinforcement learning scheme can be extended to multi-
ple steps. Intriguingly, cerebellar circuity, which has parallels with
MB, implements an adaptive filter mechanism that requires com-
parisons of the current stimulus with future stimuli. Such a mecha-
nism could also be effective as a multistep temporal difference
learning scheme. A notable difference between animal and machine
learning versions of reinforcement learning algorithms is that
machine-based reinforcement learning can compute orders of mag-
nitude more future moves than any animal can, possibly even the
best of us. While games, such as chess and GO, serve as an excellent
test bed for development of artificial intelligence algorithms, ulti-
mately the goal is to solve complex real-world problems, which are
not constrained by a defined set of rules. Here, the search space to be
traversed is infinite, and whether machine learning’s advantage over
animal systems in terms of computing future moves still holds, re-
mains to be seen. Therefore, it might be tantalizing to imagine that
perhaps animals have evolved to be limited in their predictive capa-
bilities for a reason.

A fly-based artificial neural network
In this essay, we have highlighted the salient features of animal
learning that enable them to function effectively in an ever-

changing world. We used the fly MB circuitry to illustrate how
these features are implemented and have outlined various bene-
fits of incorporating animal learning algorithms into deep learn-
ing. A reasonable next step might be to ask how such a system
could be structured. Next, we provide an extremely simple toy
illustration to name and classify objects and point out the advan-
tages of such a design.

In the fly, DANs and KCs drive MBON activity and the fly’s
decision to approach or avoid. This circuitry can be exploited to
build better algorithms if we consider that such associations are
likely to be at the heart of how we name and classify objects
(Quiroga et al., 2005). Algorithmically, the fly circuit could be
appropriated in the following way to recognize objects. The KCs
would encode the attributes of the object (e.g., a person’s image,
features of a landmark, etc.) and the DANs would encode the
name, with each DAN also having a corresponding MBON that
they contact exclusively within a compartment. The first time the
machine encounters that object, its DAN would alter the connec-
tion between the object’s KC tag and MBON. Once the name has
been learned, subsequent exposure to the object would activate
its MBON.

The presence of DANs in this toy artificial neural network
differentiates it from other machine learning implementations by
providing it the capability of context-dependent learning and
reinforcement learning without the need for additional compo-
nents. This network has other benefits: (1) The representation
would be robust and in a highly compressed form. (2) It would be
scalable. Depending on the number of associations we would like
to store, we can precisely predict the number of computing ele-
ments (neurons and compartments) needed. (3) It will be possi-
ble to quickly form schemes for robust classifications into
families and superfamilies based on the distance between individ-
ual objects. (4) The system’s design easily allows it to be modular
and hierarchical, with each module having the same architecture.

In conclusion, the confluence of ideas between neuroscience
and machine learning has a rich history (McCulloch and Pitts,
1943; Rosenblatt, 1958; Hassabis et al., 2017). Convolutional
neural networks show striking similarities with the visual system.
When neuroscientists in the 1960s discovered properties of sim-
ple and complex cells in the visual system (Hubel and Wiesel,
1962), they were, in essence, describing convolutional neural net-
works (Krizhevsky et al., 2012) in the brain. Each convolutional
neural network layer contains representations of component fea-
tures of the next layer (e.g., nose, lips, eyes before faces in Figure
1a). It resembles the formation of hierarchical or step-by-step
representations of increasingly complex image features by suc-
cessive regions within the visual cortex (Hubel and Wiesel, 1962;
Krizhevsky et al., 2012). Similarly, long short-term memory net-
works (Hochreiter et al., 2001), a variant of recurrent neural
networks, can remember events over a longer term and bear re-
markable resemblance to earlier biological discoveries in the
1980s (Hopfield and Tank, 1986; Elman, 1990). And, currently,
researchers are exploring how higher cognitive tasks, such as at-
tention, can be implemented in deep learning systems (Cho et al.,
2015), which might also yield insights about attentional mecha-
nisms in brains.

Both animal and deep learning systems are computational
engines, albeit implemented on differing hardware architectures.
Both could be considered as variations of the universal Turing
machine and subject to the same universal computational con-
straints (Marblestone et al., 2016). The advantages that we pre-
scribe can be mutually beneficial to both fields. On the one hand,
they will improve deep learning systems. On the other, their in-
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corporation will give us fresh insight as to why they exist in
brains. For instance, the effectiveness of modularity and rein-
forcement as strategies is apparent from AlphaGO’s performance
and provides a possible explanation for why they were used by
evolution in brain design. Similarly, if other prescriptions, such
as context-dependent learning, priming, or randomization, yield
improvements in deep learning systems, they will equally serve as
a window into evolution’s design objectives in building a better
brain. Exploring the bridge between animal and deep learning is
therefore an important step in our quest for understanding and
recreating true intelligence.
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