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Suppressed Sensory Response to Predictable Object Stimuli
throughout the Ventral Visual Stream
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Prediction plays a crucial role in perception, as prominently suggested by predictive coding theories. However, the exact form and
mechanism of predictive modulations of sensory processing remain unclear, with some studies reporting a downregulation of the
sensory response for predictable input whereas others observed an enhanced response. In a similar vein, downregulation of the sensory
response for predictable input has been linked to either sharpening or dampening of the sensory representation, which are opposite in
nature. In the present study, we set out to investigate the neural consequences of perceptual expectation of object stimuli throughout the
visual hierarchy, using fMRI in human volunteers. Participants of both sexes were exposed to pairs of sequentially presented object
images in a statistical learning paradigm, in which the first object predicted the identity of the second object. Image transitions were not
task relevant; thus, all learning of statistical regularities was incidental. We found strong suppression of neural responses to expected
compared with unexpected stimuli throughout the ventral visual stream, including primary visual cortex, lateral occipital complex, and
anterior ventral visual areas. Expectation suppression in lateral occipital complex scaled positively with image preference and voxel
selectivity, lending support to the dampening account of expectation suppression in object perception.

Key words: dampening; expectation; perception; prediction; scaling; sharpening

Introduction
Our environment is structured by statistical regularities. Making
use of such regularities by anticipating upcoming stimuli is of
great evolutionary value, as it enables the agent to predict future
states of the world and prepare adequate responses, which in turn
can be executed faster or more accurately (Hunt and Aslin, 2001;

Kim et al., 2009; Bertels et al., 2012). Our brains are exquisitely
sensitive to these statistical regularities (Turk-Browne et al., 2009,
2010; Schapiro et al., 2012, 2014). Indeed, it has been suggested
that a core operational principle of the brain is prediction (Bubic
et al., 2010) and prediction error minimization (Friston, 2005).
Statistical learning is an automatic learning process by which
statistical regularities are extracted from the environment (Turk-
Browne et al., 2010), without explicit awareness or effort by the
observer (Fiser and Aslin, 2002; Brady and Oliva, 2008), even
under concurrent cognitive load (Garrido et al., 2016). These
statistical regularities can be used to form predictions about up-
coming input, with effects of statistical learning being evident
even 24 h after exposure (Kim et al., 2009).

The neural consequences of perceptual predictions have been
investigated extensively, but conflicting results have emerged.
For example, Turk-Browne et al. (2009) reported larger neural
responses to predictable than random sequences of stimuli in
human object-selective lateral occipital complex (LOC). How-
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Significance Statement

It has been suggested that the brain fundamentally relies on predictions and constructs models of the world to make sense of
sensory information. Previous research on the neural basis of prediction has documented suppressed neural responses to ex-
pected compared with unexpected stimuli. In the present study, we demonstrate robust expectation suppression throughout the
entire ventral visual stream, and underlying this suppression a dampening of the sensory representation in object-selective visual
cortex, but not in primary visual cortex. Together, our results provide novel evidence in support of theories conceptualizing
perception as an active inference process, which selectively dampens cortical representations of predictable objects. This damp-
ening may support our ability to automatically filter out irrelevant, predictable objects.

7452 • The Journal of Neuroscience, August 22, 2018 • 38(34):7452–7461



ever, contrary to this notion, neurons in monkey inferotemporal
cortex, the putative homolog of human LOC (Denys et al., 2004),
showed reduced responses to expected compared with unex-
pected object stimuli (Meyer and Olson, 2011; Kaposvari et al.,
2018). This is in line with findings in human primary visual cor-
tex (V1), which revealed that visual gratings of an expected ori-
entation elicit a suppressed neural response compared with
gratings of an unexpected orientation (Kok et al., 2012a; St. John-
Saaltink et al., 2015). Even though there is superficial agreement
between these studies, the exact form of expectation suppression,
in terms of the underlying effect of expectations on the neural
representations of stimuli, appeared to be opposite. Kok et al.
(2012a) observed the strongest suppression in voxels that were
tuned away from the expected stimulus, resulting in a sparse,
sharpened population code. Electrophysiological studies in ma-
caques, on the other hand, have reported a positive scaling of
expectation suppression with image preference (Meyer and
Olson, 2011), suggesting that sensory representations are damp-
ened for expected stimuli (Kumar et al., 2017).

In sum, several discrepancies remain concerning the neural
basis of perceptual expectation, which may be related to differ-
ences in species (macaque vs human), measurement technique
(spike rates vs fMRI BOLD), and cortical hierarchy (early vs late).
In the current study, we set out to examine the existence and
characteristics of expectation suppression throughout the visual
hierarchy, using a paradigm that closely matches a set of previous
studies on object prediction in macaque monkeys (Meyer and
Olson, 2011; Ramachandran et al., 2016). This allowed us to bet-
ter compare and generalize between species, methods, and differ-
ent levels of the cortical hierarchy. First, we exposed participants
to pairs of sequentially presented object images in a statistical
learning paradigm. Next, we recorded neural responses, using
whole-brain fMRI, to expected and unexpected object image
pairs. By contrasting responses to expected and unexpected pairs,
we probed whether a suppression of expected object stimuli is
evident throughout the ventral visual stream, and in particular in
object-selective cortex. Moreover, by investigating expectation
suppression as a function of image preference and voxel selectiv-

ity, we contrasted sharpening with dampening (scaling) accounts
of expectation suppression.

In brief, our results show that expectation suppression is ubiq-
uitous throughout the human ventral visual stream, including
object-selective LOC. Furthermore, we found that expectation
suppression positively scales with object image preference and
voxel selectivity within object-selective LOC. This suggests that
object predictions dampen sensory representations in object-
selective regions.

Materials and Methods
Participants
Twenty-four healthy, right-handed participants (17 female, aged 23.3 �
2.4 years, mean � SD) were recruited from the Radboud research par-
ticipation system. The sample size was based on an a priori power calcu-
lation, computing the required sample size to achieve a power of 0.8 to
detect an effect size of Cohen’s d � 0.6, at � � 0.05, for a two-tailed
within-subjects t test. Participants were prescreened for MRI compatibil-
ity, had no history of epilepsy or cardiac problems, and had normal or
corrected-to-normal vision. Written informed consent was obtained be-
fore participation. The study followed institutional guidelines of the local
ethics committee (CMO region Arnhem-Nijmegen, The Netherlands).
Participants were compensated with 42 euro for study participation.
Data from one subject were excluded because of excessive tiredness and
poor fixation behavior. One additional subject was excluded from all
ROI-based analyses because no reliable object-selective LOC mask could
be established due to subpar fixation behavior during the functional
localizer.

Experimental design and statistical analysis
Stimuli and experimental paradigm
Main task. Participants were exposed to two object images in quick suc-
cession. Each image was presented for 500 ms without interstimulus
interval, and an intertrial interval of 1500 –2500 ms during behavioral
training and 4110 – 6300 ms during fMRI scanning (for a single trial, see
Fig. 1A). A fixation bull’s-eye (0.5° visual angle in size) was presented
throughout the run. For each participant, 16 object images were ran-
domly selected from a pool of 80 stimuli (see also Stimuli). Eight images
were assigned as leading images (i.e., appearing first on trials), whereas
the other eight images served as trailing images, occurring second. Image

Figure 1. Paradigm overview. A, A single trial, with two example images and superimposed fixation bull’s-eye. Leading images and trailing images were presented for 500 ms each, without
interstimulus interval, followed by an intertrial interval of 4110 – 6300 ms (fMRI session; 1500 –2500 ms during behavioral training). Participants responded to upside-down images by button press;
the image at either position (leading or trailing) could be upside-down. B, Image transition matrix determining image pairs. Eight leading images (L1–L8) and eight trailing images (T1–T8) were
used for each participant. Conditional probability conditions are highlighted, and their respective conditional probabilities during training are listed on the right: orange represents the 1:1 condition;
green represents the 2:1 condition; blue represents the 1:2 condition. Cells with dots represent expected image pairs. Empty cells represent unexpected pairs.
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pairs and the transitional probabilities between them were determined
by the transitional probability matrix depicted in Figure 1B, based on the
transition matrix used by Ramachandran et al. (2016). The expectation
manipulation consisted of a repeated pairing of images in which the
leading image predicted the identity of the trailing image, thus over time
making the trailing image expected given the leading image. Importantly,
the transitional probabilities governing the associations between images
were task-irrelevant because participants were instructed to respond, by
button press, to any upside-down versions of the images, the occurrence
of which was not related to the transitional probability manipulation and
could not be predicted. Upside-down images (target trials) occurred on
�9% of trials. Participants were not informed about the presence of any
statistical regularities and instructed to maintain fixation on the central
fixation bull’s-eye. Trial order was fully randomized.

During behavioral training, only expected image pairs were presented
on a total of 1792 trials, split into 8 blocks with short breaks in between
blocks. Thus, during this session the occurrence of image L1 was perfectly
predictive of image T1 (i.e., P(T1�L1) � 1; Fig. 1B). Apart from these
trials, which constituted the 1:1 conditional probability condition, there
were also trials with a 2:1 and 1:2 image pairing. In the 2:1 conditional
probability condition, the leading image was perfectly predictive of the
trailing image (e.g., P(T3�L3) � 1), but two different leading images
predicted the same trailing image, thereby reducing the conditional
probability of the leading image given a particular trailing image (i.e.,
P(L3�T3) � 0.5). Last, the 1:2 condition consisted of a reduced predictive
probability of the trailing image given the leading image, as such image
L7, for instance, was equally predictive of images T5 and T7 (i.e.,
P(T5�L7) � 0.5 and P(T7�L7) � 0.5).

On the next day, participants performed one additional behavioral
training block, consisting of 224 trials, and another 48 practice trials in
the MRI during acquisition of the anatomical image. The task during the
subsequent fMRI experiment was identical to the training session, except
that also unexpected image pairs occurred. Nonetheless, the expected
trailing image was still most likely to follow a given leading image,
namely, on 56.25% of trials compared with 6.25% for each unexpected
trailing image (1:1 condition). It is important to note that each trailing
image was only (un)expected by virtue of its temporal context (i.e., by
which leading image it was preceded). Thus, each trailing image served
both as an expected and unexpected image depending on context. Addi-
tionally, trial order was fully randomized, thus rendering systematic ef-
fects of trial history unlikely. In sum, any difference between expected
and unexpected occurrences cannot be explained in terms of different
base rates of the trailing images, adaptation or trial history. Because
intertrial intervals were longer in the fMRI session, and responses to
upside-down images therefore occurred at a lower rate, potentially re-
ducing participants’ vigilance, the percentage of upside-down images
was increased to �11% of trials. As during the behavioral training ses-
sion, in the main fMRI task, participants were not informed about the
presence of transitional probabilities, and there was no correlation be-
tween the image transitions and the occurrence of upside-down images.
In total, the MRI main task consisted of 512 trials, split into four equal
runs, with an additional three resting blocks (each 12 s) per run. Feed-
back on behavioral performance (percentage correct and mean response
time) was provided after each run. To ensure adequate fixation on the
fixation bull’s-eye, an infrared eye tracker (SensoMotoric Instruments)
was used to record and monitor eye positions.

Functional localizer. The main task was followed by a functional local-
izer, which was used for a functional definition of object-selective LOC
for each participant, and to determine image preference for each voxel
within visual cortex in an expectation neutral context. Finally, localizer
data served as independent training data for the multivoxel pattern anal-
ysis (see Data analysis, Multivoxel pattern analysis). In a block design,
each object image was presented four times, each time flashing at 2 Hz
(300 ms on, 200 ms off) for 11 s. The used stimuli were the same object
images as shown during the fMRI main task. Additionally, a globally
phase-scrambled version of each image (Coggan et al., 2016) was shown
twice, also flashing at 2 Hz for 11 s. The order of object images and
scrambles was randomized. Participants were instructed to fixate the

bull’s-eye and respond by button press whenever the fixation bull’s-eye
dimmed in brightness.

Questionnaire. Following the fMRI session, participants filled in a brief
questionnaire probing their explicit knowledge of the image transitions.
Knowledge of each of the eight image pairs was tested by presenting
participants with one leading image at a time, instructing them to select
the most likely trailing image.

Categorization task. Finally, outside the scanner, participants per-
formed a categorization task. During this task, participants indicated, by
button press, whether the trailing image would fit into a shoebox (yes/no
decision), similar to Dobbins et al. (2004) and Horner and Henson
(2008). This task was aimed at assessing any implicit reaction time (RT)
or accuracy benefits due to incidental learning because the statistical
regularities, learned during the previous parts of the experiment, could
be used to predict the correct response before the trailing image ap-
peared. For each participant, the same images and transitions were used
as during their fMRI task. Furthermore, it was ensured that half of the
trailing images in each conditional probability condition (1:1, 1:2, 2:1) fit
into a shoebox, whereas the other half did not fit. A brief practice block
was used to make sure that participants correctly classified the object
images and understood the task. Participants were not informed about
the intention behind this task, nor were they instructed to make use of the
statistical regularities, to avoid influencing their behavior. A full debrief-
ing took place after the categorization task.

Stimuli. Object stimuli were taken from Brady et al. (2008) and con-
sisted of a large collection of diverse full-color photographs of objects. Of
this full set of images, a subset of 80 images was selected; 40 objects fitting
into a shoebox, and 40 objects not fitting into a shoebox. Images spanned
�5° � 5° visual angle and were presented in full color on a mid-gray
background. During training, stimuli were displayed on an LCD screen
and back-projected during MRI scanning (EIKI LC-XL100 projector;
1024 � 768 pixel resolution, 60 Hz refresh rate), visible using an adjust-
able mirror. Because images were drawn at random per participant, each
image could occur in any condition or position, thereby eliminating
potential effects induced by individual image features.

fMRI data acquisition
Functional and anatomical images were collected on a 3T Skyra MRI
system (Siemens), using a 32-channel headcoil. Functional images were
acquired using a whole-brain T2*-weighted multiband-8 sequence (TR/
TE � 730/37.8 ms, 64 slices, voxel size 2.4 mm isotropic, 50° flip angle,
A/P phase encoding direction). Anatomical images were acquired with a
T1-weighted MP-RAGE (GRAPPA acceleration factor � 2, TR/TE �
2300/3.03 ms, voxel size 1 mm isotropic, 8° flip angle).

Data analysis
Behavioral data analysis. Behavioral data from the categorization task was
analyzed in terms of RT and accuracy. All RTs exceeding 3 SD above
mean and �200 ms were excluded as outliers (2.0% of trials). Because
unexpected trailing image trials during the categorization task may
require a change in the response, any differences in RT and accuracy
between the expected and unexpected conditions may reflect a combina-
tion of surprise and response adjustment, thereby inflating possible RT
and accuracy differences. Therefore, only unexpected trials requiring the
same response as the expected image were analyzed, yielding an unbiased
comparison of the effect of expectation. RTs for expected and unexpected
trailing image trials were averaged separately per participant and sub-
jected to a paired t test. The error rate was also calculated separately for
expected and unexpected trailing image trials per subject and analyzed
with a paired t test. Additionally, the effect size of both differences was
calculated in terms of Cohen’s dz (Lakens, 2013). All SEs of the mean
presented here were calculated as the within-subject normalized SE
(Cousineau, 2005) with Morey’s (2008) bias correction.

fMRI data preprocessing. fMRI data preprocessing was performed using
FSL 5.0.9 (FMRIB Software Library; Oxford, UK; www.fmrib.ox.ac.uk/fsl;
RRID:SCR_002823) (Smith et al., 2004). The preprocessing pipeline in-
cluded brain extraction (BET), motion correction (MCFLIRT), temporal
high-pass filtering (128 s), and spatial smoothing for univariate analyses
(Gaussian kernel with FWHM of 5 mm). No smoothing was applied for
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multivariate analyses, nor for the voxelwise image preference analysis.
Functional images were registered to the anatomical image using FLIRT
(BBR) and to the MNI152 T1 2 mm template brain (linear registration
with 12 df). The first eight volumes of each run were discarded to allow
for signal stabilization.

Univariate data analysis. To investigate expectation suppression across
the ventral visual stream, voxelwise GLMs were fit to each subject’s run
data in an event-related approach using FSL FEAT. Separate regressors
for expected and unexpected image pairs were modeled within the GLM.
All trials were modeled with 1 s duration (corresponding to the duration
of the leading and trailing image combined) and convolved with a double
gamma hemodynamic response function. Additional nuisance regres-
sors were added, including one for target trials (upside-down images),
instruction and performance summary screens, first-order temporal de-
rivatives for all modeled event types, and 24 motion regressors (six mo-
tion parameters, the derivatives of these motion parameters, the squares
of the motion parameters, and the squares of the derivatives; comprising
FSL’s standard � extended set of motion parameters). The contrast of
interest for the whole-brain analysis compared the average BOLD activity
during unexpected minus expected trials (i.e., expectation suppression).
Data were combined across runs using FSL’s fixed effect analysis. For the
across-participants whole-brain analysis, FSL’s mixed effect model
FLAME 1 was used. Multiple-comparison correction was performed us-
ing Gaussian random-field based cluster thresholding, as implemented
in FSL, using a cluster-forming threshold of z � 3.29 (i.e., p � 0.001,
two-sided) and a cluster significance threshold of p � 0.05. An identical
analysis was performed to assess the influence of the different conditional
probability conditions (see Main task), except that the expected and
unexpected event regressors were split into their respective conditional
probability conditions (1:1, 1:2, 2:1), thus resulting in a GLM with six
regressors of interest.

Planned ROI analyses. Within each ROI (V1 and LOC; see ROI defini-
tion), the parameter estimates for the expected and unexpected image
pairs were extracted separately from the whole-brain maps. Per subject,
the mean parameter estimate within the ROIs was calculated and divided
by 100 to yield an approximation of mean percentage signal change
compared with baseline (Mumford, 2007). These mean parameter esti-
mates were in turn subjected to a paired t test and the effect size of the
difference calculated (Cohen’s dz). For the conditional probability
manipulation, a similar ROI analysis was performed, except that the
resulting mean parameter estimates were subjected to a 3 � 2 repeated-
measures ANOVA with conditional probability condition (1:1, 2:1, 1:2)
and expectation (expected, unexpected) as factors. For this analysis, we
calculated �-squared (� 2) as a measure of effect size.

Multivoxel pattern analysis (MVPA). MVPA was performed per subject
on mean parameter estimate maps per trailing image. These maps were
obtained by fitting voxelwise GLMs per trial for each subject, following
the “least-squares separate” approach outlined by Mumford et al. (2012).
In brief, a GLM is fit for each trial, with only that trial as regressor of
interest and the remaining trials as one regressor of no interest. This was
done for the functional localizer and main task data. The resulting pa-
rameter estimate maps of the functional localizer were used as training
data for a multiclass SVM (classes being the eight trailing images), as
implemented in Scikit-learn (SVC; RRID:SCR_002577) (Pedregosa et
al., 2011). Decoding performance was tested per subject on the mean
parameter estimate maps from the main task data for each trailing image,
split into expected and unexpected image pairs. The choice to decode
mean parameter estimate maps, instead of single-trial estimates, was
made after observing that image decoding performance when decoding
individual trials was close to chance, indicating a lack of sensitivity to
detect potential differences between expected and unexpected image
pairs. This decision was based on an independent MVPA collapsed over
expected and unexpected image pairs, without inspection of the contrast
of interest. Expected image pair trials are by definition more frequent,
which may in turn yield a more accurate mean parameter estimate. Thus,
stratification by random sampling was used to balance the number of
expected and unexpected image pairs per trailing image, thereby remov-
ing potential bias. In short, for each iteration (n � 1000), a subset of
expected trials was randomly sampled to match the number of unex-

pected occurrences of that trailing image. Finally, decoding performance
was analyzed in terms of mean decoding accuracy. To this end, the class
with the highest probability for each test item was chosen as the predicted
class and the proportion of correct predictions calculated. Mean decod-
ing performances for expected and unexpected image pairs were
subjected to a two-sided, one-sample t test against chance decoding per-
formance (chance level � 12.5%). If decoding was above chance for the
expected and unexpected image pairs, decoding performances between
expected and unexpected pairs were compared by means of a paired t test
and the effect size was calculated. In short, the classifier was used to
distinguish between the eight trailing images, after being trained on the
single-trial parameter estimates from the functional localizer. The per-
formance of the classifier was tested on the per-image parameter esti-
mates from the main task split into the expected and unexpected
condition.

Image preference analysis. For the voxelwise image preference analysis,
the single-trial GLM parameter estimate maps (as outlined in Multivoxel
pattern analysis) were used. Within each participant, the parameter esti-
mate maps of the functional localizer were averaged for each trailing
image, thus yielding an average activation map induced by each trailing
image in an expectation free, neutral context. The same was done for the
main task data, but for expected and unexpected occurrence of each
trailing image separately. Then, for each voxel, trailing images were
ranked according to the response they elicited during the functional
localizer. These rankings were applied to the main task data, resulting in
a vector per voxel, consisting of the mean activation (parameter estimate)
elicited by the trailing images during the main task, ranked from the least
to most preferred image based on the context neutral, independent func-
tional localizer data. This was done separately for expected and unex-
pected occurrences of each trailing image. Within each ROI, the mean
parameter estimates of expected and unexpected image pairs per prefer-
ence rank were calculated. For each ROI, linear regressions were fit to the
ranked parameter estimates: one for expected and one for unexpected
pairs. A positive regression slope would thus indicate that the ranking
from the functional localizer generalized to the main task, which was
considered a prerequisite for any further analysis. This was tested by
subjecting the slope parameters across subjects to a two-tailed one sam-
ple t test, comparing the obtained slopes against zero. Furthermore, this
analysis assumes a linear relation between the response parameter esti-
mates and preference rank. Of note, a strong nonlinear relationship, in
either of the expectation conditions, could pose a problem for the inter-
pretation of the resulting slope parameter. Therefore, we tested for
linearity, by comparing the model fit between the linear model and a
second-order polynomial model. The data were deemed sufficiently lin-
ear if the fit of the linear model was superior to the fit of the nonlinear
model as index by a smaller Bayesian information criterion (BIC)
(Schwarz, 1978). If these requirements were met for the expected and
unexpected conditions, the difference between slope parameters was
compared by a two-tailed paired t test. If the amount of expectation
suppression (i.e., unexpected 	 expected) indeed scales with image pref-
erence (i.e., dampening), then we should find the slope parameter for the
unexpected condition regression line to be significantly larger than for
the expected condition. The opposite prediction, a larger slope parame-
ter for the expected condition, is made by the sharpening account. For
this comparison, the effect size was also calculated in terms of Cohen’s dz.

The rationale of this analysis is that a dampening mechanism sup-
presses responses in highly active neurons (i.e., those neurons that are
tuned toward the expected feature) more than in less active neurons
(those that are tuned away). Thus, when responses within a voxel are
strong to a particular image, more neurons can be suppressed by damp-
ening than when a less preferred image is shown. Because a neural sharp-
ening mechanism, opposite to dampening, would particularly suppress
less active neurons compared with highly active ones, the reverse pattern
would be evident under sharpening.

In addition to the ROI-based approach, we also performed a whole-
brain version of the image preference analysis to provide an overview of
where dampening or sharpening might be evident beyond our a priori
defined ROIs. The analysis was identical to the ROI-based approach,
outlined above, except for that the amount of expectation suppression
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per voxel and preference rank was calculated to display results across the
whole brain. Regressions were thus fit to expectation suppression as
function of image preference rank for each voxel and subject. The fit was
constrained to voxel in which the response to expected and unexpected
stimuli showed a significant positive slope with preference rank, thereby
indicating that the image preference ranking generalized from the local-
izer to the main task. Unlike in the ROI-based approach, the data were
spatially smoothed using a Gaussian kernel with FWHM of 8 mm. The
slope parameters across subjects were tested against zero in each voxel.
Because in this analysis expectation suppression was expressed as a func-
tion of image preference rank, from least to most preferred, positive
slopes indicate support for dampening, whereas negative slopes are evi-
dence for sharpening.

Bayesian analyses. To assess whether any nonsignificant results consti-
tuted a likely absence of an effect, or rather indicated a lack of statistical
power to detect possible differences, corresponding Bayesian tests were
performed. All Bayesian analyses were performed in JASP (JASP Team,
2017) (RRID:SCR_015823) using default settings. Paired and one-
sample t tests used a Cauchy prior width of 0.707 and repeated-measures
ANOVAs used a prior with the following settings: r scale fixed effects �
0.5, r scale random effects � 1, r scale covariates � 0.354. The number of
samples of the RM ANOVA was increased to 100,000 and Bayes factors
for the inclusion of the respective factors are reported (BFinclusion), which
yields the evidence for the inclusion of that factor averaged over all mod-
els in which the factor is included (Wagenmakers et al. (2017). Interpre-
tations of the resulting Bayes factors are based on the classification by Lee
and Wagenmakers (2013).

ROI definition. The two a priori ROIs (object-selective LOC and V1)
were defined per subject based on data that was independent from the
main task. To obtain object-selective LOC, GLMs were fit to the func-
tional localizer data of each subject, modeling object image and scram-
bled image events separately with a duration corresponding to their
display duration. First-order temporal derivatives, instruction, and per-
formance summary screens, as well as motion regressors were added as
nuisance regressors. The contrast, object images minus scrambles,
thresholded at z � 5 (uncorrected; i.e., p � 1e-5), was used to select
regions per subject selectively more activated by intact object images
compared with scrambles (Kourtzi and Kanwisher, 2001; Haushofer et
al., 2008). The threshold was lowered on a per-subject basis, if the LOC
mask contained �300 voxels in native volume space. The individual
functional masks were constrained to anatomical LOC using an anatom-
ical LOC mask obtained from the Harvard-Oxford cortical atlas (RRID:
SCR_001476), as distributed with FSL. Finally, a decoding analysis of
object images (also see Multivoxel pattern analysis) was performed using
a searchlight approach (6 mm radius) on the functional localizer data,
using a k-fold cross-validation scheme with four folds. This MVPA
yielded a whole-brain map of object image decoding performance, based
on which the 200 most informative LOC voxels (in native volume space)
in terms of image identity information were selected from the previously
established LOC masks. This was done to ensure that the final masks
contain voxels, which best discriminate between the different object im-
ages. Freesurfer 6.0 (recon-all, RRID:SCR_001847) (Dale et al., 1999)
was used to extract V1 labels (left and right) per subject based on their
anatomical image. Subsequently, the obtained labels were transformed
back to native space using mri_label2vol and combined into a bilateral
V1 mask. The same searchlight approach mentioned above was used to
constrain the anatomical V1 masks to the 200 most informative V1 voxels
concerning object identity decoding. To verify that our results were not
unique to the specific (but arbitrary) ROI size, we repeated all ROI anal-
yses with ROI masks ranging from 50 to 300 voxels in steps of 50 voxels.

Software
FSL 5.0.9 (FMRIB Software Library; Oxford, UK; www.fmrib.ox.ac.uk/
fsl, RRID:SCR_002823) (Smith et al., 2004) was used for preprocessing
and analysis of fMRI data. Additionally, custom MATLAB (The Math-
Works, RRID:SCR_001622) and Python (Python Software Foundation,
RRID:SCR_008394) scripts were used for additional analyses, data ex-
traction, statistical tests, and plotting of results. The following toolboxes
were used: NumPy (RRID:SCR_008633) (van der Walt et al., 2011),

SciPy (RRID:SCR_008058) (Jones et al., 2001), Matplotlib (RRID:
SCR_008624) (Hunter, 2007), PySurfer (RRID:SCR_002524) (https://
pysurfer.github.io/), Mayavi (RRID:SCR_008335) (Ramachandran and
Varoquaux, 2011), and Scikit-learn (RRID:SCR_002577) (Pedregosa et
al., 2011). Whole-brain results are displayed using Slice Display (Zand-
belt, 2017) using a dual-coding data visualization approach (Allen et al.,
2012), with color indicating the parameter estimates and opacity the
associated z statistics. Additionally, PySurfer was used to display whole-
brain results on an inflated cortex, with surface labels from the Desikan-
Killiany atlas (Desikan et al., 2006). Bayesian analyses were performed
using JASP version 0.8.1.1 (RRID:SCR_015823) (JASP Team, 2017).
Stimulus presentation was done using Presentation software (version
18.3, Neurobehavioral Systems, RRID:SCR_002521).

Results
Expectation suppression throughout the ventral visual stream
We first examined expectation suppression within our a priori
defined ROIs, V1 and object-selective LOC. We observed a sig-
nificantly larger BOLD response to unexpected compared with
expected image pairs, both in V1 (t(21) � 3.20, p � 0.004, Cohen’s
dz � 0.68; Fig. 2C) and object-selective LOC (t(21) � 5.03, p �
5.6e-5, Cohen’s dz � 1.07; Fig. 2C). To ensure that the results are
not dependent on the (arbitrarily chosen) mask size of the ROIs,
the analyses were repeated for ROIs of sizes between 50 and 300
voxels (691– 4147 mm 3); the direction and statistical significance
of all effects were identical for all ROI sizes.

A whole-brain analysis, investigating effects of perceptual ex-
pectation across the brain, revealed an extended statistically
significant cluster (Fig. 2A, black contours) of expectation sup-
pression across the ventral visual stream. As also evident in Figure
2B, cortical areas showing significant expectation suppression
included large parts of bilateral object-selective LOC, bilateral
fusiform gyrus, bilateral inferior parietal cortex, and right poste-
rior parahippocampal gyrus. Thus, there is substantial support
for a widespread expectation suppression effect across the ventral
visual stream.

Next, we assessed the neural effect of the conditional proba-
bility conditions within V1 and LOC. Although this analysis con-
firmed a weaker response for expected items in V1 (F(1,21) � 6.39,
p � 0.020, � 2 � 0.233) and LOC (F(1,21) � 19.50, p � 2.4e-4,
� 2 � 0.481), there was no significant modulation by conditional
probability, nor an interaction between conditional probability
and expectation in either V1 (conditional probability: F(2,42) �
2.02, p � 0.145, � 2 � 0.088; interaction: F(2,42) � 1.19, p � 0.315,
� 2 � 0.053) or LOC (conditional probability: F(2,42) � 1.90, p �
0.162, � 2 � 0.083; interaction: F(2,42) � 0.92, p � 0.407, � 2 �
0.042). Bayesian analyses yielded very strong support for the ef-
fect of expectation in LOC (BFIncl. � 35.403) but provided mod-
erate evidence that conditional probability did not have an effect
(BFIncl. � 0.327), and neither did the interaction of expectation
and conditional probability (BFIncl. � 0.290). In V1, results re-
mained inconclusive as there was only anecdotal evidence against
an effect of expectation (BFIncl. � 0.426) and conditional proba-
bility (BFIncl. � 0.373), but moderate evidence against an effect of
the interaction (BFIncl. � 0.172). Thus, because there is no evi-
dence for an effect of the conditional probability manipulation,
we collapse across the three different conditional probability con-
ditions for all subsequent analyses.

Perceptual expectations dampen sensory representation
in LOC
To examine whether sharpening or dampening of sensory repre-
sentations underlies the observed expectation suppression effect
in V1 and LOC, an image preference analysis was conducted. In
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short, BOLD responses were regressed on image preference rank,
with dampening predicting a steeper slope for unexpected com-
pared to expected images and sharpening predicting the opposite
(for details, see Materials and Methods). First, we tested whether
the relation between voxel-level BOLD responses and image pref-
erence rank was better described by a linear model than a poly-
nomial model. There was higher model evidence for linear
compared with nonlinear response profiles in both areas and condi-
tions (V1, expected: BIClinear � 97.02 � BICpolynomial � 97.25; V1,
unexpected: BIClinear � 95.85 � BICpolynomial � 96.09; LOC, ex-
pected: BIClinear � 94.82 � BICpolynomial � 95.01; LOC, unexpected:
BIClinear � 94.99 � BICpolynomial � 95.28). Furthermore, results
depicted in Figure 3A reveal positive slopes within V1 (expected:
t(21) � 9.11, p � 9.6e-9, Cohen’s dz � 1.94; V1 unexpected: t(21) �
9.90, p � 2.3e-9, Cohen’s dz � 2.11), as well as in LOC (expected:
t(21) � 3.39, p � 0.003, Cohen’s dz � 0.72; LOC unexpected:
t(21) � 7.14, p � 4.8e-7, Cohen’s dz � 1.52), confirming that the
image preference ranking from the functional localizer data gen-
eralized to the main task. This indicates a stable, reproducible
sensory code and allows for an analysis of the difference in slopes

between expected and unexpected image
pairs. Crucially, image preference slopes
were significantly steeper for unexpected
than expected image pairs in LOC (t(21) �
2.18, p � 0.041, Cohen’s dz � 0.47). This
means that the amount of expectation
suppression (i.e., Fig. 3A, the difference in
the two regression lines) increased with
the image preference rank in object-
selective LOC. A control analysis con-
firmed that the results were independent
of the number of voxels in the ROI mask
(mask sizes 50 –300 voxels). There was no
statistically significant difference in slopes
between the expectation conditions in V1
(t(21) � 1.20, p � 0.242, Cohen’s dz �
0.26), regardless of the number of voxels
in the ROI mask (50 –300 voxels). To ex-
plore whether there was evidence for the
absence of dampening in V1, a Bayesian t
test was performed on the difference of
the image preference slopes (unexpected
vs expected) in the V1 ROI. This analysis
yielded a BF10 � 1/3 for all V1 ROI sizes,
except for the 200 voxel mask (BF10 �
0.423). Together, this suggests that there is
moderate evidence for the absence of
dampening in V1.

To provide an additional overview of
the localization of the dampening effect
beyond our a priori ROIs, we performed a
whole-brain analysis of the image prefer-
ence analysis. Results depicted in Figure
3B, using a liberal threshold, suggest clus-
ters of dampening to be primarily located
in LOC and to a lesser degree in fusiform
gyrus.

After showing a dampening of repre-
sentations in object-selective LOC, we
further explored whether this dampening
at the voxel level is likely to reflect neural
dampening, as also evident in Meyer and
Olson (2011) and Kumar et al. (2017). A

key problem is that, under certain conditions, a neural sharpen-
ing mechanism can produce voxel level dampening, as also sug-
gested by Alink et al. (2017) in the case of repetition suppression.
Thus, we performed an additional analysis in which we analyzed
expectation suppression (i.e., unexpected 	 expected) as a func-
tion of voxel selectivity (i.e., slope of the response amplitude to
preference ranked images). We reasoned that, under a dampen-
ing account, selective voxels, showing strong responses to some,
but weak responses other stimuli, are, on average, more likely to
yield strong expectation suppression than low selectivity voxels.
Sharpening on the other hand predicts the opposite pattern
because highly selective voxels should be less suppressed by
sharpening, or even enhanced in their response, because more
activated neurons are, on average, tuned toward the expected
stimulus, compared with voxels with lower selectivity. For this
analysis, we first established a voxel selectivity ranking. The rank
was based on the slope of activity regressed onto image preference
during the localizer for each voxel. The rationale is that voxels
that are more selective in their response yield a larger slope pa-
rameter because the activity elicited by different images shows a

Figure 2. A, Expectation suppression throughout the ventral visual stream. Displayed are parameter estimates for unexpected
image pairs minus expected pairs overlaid on the MNI152 2 mm template. Color represents the parameter estimates: red-yellow
clusters represent expectation suppression; opacity represents the associated z statistics. Black contours outline statistically sig-
nificant clusters (Gaussian random field cluster corrected), which include significant expectation suppression in superior and
inferior divisions of LOC, temporal occipital fusiform cortex, and posterior parahippocampal gyrus. B, Expectation suppression
displayed on an inflated cortex reconstruction. z statistics of the expectation suppression contrast (cluster thresholded) are dis-
played. Visible are large clusters showing significant expectation suppression in LOC, fusiform gyrus (FG), inferior parietal cortex
(IPC), and posterior parahippocampal gyrus (PHG). C, Expectation suppression within V1 and object-selective LOC. Displayed are
parameter estimates � within-subject SE for responses to expected and unexpected images pairs. In both ROIs, V1 (left bar plot)
and LOC (right bar plot), BOLD responses to unexpected image pairs were significantly stronger than to expected image pairs.
**p � 0.01. ***p � 0.001.
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larger difference than in voxels with low
selectivity (i.e., those that respond simi-
larly to different images). After obtaining
the slope parameter of image preference
per voxel, we ranked voxels by this slope
coefficient, reflecting voxel selectivity
during the localizer. Next, we regressed
expectation suppression during the main
task onto voxel selectivity rank. As ex-
plained above, we reasoned that dampen-
ing predicts a positive slope for this
regression, whereas sharpening would
predict a negative slope. Results from
LOC (Fig. 3C) showed a significant posi-
tive slope of expectation suppression with
voxel selectivity (t(21) � 3.00, p � 0.007,
Cohen’s dz � 0.64), demonstrating that
highly selective voxels are more sup-
pressed by expectation than less selective
ones. These effects were present for all
LOC ROI mask sizes from 50 to 300 vox-
els. Thus, also the selectivity analysis pro-
vides evidence that neural responses are
dampened by expectations in LOC. Re-
sults in V1 were inconclusive with no sig-
nificant effect of voxel selectivity on
expectation suppression (t(21) � 1.80, p �
0.086, Cohen’s dz � 0.38) and only weak
anecdotal evidence for the absence of an
effect in the corresponding Bayesian t test
(BF10 � 0.887).

In another complementary analysis,
we reasoned that, if the reduced activity
for expected items is associated with a re-
duction of noise (sharpening), it is ex-
pected to be associated with an increase in
classification accuracy in a MVPA (Kok et
al., 2012a). Conversely, a dampening of
the representation is predicted to be asso-
ciated with a decrease in classification ac-
curacy for expected image pairs (Kumar et
al., 2017). Generally, image identity could
be classified well above chance (12.5%) in
V1 (expected: 27.9%, t(21) � 10.89, p �
4.3e-10, Cohen’s dz � 2.32; unexpected:
30.2%, t(21) � 15.70, p � 4.5e-13, Cohen’s
dz � 3.35), and LOC (expected: 18.5%,
t(21) � 5.69, p � 1.2e-5, Cohen’s dz � 1.21; unexpected: 19.5%,
t(21) � 6.76, p � 1.1e-6, Cohen’s dz � 1.44). While a trend toward
better decoding performance for unexpected images was visible
in both ROIs, in line with dampening of the sensory response, this
difference was not statistically significant (V1: t(21) � 1.93, p �
0.067, Cohen’s dz � 0.41; LOC: t(21) � 1.16, p � 0.260, Cohen’s
dz � 0.25). Bayesian t tests of this difference also remained incon-
clusive in both ROIs (V1: BF10 � 1.073; LOC: BF10 � 0.403).

Expectation facilitates image categorization
To assess whether concurrent to the described neural effects also
behavioral benefits of expectation are evident, data from the cat-
egorization task were analyzed. Results demonstrate that partic-
ipants categorized expected trailing images faster (524.4 � 3.8
ms, mean � SE) than unexpected items (537.4 � 3.8 ms; t(21) �
2.40, p � 0.026, Cohen’s dz � 0.51; Fig. 4A). A similar, albeit not

statistically significant trend (t(21) � 1.19, p � 0.247, Cohen’s
dz � 0.25) was visible in terms of error rates (Fig. 4B). Analysis of
the questionnaires showed that, on average, participants cor-
rectly identified 4.0 � 2.3 (mean � SD) of the eight image pairs.

Spatial extent of expectation suppression
In a post hoc analysis, we investigated whether the expectation
suppression effect in V1 and LOC was spatially unspecific or
constrained to regions activated by the object stimuli. The rea-
soning was that a spatially unspecific effect indicates that at least
part of the observed expectation suppression may be due to
arousal changes in response to unexpected compared with ex-
pected trailing images, while a constrained effect may point to-
ward a spatially specific top-down modulation. To investigate
this, the amount of expectation suppression was compared be-
tween voxels significantly activated by object stimuli and those
that were not. The split into activated and not activated voxels

Figure 3. A, Image preference analysis results in V1 and object-selective LOC. Parameter estimates � within-subject SE are
displayed as a function of voxelwise image preference, ranked from the least to the most preferred image rank based on the
functional localizer. Superimposed is the mean regression line fit of the subjectwise regressions for expected and unexpected
image pairs separately (see Materials and Methods). Left line plot represents responses to expected and unexpected image pairs
within the V1 ROI. The fitted regression lines for expected and unexpected are parallel (i.e., no difference in slopes). Right plot
represents image preference results for object-selective LOC, showing a steeper slope for the unexpected image pair regression line
compared with the corresponding expected image pair regression line. B, Image preference analysis results displayed on an
inflated cortex reconstruction. z statistic (uncorrected) of expectation suppression as function of image preference rank is shown:
red represents more suppression for preferred stimuli (dampening); blue represents less suppression for preferred stimuli (sharp-
ening). Visible are clusters showing a dampening effect largely in bilateral LOC and, to a lesser extent, in fusiform gyrus (FG). C,
Expectation suppression (unexpected 	 expected) as function of voxel selectivity, ranked from the least to the most selective
voxels, in object-selective LOC. Displayed are the linear models per subject, the mean linear model (group mean), and the mean
data for each selectivity ranked voxel. The amount of expectation suppression increases as a function of voxel selectivity. *p �
0.05. **p � 0.01.
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was performed using data from the functional localizer, with ac-
tivated voxels being defined as all voxels within anatomically de-
fined V1 and LOC, respectively, which exhibited a significant
activation by object images (z � 1.96; i.e., p � 0.05, two-sided),
whereas nonactivated voxels were defined as voxels displaying no
significant activation, nor deactivation (	1.96 � z � 1.96). ROI
masks were constrained to gray matter voxels. In both ROIs,
activated and nonactivated voxels showed evidence of expecta-
tion suppression (V1, activated voxels: t(21) � 3.01, p � 0.007,
Cohen’s dz � 0.64; V1, nonactivated voxels: t(21) � 2.17, p �
0.041, Cohen’s dz � 0.46; LOC, activated voxels: t(21) � 4.11,
p � 0.0005, Cohen’s dz � 0.88; LOC, nonactivated voxels: t(21) �
2.51, p � 0.021, Cohen’s dz � 0.53). In LOC, expectation sup-
pression was significantly stronger in voxels that were activated
by the stimuli than in nonactivated voxels (t(21) � 2.20, p � 0.039,
Cohen’s dz � 0.47). However, in V1, this difference was not sta-
tistically significant (t(21) � 1.09, p � 0.286, Cohen’s dz � 0.23). A
Bayesian analysis of V1 data remained inconclusive, yielding only
anecdotal evidence for the absence of a difference between acti-
vated and nonactivated voxels (BF10 � 0.379).

Discussion
We set out to investigate the neural effects of perceptual expecta-
tion and demonstrated that, after incidental learning of transi-
tional probabilities of object images, expectation suppression is
evident throughout the human ventral visual stream. Impor-
tantly, the amount of expectation suppression scaled positively
with image preference and voxel selectivity in LOC, suggesting
that dampened sensory representations underlie expectation
suppression in object-selective areas, in line with results from
monkey IT (Meyer and Olson, 2011; Kumar et al., 2017).

Dampening of sensory representation in
object-selective cortex
The suppression of expected stimuli, evident throughout the ven-
tral visual stream in the present study, extends and supports pre-
vious research showing expectation suppression in early visual
areas (Alink et al., 2010; Kok et al., 2012a; St. John-Saaltink et al.,
2015) and monkey IT (Meyer and Olson, 2011; Kaposvari et al.,
2018). The observed suppression may constitute an efficient and
adaptive processing strategy, which filters out predictable, irrele-
vant objects from the environment. Conversely, the stronger re-
sponse to unexpected objects may serve to render unexpected
stimuli more salient. This surprise response to unexpected stim-

uli may draw attention toward these stimuli, as also reasoned by
Meyer and Olson (2011). Such capture of attention is adaptive
because unexpected events may provide particularly relevant in-
formation. It is important to note that the used paradigm did not
manipulate attention toward expected or unexpected stimuli in a
top-down fashion. Indeed, unexpected and expected stimuli were
only distinguishable by the context in which they occurred.
Therefore, if unexpected stimuli do indeed automatically capture
attention (Brockmole and Boot, 2009; Howard and Holcombe,
2010), then any attentional modulation must temporally follow
the expectation effect, and not vice versa.

Given the absence of a neutral condition, we cannot differen-
tiate whether the observed expectation suppression effect consti-
tutes a suppressed response for expected stimuli, or an enhanced
response to unexpected ones, or both. Although there is evidence
for both expectation suppression and surprise enhancement
(Kimura and Takeda, 2015; Kaposvari et al., 2018), the present
data cannot speak to this issue but only concerns the relative
difference between expected and unexpected stimuli.

We showed that the amount of expectation suppression scales
with image preference in object-selective LOC, as also demon-
strated in monkey IT (Meyer and Olson, 2011). Scaling indicates
that expectation suppression in object-selective areas does not
merely signal an unspecific surprise response, but rather that
sensory representations are dampened by expectations because
the neural population most responsive to the expected stimulus is
also most suppressed. Accordingly, we also demonstrated that
expectation suppression scales positively with voxel selectivity.
This result further supports the dampening account of expecta-
tion because selective voxels contain more highly responsive neu-
rons, tuned toward the expected stimulus features, which are also
most suppressed by dampening. Although there are some scenar-
ios in which neural sharpening could account for some of the
results presented here in isolation, the joint set of observations
can only be accounted for by a dampening process at the neural
level. Thus, our results lend support to the notion that neural
responses are dampened by expectations in object-selective LOC.
Functionally, a dampening of sensory representations is in line
with an adaptive mechanism, which filters out behaviorally irrel-
evant, predictable objects from the environment.

If expectation suppression, and the underlying representa-
tional dampening in LOC, represents an adaptive neural strategy,
one might expect behavioral benefits to correlate with the neural
effects. Although we observed behavioral benefits for expected
stimuli during the categorization task, the present study cannot
answer whether expectation suppression is associated with be-
havioral benefits because during the fMRI task, and central to the
interpretation above, expectations were task-irrelevant. Task-
relevant predictions, necessary to investigate this question, may
in turn change the underlying neural dynamics. Indeed, it has
been suggested that, at least in early visual areas, attention can
reverse the suppressive effect of expectation (Kok et al., 2012b).

Although we did observe expectation suppression in V1, we
did not find conclusive evidence for, or against, dampening or
sharpening. These results cannot be explained by the absence of
image preference in V1 for the used stimuli, as the preference
ranking itself was reliable. Because a stimulus unspecific suppres-
sion was evident in V1, it is possible that object-specific expecta-
tions were resolved at a higher level in the cortical hierarchy and
only the results of the prediction (expected or unexpected) were
relayed to V1 as feedback. Alternatively, a dampening effect may
exist in V1, albeit of a smaller magnitude than in LOC, yielding an
effect below detection threshold for the present study. Suppres-

Figure 4. Behavioral data analysis from the categorization task indicates incidental learning
of image transitions. Data are mean � within-subject SE. A, Mean RT to expected and unex-
pected trailing images. RTs were significantly faster to expected trailing images compared with
unexpected images. B, The corresponding mean error rates. *p � 0.05.
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sion in V1 may also have arisen due to spatially unspecific effects
across V1, such as arousal changes, after the resolution of expec-
tations in higher cortical areas. This interpretation is supported
by the fact that expectation suppression was not significantly
larger in stimulus-driven than non–stimulus-driven voxels.

Finally, the present results are at odds with a previous study
that observed a sharpening of the sensory population response in
V1 by expectation (Kok et al., 2012a). Although we did not find
evidence for a sharpening of responses in V1, we did observe
dampening in LOC, in line with studies of monkey electrophys-
iology (Meyer and Olson, 2011; Kumar et al., 2017). Thus, our
data show that the disagreement in previous studies, suggesting
sharpening in human V1 (Kok et al., 2012a) and dampening in
monkey IT (Meyer and Olson, 2011; Kumar et al., 2017), are
unlikely to be caused by differences between species or recording
methods. We briefly discuss three factors that may account for
the opposite results. First, Kok et al. (2012a) and the present study
used different stimuli (grating vs object stimuli), tailored to in-
vestigate the population response in different areas of the visual
hierarchy (V1 vs LOC). Given that we did not find evidence for
sharpening in V1, the opposite results cannot be explained by a
general difference between the sensory areas, but rather an inter-
action between stimulus type and sensory area. Second, we in-
duced expectations by prolonged exposure before scanning,
whereas in Kok et al. (2012a), expectations were learned and
updated during the experiment. Interestingly, while expectation
suppression has been shown in monkey IT when expectations
were induced by long-term exposure (Meyer and Olson, 2011;
Kaposvari et al., 2018), this effect was not found when expecta-
tions were induced during the experiment (Kaliukhovich and
Vogels, 2011, 2014). Finally, there are differences between the
studies in task demands. In the current study, we examined neu-
ral activity elicited by expected and unexpected nontarget stimuli
(i.e., stimuli that did not require a response by the observer). On
the other hand, all stimuli in Kok et al. (2012a) were target stim-
uli, requiring a discrimination judgment by the observers. Given
that attentional selection is known to sharpen stimulus represen-
tations (Serences et al., 2009), this difference in task setup could
explain the opposite results.

Prediction errors and predictive coding
Within a hierarchical predictive coding framework, prior expec-
tations about an upcoming stimulus act as top-down signals pre-
dicting the bottom-up input based on generative models of the
agent (Friston, 2005). These predictions are then compared with
the actual bottom-up input, resulting in a mismatch signal, the
prediction error. Expectation suppression, as evident in the pres-
ent data, and previously observed by others (Kok et al., 2012a;
den Ouden et al., 2012; e.g., Blank and Davis, 2016), matches the
properties of a prediction error signal. That is, the ensuing pre-
diction error is smaller for expected compared with unexpected
trailing images because the mismatch between prediction and
input is smaller, thus resulting in expectation suppression, as
evident here throughout the ventral visual stream. Furthermore,
a dampening of object representations in LOC can well be ex-
plained within predictive coding as a result of the stronger and
prolonged resolution of prediction errors elicited by unexpected
images.

Alternatively, our results could partially be explained by
changes in arousal, potentially reflecting globally enhanced re-
sponses following surprising stimuli. This explains why expecta-
tion suppression in V1 was spatially unspecific, and some
suppression was evident in non–stimulus-driven voxels in LOC.

However, such unspecific upregulation of activity cannot readily
account for the stimulus-specific and spatially specific response
modulations in LOC, while predictive coding explains these ef-
fects well.

No systematic modulation of expectation suppression by
conditional probability
The present results do not provide evidence for a systematic mod-
ulation of expectation suppression by conditional probabilities.
This is somewhat surprising given that a modulation has been
demonstrated in monkey TE (Ramachandran et al., 2016). Fur-
thermore, it is only by virtue of the difference in conditional
probability that a trailing image can be considered expected or
unexpected. Thus, by its nature, expectation suppression should
be sensitivity to conditional probability. We believe that this null
result may be due to a lack of sensitivity of the associated analysis.
The complexity of the transition matrix and the relatively small
difference in conditional probability between the conditions, as
well as the split of the available data into the three conditions may
have all led to a reduction in sensitivity. Thus, to further elucidate
the nature of expectation suppression, future research in humans
is required, possibly using simplified paradigms or extended ex-
posure to the image transitions.

In conclusion, our results demonstrate that expectation sup-
pression is a widespread neural mechanism of perceptual expec-
tation in the ventral visual stream, which increases with image
preference and voxel selectivity. Perceptual expectations thus
lead to a dampening of sensory representations in object-selective
cortex, possibly supporting our ability to filter out irrelevant,
predictable objects.
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