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Accounting for Taste: A Multi-Attribute Neurocomputational
Model Explains the Neural Dynamics of Choices for Self and
Others
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How do we make choices for others with different preferences from our own? Although neuroimaging studies implicate similar circuits in
representing preferences for oneself and others, some models propose that additional corrective mechanisms come online when choices
for others diverge from one’s own preferences. Here we used event-related potentials (ERPs) in humans, in combination with computa-
tional modeling, to examine how social information is integrated in the time leading up to choices for oneself and others. Hungry male and
female participants with unrestricted diets selected foods for themselves, a similar unrestricted eater, and a dissimilar, self-identified
healthy eater. Across choices for both oneself and others, ERP value signals emerged within the same time window but differentially
reflected taste and health attributes based on the recipient’s preferences. Choices for the dissimilar recipient were associated with earlier
activity localized to brain regions implicated in social cognition, including temporoparietal junction. Finally, response-locked analysis
revealed a late ERP component specific to choices for the similar recipient, localized to the parietal lobe, that appeared to reflect
differences in the response threshold based on uncertainty. A multi-attribute computational model supported the link between specific
ERP components and distinct model parameters, and was not significantly improved by adding time-dependent dual processes. Model
simulations suggested that longer response times previously associated with effortful correction may alternatively arise from higher
choice uncertainty. Together, these results provide a parsimonious neurocomputational mechanism for social decision-making, addi-
tionally explaining divergent patterns of choice and response time data in decisions for oneself and others.
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How do we choose for others, particularly when they have different preferences? Whereas some studies suggest that similar neural
circuits underlie decision-making for oneself and others, others argue for additional, slower perspective-taking mechanisms.
Combining event-related potentials with computational modeling, we found that integration of others’ preferences occurs over
the same timescale as for oneself while differentially tracking recipient-relevant attributes. Although choosing for others took
longer and produced differences in late-emerging neural responses, computational modeling attributed these patterns to greater
response caution rather than egocentric bias correction. Computational simulations also correctly predicted when and why
choosing differently for others takes longer, suggesting that a model incorporating value integration and evidence accumulation
can parsimoniously account for complex patterns in social decision-making. j

ignificance Statement

stantially from our own. A critical question concerns whether and
when such choices require perspective-taking mechanisms that

Introduction
Whether in parenting or politics, we are often required to make

decisions for other individuals whose preferences may differ sub-

Received Nov. 22, 2017; revised July 19, 2018; accepted July 26, 2018.

Author contributions: A.H., J.A.C., and CA.H. wrote the first draft of the paper; A.H., J.A.C, and C.A.H. edited the
paper; A.H.and C.A.H. designed research; A.H. performed research; A.H., J.A.C.,and C.A.H. contributed unpublished
reagents/analytic tools; A.H., J.A.C, and C.A.H. analyzed data; A.H., J.A.C, and CA.H. wrote the paper.

This work was supported by Canada’s Social Sciences and Humanities Research Council Insight Grant to CAH.

are slower, more effortful, or computationally costly (Epley et al.,

The authors declare no competing financial interests.
*A.H., J.A.C, and CAH. contributed equally to this work.
Correspondence should be addressed to Dr. Alison Harris, Department of Psychology, Claremont McKenna Col-
lege, 850 Columbia Avenue, Claremont, CA 91711. E-mail: aharris@cmc.edu.
DOI:10.1523/JNEUR0SCI.3327-17.2018
Copyright © 2018 the authors  0270-6474/18/387952-17515.00/0



Harris et al. @ A Neurocomputational Model of Choices for Others

A

|  LSetUp | II. EEG

| 1. Outcome

J. Neurosci., September 12, 2018 - 38(37):7952-7968 * 7953

Yet recent work using computational
modeling suggests that slower RTs and ac-
tivation in VMPFC and TPJ during some

* Photo taken
* Partner introductions
* Taste/Health ratings

Decision (6 runs) for:
* Own Self

» Similar Partner

* Dissimilar Partner

B Similar: No dietary restrictions

Receive random
food based on
decision

social decision-making tasks can result
from a noisy value-integration mecha-
nism, without requiring additional slow
or effortful cognitive processes (Hutcher-
son etal., 2015; Krajbich et al., 2015; Berk-
man et al., 2017). Moreover, several fMRI
studies have found that constructing val-
ues and choices for oneself and others re-

... Taste is my number one
consideration...For me eating
food is all about it tasting good.

cruit the same regions of VMPFC, even
when preferences differ substantially (Ni-
colle et al., 2012; Janowski et al., 2013).
Unfortunately, the low temporal resolu-
tion of fMRI obscures the dynamics of this

Dissimilar: Self-identified healthy eater

process, and recent computational mod-
els of choice for others (Devaine and
Daunizeau, 2017; Tarantola et al., 2017)
have not explicitly examined when and
why constructing values for others might
require longer, more extensive processing

...I don’t eat anything with
added sugars...I try to eat
a lot of fruits and vegetables.

compared with the self.

This paper aims to answer three related
questions. First, are additional neural
computations involved when choosing
for others with similar or dissimilar pref-

Please choose for
this person

Figure1.

2004). For example, studies of response time (RT) find that peo-
ple take longer to choose for similar others when those choices
diverge from what they choose for themselves (Tamir and Mitch-
ell, 2013; Apps et al., 2016; Volz et al., 2017), perhaps because
slower, more controlled processing is required to adjust an oth-
erwise automatic egocentric bias. Overcoming egocentric choice
biases has also been associated with increased activation in brain
regions associated with social cognition, such as the ventromedial
prefrontal cortex (VMPFC) and temporoparietal junction (TPJ)
(Tamir and Mitchell, 2010; Silani et al., 2013).

Until response
(max 4 s)

Social food choice task. A, Experimental session. In Part 1, hungry participants with unrestricted diets were introduced
to 2 partners, and provided taste and health ratings for the foods used in the experiment. Then, in Part 2, participants made food
choices for themselves and the partners while their brain activity was measured with EEG. Participants knew that their choices
mattered because a single trial was randomly selected and implemented for each recipient in Part 3. B, Sample statements from
the Similar (top) and Dissimilar (bottom) partners in the experiment. €, Sample stimuli and screens from the decision task.

erences? Second, what are the temporal
dynamics of those computations? Third,
how might these computations explain
when and why people show egocentric bi-
ases, or instead make different choices for
themselves and others? To address these
questions, we used a dietary choice task
(Fig. 1) in which participants with unre-
stricted diets made food choices for them-
selves and 2 partners: a Similar partner
with unrestricted dietary preferences, and
a Dissimilar partner who self-identified as
a healthy eater. We used a novel combina-
tion of event-related potentials (ERPs),
computational modeling, and simulation
to identify the processes necessary to
account for the full pattern of choices,
RTs, and neural responses observed when
choosing for oneself, similar, and dissim-
ilar others.

The best-fitting model, a multi-attribute
version of the drift-diffusion model
(DDM) (Smith and Ratcliff, 2004; Ratcliff
and McKoon, 2008), suggests that indi-
viduals may indeed use their own pre-
ferences as a source of information,

particularly when deciding for similar others. Yet a slow, serial
adjustment mechanism is not required to explain when and why
people choose differently for others and take longer to do so.
Instead, an early-acting perspective-taking mechanism, localized
to the TPJ, may play a role in adjusting the importance of differ-
ent stimulus attributes (e.g., tastiness and healthiness) based on
inferences about the recipient’s preferences. These attributes are
integrated into a noisy overall value signal, localized to a region of
VMPEFC previously implicated in value construction (Bartra et
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al., 2013; Clithero and Rangel, 2014) with a similar time course
regardless of recipient. We find further evidence that these
VMPEFC value signals serve as input to an evidence accumulation
process (Rangel and Clithero, 2013) that produces a choice when
the accumulated evidence crosses a threshold whose height can
be adjusted based on uncertainty about others’ preferences. Thus,
although choices for others involve multiple distinct systems,
these computations follow different temporal dynamics and play
different functional roles than previously hypothesized. These
results show that a parsimonious neurocomputational frame-
work can account not only for when people choose differently for
themselves than for others, but also when and why these choices
are associated with additional processing time.

Materials and Methods

Participants. Thirty-eight right-handed participants (age 18 —40 years, 20
female) from the Claremont Colleges participated in exchange for course
credit. Participants were screened to ensure that they enjoyed common
appetitive snacks and did not self-identify as healthy eaters. Although all
38 participants were included in the behavioral model, two individuals
were excluded from the combined behavioral-neurophysiological model
due to excessively noisy EEG data in which cognitive signals could not be
reliably separated from artifactual noise using artifact removal protocols
(see “EEG data acquisition and preprocessing”). All participants pro-
vided written informed consent before participation. Procedures were
reviewed and approved by the Claremont McKenna College Institutional
Review Board.

Stimuli. Stimuli consisted of color pictures of 250 common appetitive
foods on a black background (Fig. 1C; 576 X 432 pixels). Foods were
chosen to span a full range of perceived tastiness and healthiness based on
pilot ratings from a separate group of participants (N = 25). The stimu-
lus set included fruits and vegetables, chips, and candy bars.

Procedure. The experiment consisted of three parts (Fig. 1A). In Part 1,
participants received information about the 2 partners for whom they
would be making food choices, after which they rated foods in terms of
taste and health attributes. In Part 2, participants made choices about
whether to eat these foods, separately for themselves and their 2 partners
(Own self, Similar other, Dissimilar other conditions) while their brain
activity was recorded with EEG. Finally, in Part 3, a single trial was ran-
domly selected for each recipient and the outcome of that trial was im-
plemented.

Participants were instructed to fast for 4 h before arrival to ensure they
were hungry and motivated to perform the decision task. Compliance
was assessed verbally before starting the experiment. Next, the experi-
menter took a photo of the participant against a white wall, which was
used as a visual cue for the trials in which the participant chose food for
himself/herself in Part 2. Participants then completed a short computer-
based survey in which they indicated the extent to which they generally
use health information in deciding what to eat, and made a series of 12
binary choices between a healthier and less healthy but tastier option
(e.g., green salad vs French fries).

Participants received instructions familiarizing them with the overall
structure of the decision task and introducing the 2 partners (Fig. 1B),
matched to the participant’s own gender. Participants were informed
that the partners were real people expressing their true dietary prefer-
ences, and that they had indeed agreed to eat at least three bites of which-
ever food the participant selected for them. This was true; no deception
was used in the experiment. Each participant received information that
one partner had unrestricted dietary preferences similar to their own
(Similar partner; Fig. 1B, top), whereas the other had quite different
preferences (Dissimilar partner; Fig. 1B, bottom). First, participants
viewed two short video interviews in which each partner responded to
prompts about their eating habits. Each partner was introduced by name
via an intertitle at the beginning of the interview. During the interview,
partners described their food preferences in general, and answered ques-
tions about specific choices (e.g., “Pizza or a salad”). Representative
quotes for the partner without dietary restrictions included: “I would say
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for me, taste is my number one consideration when I'm eating . . . If it
tastes good but it’s not healthy, I'll just eat less of it, but for me eating food
is all about it tasting good.” Representative quotes for the self-identified
healthy eater included the following: “I don’t eat anything with added
sugars. . . [ try to eat alot of fruits and vegetables, and I eat a lot of peanut
butter and almond butter.” The video interviews were lightly edited for
conciseness, but otherwise were not manipulated. To give participants a
fuller picture of the partners’ preferences, they were also shown the part-
ners’ responses to the same 12-item food questionnaire they had com-
pleted earlier.

Following introduction to the partners, participants completed two
blocks of trials in which they rated each of 250 appetitive foods in terms
of tastiness and healthiness. Each food was displayed until the participant
entered a keypress response using a 4-point scale (1 = Strong No; 2 =
Weak No; 3 = Weak Yes; 4 = Strong Yes). The order of the rating blocks
and the left-to-right order of the response keys were counterbalanced
across participants.

Next, EEG data were recorded while participants performed a simple
decision-making task (Fig. 1C) in which they chose whether or not a
particular recipient (Own self, Similar other, or Dissimilar other) would
have the opportunity to consume each food at the end of the experiment.
Because of time constraints, this decision task used a subset of 200 foods
(of the original 250), chosen to span the full range of taste and health
ratings. Participants made decisions regarding each food both for them-
selves and the 2 partners, resulting in a total of 600 trials, in blocks of 10
trials per recipient. At the beginning of each block, the participant saw a
prompt (“For the next set of trials, please choose for this person”) above
apicture of the intended recipient. For Own self trials, this picture was the
head shot taken upon the participant’s arrival at the laboratory; the other
partners’ images were captured from screenshots of the video interviews.
The duration of the recipient prompt was randomly jittered between 4
and 5 s. In addition, a smaller picture of the intended recipient was
displayed at the top of the screen throughout the block. On each trial,
participants saw a food image centered on the screen, which remained
visible until a response was entered (maximum duration 4 s), using a
4-point scale (1 = Strong No; 2 = Weak No; 3 = Weak Yes; 4 = Strong
Yes). This response method captures both the strength and direction of
participants’ preferences (Hare et al., 2009; Hutcherson et al., 2015). The
order of the recipient blocks and of the food images was randomized
across participants. The task was subdivided into 6 runs, and within each
run the blocks of trials were further subdivided by intervening self-paced
breaks. During the decision trials, participants were instructed to main-
tain central fixation and minimize eye movements and blinks; adherence
was monitored by checking the EEG signal for stereotypical patterns of
eye-movement-related artifact in frontal electrodes during the recording.
Following each trial, a screen consisting of a fixation dot was shown for a
randomly jittered intertrial interval of 4—6 s. Participants were instructed
to respond as quickly and accurately as possible, and completed a short
practice block before the actual experiment.

Participants cared about their choices because they knew that a single
randomly selected trial would be implemented for each recipient at the
end of the experiment. If the participant had said yes on the selected trial,
the recipient would have to eat at least three bites of the depicted food. If
the participant said no, the recipient would not receive the food.

EEG data acquisition and preprocessing. EEG data were collected using
a 128-channel ActiveTwo system (Biosemi) with active electrodes with
sintered Ag-AgCl tips in fitted headcaps. Evoked brain potentials were
digitized continuously at 512 Hz with default low-pass at one-fifth of the
sampling rate. Two additional electrodes with a 4 mm sintered Ag-AgCl
pallet were placed bilaterally on the mastoids for use as references in data
import. Before the start of data collection, electrical offsets were verified
to be between —20 and 20 wV across all channels.

Data preprocessing was performed offline using the EEGLAB toolbox
(Delorme and Makeig, 2004) for MATLAB (The MathWorks). Upon
import into EEGLAB, data were resampled to 500 Hz and rereferenced to
an average reference. To address DC offsets, linear detrending was per-
formed on the continuous data. High-pass filtering at 1 Hz and notch
filtering at 60 Hz were applied to remove slow voltage drifts and electrical
noise, respectively, via a two-way least-squares FIR filter. Epochs were
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then extracted for a 2400 ms window around the onset of the food stim-
ulus (—200 ms before to 2200 ms after stimulus onset) for initial artifact
rejection.

Although participants made an equal number of decisions for them-
selves and the 2 partners, subsequent division of the data into conditions
by stimulus value or stimulus attribute (e.g., taste or health rating) pro-
duced unequal numbers of trials per condition due to individual varia-
tions in choice. Because traditional artifact rejection methods remove
whole epochs, reducing the number of trials available to be averaged
(Picton et al., 2000), use of these techniques could lead to even greater
asymmetries in the distribution of trials by condition, potentially skew-
ing the resulting average waveforms. Therefore, in lieu of traditional
trial-based artifact rejection, we used independent components analysis,
a method that has been demonstrated to provide superior detection and
removal for a variety of artifactual signals in EEG (Delorme et al., 2007;
Urigiien and Garcia-Zapirain, 2015) without affecting the overall num-
ber of trials. Specifically, second-order blind identification (Belouchrani
etal.,, 1997; Tang et al., 2005) was applied to “unmix” the EEG data into
a sum of temporally correlated and spatially fixed components, which
were then classified as task-related or artifactual (Harris et al., 2011).
Whereas artifacts, such as eye blink, muscle activity, and electrode
noise, tend to have highly localized scalp distributions and spectral
peaks outside of typical EEG frequencies (e.g., 60 Hz line noise) with-
out consistent time-locking to stimuli or responses, task-related
cognitive components usually show meaningful dipolar scalp topog-
raphies, spectral peaks at typical EEG frequencies (e.g., 10 Hz “o”
and clear stimulus- or response-locking across the majority of trials.
Only task-related components were projected back onto the scalp,
allowing us to obtain artifact-corrected brain signals (Jung et al.,
2000) from which 1600 ms stimulus-locked epochs (—100 ms before,
1500 ms after stimulus onset) and 700 ms response-locked epochs
(=600 before, 100 ms after response onset) were extracted.

EEG: regression analysis. In our first analysis, we sought to characterize
the time course of value signal computations, as identified by sensors and
time windows in which neural activity correlated with the stimulus value
of the foods. For each channel, evoked data for each trial were integrated
over 50 ms windows from 100 to 1250 ms after stimulus onset, producing
a matrix of EEG responses over 128 X 23 time windows in each partici-
pant. The response-locked data were likewise binned over 30 ms win-
dows from —600 to 90 ms before response onset, resulting in 128 X 23
sensor-time window combinations in the response-locked data. For each
analysis, the EEG responses for each participant across all 128 X 23 time
windows were then entered into a linear regression model as follows:

Veensorime = Bo + BiSimilar + B,Dissimilar + B;Stimulus Value
+ B,Similar X SV + BsDissimilar X SV + Be¢Arousal

+ B,Similar X Arousal + BgDissimilar X Arousal + &

(1)

where ¥ cor. time cOnsists of trial-by-trial data (in microvolts) for a par-
ticular sensor and time window, and f3, is the average activity in the
sensor. The Similar and Dissimilar covariates have a value of 1 when the
decision is for the specified recipient (Similar or Dissimilar, respectively)
and 0in all other cases. The Stimulus Value covariate encodes the value of
the subject’s decision from 1 for Strong No to 4 for Strong Yes. The
Arousal covariate, measuring the strength of preference regardless of
valence (0 for Weak No or Weak Yes; 1 for Strong No or Strong Yes), was
included to increase the statistical power of the linear model to identify
activity associated with value (Litt et al., 2011). Finally, we computed
separate covariates for the interaction of Similar and Dissimilar recipients
with stimulus value and arousal, as indicated by Similar X SV, Dissimi-
lar X SV, Similar X Arousal, and Dissimilar X Arousal. This linear
regression analysis generated a set of estimated regression coefficients
(i.e., B map) for every sensor, time window, and subject. These maps
were then aggregated into mixed-effect group estimates by computing
one-sample f tests versus zero for each sensor and time window across all
participants. The resulting ¢-statistic map allowed us to identify sensor
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and time window combinations in which neural activity was significantly
correlated with stimulus value across participants. Results were corrected
for multiple comparisons using an approximate permutation test in
which the labels for all 600 trials were randomly shuffled 1000 times, and
the resulting 8 maps entered into one-sample ¢ tests from which an
empirical distribution of ¢ values for each sensor and time window com-
bination was then computed.

Next, we looked at how the weighting of taste and health attributes
varied by recipient. We defined a time window of interest (WOI) from
500 to 650 ms after stimulus onset based on the time course of significant
activity associated with the Stimulus Value covariate, which was also
generally consistent with the timing of stimulus value effects in previous
studies (Harris etal., 2011, 2013; Harris and Lim, 2016). Data in this time
window were then inspected for the fully independent effects of recipient
and attribute using a linear regression as follows:

Veensorime = Bo + Bi1Health + B,Taste + B;Similar
+ B,Dissimilar + BsSimilar X Health + BDissimilar
X Health + B,Similar X Taste + BgDissimilar X Taste

+ BoHealth X Taste + (2)

where the Health and Taste covariates correspond to the taste and health
attribute ratings for each food item given by the individual participant,
Health X Taste measures the interaction of the attribute ratings, and
Similar X Health, Dissimilar X Health, Similar X Taste, and Dissimi-
lar X Taste reflect the interaction of a specific attribute with the identity
of the recipient. Beta maps resulting from the linear regression in Equa-
tion 2 were then compared using paired ¢ tests of Similar X Taste —
Similar X Health and Dissimilar X Taste — Dissimilar X Health to
identify significant interactions of attribute by recipient. Specifically,
sensors of interest (SOIs) were defined from the conjunction of signifi-
cant sensors for the Similar X Taste — Similar X Health and Dissimi-
lar X Taste — Dissimilar X Health comparisons within the predefined
time WOI (500—650 ms after stimulus onset), and scalp topography and
grand average waveforms were obtained for these SOIs.

EEG: Bayesian source reconstruction. To localize activity associated
with the Stimulus Value covariate to specific brain regions, we applied
distributed source reconstruction using SPM8 (Wellcome Department
of Imaging Neuroscience, Institute of Neurology, London). In this ap-
proach, an empirical Bayesian algorithm (Friston et al., 2008) is used to
model the cortical sheet as a series of hundreds of small dipolar patches,
with the constraint that a common set of underlying sources account for
the evoked responses across all participants (Litvak and Friston, 2008). In
contrast to traditional dipole fitting, this method does not require a priori
assumptions about the number or spatial locations of sources. Instead,
source reconstructions were first computed across the entire trial to ob-
tain models of activity in all potential sources and time points, followed
by a more specific reconstruction of the time WOI (500-650 ms after
stimulus onset) defined on the basis of previous findings and the output
of our mixed-effects ERP regression analysis.

Data from all participants were entered into the same source space
usinga “canonical mesh” based on the SPM template head model derived
from the MNI brain. Sensors were coregistered with the MRI coordinate
system using a generic template of the BioSemi 128-channel layout pro-
vided with the SPM software. Sensor locations were matched to the cor-
tical mesh via an iterative alignment algorithm, and the source space was
modeled using a boundary element model.

Our analysis used a “localization of differences” approach (Henson et
al., 2007), in which we searched for a set of neural sources representing
different levels of the psychological variable of Stimulus Value. Differ-
ence waveforms were computed for each sensor and participant by mul-
tiplying the average waveforms for each condition by weights used to test
for a linear (monotonically increasing) trend, and then summing across
all weighted averages. To localize activity related to stimulus value com-
putations, we used weights of (—3, —1, 1, 3) corresponding to the four
levels of the Stimulus Value regressor, from Strong No to Strong Yes. To
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localize activity related to main effects of participant identity, contrast
weights for Recipient corresponding to Own, Similar, and Dissimilar
recipient choices were (—1, 0, and 1) for the early 350 to 400 ms post-
stimulus window and (—1, 1, and 0) for the —300 to —180 ms prere-
sponse window. Following reconstruction of the difference waveform for
each participant, reconstructions for the WOI across participants were
entered into a statistical analysis to identify statistically significant source
estimates across individuals. In part due to the relatively high consistency
of sensor locations across participants with the fixed cap layout used by
this system, our initial analysis found large clusters of significant dipoles
covering much of the brain, even at relatively rigorous family-wise error
corrected statistical thresholds. Therefore, we chose a highly stringent
threshold of F = 100 to maximize separation of source estimates into
distinct clusters while retaining significant dipoles. Results were visual-
ized in terms of maximal intensity projection, focusing on cortical gen-
erators most likely to contribute to potentials recorded at the scalp
(Cohen et al., 2011).

DDM fitting: time-varying models. Our first modeling goal was to pa-
rameterize popular dual-process models of choice for others (i.e.,
anchoring-and-adjustment models) in a computational framework, to
identify the most parsimonious set of parameters that accounted for
patterns of choice and RT. Consistent with a growing body of work on
value-based choices (Hutcherson et al., 2015; Tusche and Hutcherson,
2018), we assumed that choices can be captured using a multi-attribute
variant of a DDM (Smith and Ratcliff, 2004; Ratcliff and McKoon, 2008),
in which noisy value signals accumulate over time and a choice is
made when the accumulated signal crosses a predefined threshold for
choice. In the simplest of these models, we assumed that this value
signal (also known as the drift rate v) at each instantaneous time point
t could be described as the linearly weighted sum of perceived tasti-
ness and healthiness of the food on that trial, corrupted by Gaussian
noise as follows:

Ve = BTaste X Taste,- + BHealth X Health; + &t (3)

where By, and By, represent the relative weights on Taste and
Health, Taste; and Health; represent the values of Taste and Health attri-
butes for the food shown on trial 7, and ¢, is distributed ~N(0, 0.1). We
assumed that the weights on Taste and Health could vary as a function of
recipient (i.e., when deciding for the Dissimilar healthy partner, the
weight on health might be higher than when deciding for oneself or for a
Similar, unrestrained partner: BHealth\Dissimilur > BHealth\Similar)‘

The canonical version of the DDM assumes that B, and B
remain constant throughout the course of a single decision. However,
most dual-process models assume that participants make choices for
similar others by anchoring first on their own preferences and then seri-
ally adjusting away from this anchor using effortful perspective-taking
mechanisms. This suggests that B, and By, might vary systemati-
cally over time, with early values resembling weights for one’s own self
and later values shifting to better reflect knowledge or assumptions about
one’s partner. Although most descriptions of anchoring-and-adjustment
models fail to specify precisely the temporal dynamics of this process, we
attempted to capture their basic spirit using the following modifications
to the standard DDM. First, we assume that the value signal at instanta-
neous time t can be described by the following equation:

Ve = BTach,L X TaStei + BHmILh,/ X Healthi + &y (4)

which is identical to Equation 3, with the exception that B,,,. and Br.an
are allowed to vary at each instantaneous time point £. Second, we assume
that, when choosing for one’s Own self, By, and By.au, are constant
throughout the trial (i.e., BTasle\Own,O = BTasta\Own,l and BHealth\Own,O =
Beicathjown,)- Third, we assume that, when choosing for others, partici-
pants begin with their own preferences (i.e., Bruselomer,o = Brastelowno
and Brreain|ommero = Breathjown,o)- However, these initial weights can
begin to shift after a delay T to a new set of weights, at a rate r that
determines how long the shift takes once it begins. We used these two
parameters to capture the common notion in dual-process models
that perspective-taking might take time to implement, and that it
should take longer the greater the difference in value between the old
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and new values. Thus, the full model when choosing for one’s Own
self consisted of one fixed parameter (within-trial decision noise &,
which by convention is set to 0.1), and 4 parameters fitted to the data:
weights on health and taste (Brue|own and Brearnjown)> the choice-
determining threshold (*a), and the non-decision time (ndt).
Choices for others consisted of three fixed parameters (within-trial
noise & = 0.1, BTaste,O = BTaste|()wn and BHealth,O = BHealth\Own) and six
fitted parameters (new weights B, , = v and Brea 1> *a, ndt, the
transition delay T and the transition rate r).

Unfortunately, no known analytical solution to the DDM exists with
time-varying drift rate parameters, rendering standard approaches to
model-fitting and parameter estimation intractable. Thus, we used a
maximum-likelihood numerical simulation method similar to that used
in previous work on social decision-making (Hutcherson et al., 2015),
with some important differences to speed up computation time (for
details, see Tusche and Hutcherson, 2018). For each participant in each
condition (Own, Similar, Dissimilar), we began by first simulating prob-
ability distributions of choices and RTs for different combinations of
parameters. We then used these probability distributions to identify the
likelihood of the observed data for each parameter combination, and
selected the parameter combination with the highest likelihood. Because
this numerical simulation method takes a considerable amount of time
that scales exponentially with the number of parameters and parameter
values, we limited computational time by exploring a discrete set of
values for each parameter. For the Own condition, we explored the fol-
lowing parameter values: threshold a = [0.08,0.1,0.12,0.14], ndt = [0.2,
03, ...,0.7], and Broe = Brroasn = [—0.02, —0.01, —0.005, 0, 0.005,
0.01, 0.02, . .. 14]. Parameter values for the Similar and Dissimilar part-
ner conditions were identical, except that the fitted values of B, and
Brrearsn represented the postadjustment weights on Taste and Health after
shifting away from the egocentric Own weights (estimated from the Own
condition), and we included two additional time parameters to describe
this shift: a delay parameter T = [0, 0.1, ..., 0.5] s, and a rate parameter
r=[1.2,2.4,4.8,9.6,1000] describing how quickly old values shifted to
new values following the delay. For example, a rate r = 1.2 suggests that
it takes 1 s to shift 1.2 value units, or, equivalently, 250 ms to shift 0.4
units. A rate r = 1000 indicates an instantaneous shift.

Using these values, we performed model fitting and model selection in
the following manner. We first estimated the best-fitting parameter val-
ues for each participant’s choices in the Similar and Dissimilar partner
conditions separately, estimating the full model with six free parameters.
We then estimated a reduced, four-parameter model with only base pa-
rameters allowed to vary, T fixed at 0 (i.e., no early egocentric bias) and r
fixed at 1000 (no gradual shift). Then, for each subject, we calculated the
Bayesian Information Criterion (BIC) for each model based on the esti-
mated likelihood of the data using the best-fitting parameter values. The
winning model was determined based on which model had the lowest
BIC value for the largest number of subjects, as well as the lowest BIC
value when summing over all subjects. As we describe in greater detail in
Results, this procedure identified the four-parameter model as the most
parsimonious model to account for the data.

DDM fitting: constant value models. Because the analyses described
above found no evidence for a time-varying adjustment process, all
subsequent DDM estimation used canonical versions of the DDM and
was performed using a recently developed software package freely
available in Python (Wiecki et al., 2013). Models were estimated using
a Bayesian hierarchical framework, with Markov chain Monte Carlo
sampling methods used to estimate a joint posterior distribution of
the model parameters. Hierarchical Bayesian estimation allows indi-
vidual participant estimates to be constrained by a group distribution,
but also to vary to the extent that their data demonstrate separation
from the data of others. Estimation used noninformative priors: all
priors were uniform distributions over large intervals of possible pa-
rameter values.

Several different DDM specifications were fit to the data. All of the
DDM specifications assume the drift rate is a linear sum of weighted
Taste and Health ratings, where the weights are allowed to vary by con-
dition (Own, Similar, Dissimilar) as follows:
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Table 1. DDM specifications summary”

Parameter with

trial type Modelno.  DIC MSE choice ~ MSERTyes ~ MSERTno
v M1 463842  0.0137 0.0537 0.0694
v,a M2 463186  0.0135 0.0532 0.0689
v,z M3 46522.1 0.0137 0.0559 0.0655

v, 3,z M4 464156 0.0137 0.0538 0.0682

“, Drift rate; a, threshold; z, starting point.

v = Biowl(Own) X Taste + B0, [(Own) X Health
+ Bisimita l(Similar) X Taste + Bosimin,L(Similar) X Health
+ Bipissimital(Dissimilar) X Taste + Bapissimilal(Dissimilar)
X Health (5)

where I(Recipient) is an indicator function for each of the three condi-
tions. The first model (M1) only allowed drift rate, as specified in Equa-
tion 5, to vary by task condition. All other parameters (ndt, a, z) were
allowed to vary by subject but did not vary within subject. The second
model (M2) included drift rate as in M1 but also allowed the barrier
parameter to vary with task condition, according to the following:

a = B,I(Similar) + B,I(Dissimilar) (6)

This model allowed for the possibility that, in addition to weighting
attributes differently by recipient, individuals may also use different
thresholds depending upon the recipient. A third model (M3) consid-
ered the same drift rate as in M1, but also allowed the starting point, or
bias, parameter z to vary with task condition, similar to Equation 6. This
model did not allow barrier to vary with task condition. A fourth model
(M4) allowed drift rate, barrier, and starting point to vary within partic-
ipants. In all DDM specifications, the ndt parameter was modeled to vary
across participants, but not within participants.

We used two methods to compare fits of the various DDM specifica-
tions. First, we used the Deviance Information Criterion (DIC), a flexible
measure for goodness-of-fit in hierarchical Bayesian models (Spiegelhal-
ter et al., 2002). The DIC combines a measure of deviance (i.e., lack of fit)
with a penalty for model complexity. A lower DIC represents a better
model fit, and differences in DIC >10 are typically thought to reflect
significant differences (Spiegelhalter et al., 2002). Second, we compared
observed data to data generated using random samples from the sampled
posteriors (Wiecki et al., 2013). For each of the four models, 100 samples
for each experimental subject were created. The squared error between
each simulation and observed data was computed for both choices and
RT, with the mean squared error computed across the 100 runs. These
statistics are reported for each model in Table 1.

Model convergence was assessed using the Gelman-Rubin R statistic
(Gelman and Rubin, 1992). The R statistic compares within-chain and
between-chain variance of different runs of the same model. Perfect con-
vergence would be demonstrated with an R = 1. The R statistic was
computed for all of the model parameters based on five runs of the
model.

Another advantage of Bayesian estimation is that it is straightforward
to compare differences in parameter estimates. Significance inference is
possible using the posterior distributions generated from sampling. To
compare coefficients to the null hypothesis (3 = 0), the percentage of the
N = 10,000 samples >0 can be assessed. Similarly, to determine whether
or not a regression coefficient is greater than another, the percentage of
the difference between the N = 10,000 samples that is >0 can computed.

DDM fitting: models using ERP data. In addition to the models M1-M4,
we also estimated a DDM using individual trial ERP components, which
was identical to M2 in all ways, except for additional regressors on the
drift rate based on the ERP data (Eq. 5). Specifically, as described in EEG:
regression analysis, we defined SOIs from the conjunction of significant
sensors for Similar X Taste — Similar X Health and Dissimilar X
Taste — Dissimilar X Health in the predefined time window from 500 to
650 ms poststimulus onset. Within this SOI set and time window, we
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extracted average ERP amplitudes (in microvolts) separately for each
participant and trial. Trial-by-trial ERP amplitudes were entered into a
model with seven additional regressors beyond M2: one to measure the
basic effect of the average trial-by-trial stimulus-locked ERP data on drift
rate and six to determine how trial-by-trial ERP data fluctuated with each
of the decision targets and attributes (Own, Similar, Dissimilar for Health
and Taste).

A similar procedure was followed to estimate the effect of response-
locked ERP on the decision threshold. Trial-by-trial ERP amplitudes (in
microvolts) were averaged across sensors showing a significant effect of
Similar recipient identity between —300 and —180 ms before response.
Along with behavioral choice and RT data, ERP amplitudes were entered
into a model identical to M2, except for an additional regressor on the
decision threshold to measure the effect of the trial-to-trial fluctuations
in the ERP data (Eq. 6). All estimation and statistical inference followed
the same procedures outlined in the previous section.

Post hoc analysis: individual differences in attribute reweighting by neu-
ral encoding of identity. As we describe in greater detail below, we found
neural responses that distinguished choices for the Dissimilar recipient
relative to one’s Own self from ~350—-400 ms, localized to regions im-
plicated in social cognition including the superior temporal sulcus (STS).
At the same time, we observed that weights given to the Health and Taste
attributes during choice varied as a function of recipient identity, with
the largest differences in weights observed when comparing the Dissimn-
ilar other with the Own self. Together, these results suggest that neural
responses from 350 to 400 ms may reflect a perspective-taking process
that influences attribute reweighting when deciding for others. If so, we
speculated that the strength of this early ERP response should predict
how much an individual shifts their weights on taste and/or health when
choosing for others (particularly the Dissimilar other) compared with
their Own choices. To test this idea, we correlated each individual’s neu-
ral response to recipient identity with the magnitude of their shifts in
attribute-weighting for each recipient.

To compute individual differences in the ERP response, we extracted
average amplitudes between 350 and 400 ms after stimulus onset within
the set of sensors showing a significant effect of Dissimilar recipient iden-
tity for this time window. Then, for each individual participant, we cal-
culated the difference in average ERP amplitudes separately for Similar
versus Own and Dissimilar versus Own conditions. To compute individ-
ual differences in attribute-weighting, we used the drift rate weights on
Health and Taste attributes estimated from Model 2, Equation 5, to compute
the following contrasts: (1) TASTEg;,,,i1ar vs owr: change in Taste weight, Sim-
ilar versus Own trials (i.., Bigimitar — Biown)s (2) TASTEp; imitar vs Own:
change in Taste weight, Dissimilar versus Own trials (i.., B pissimilar —
Biown); (3) HEALTHg;,.0r vs ows: hange in Health weight, Similar versus
Own trials (i.e., Bygimitar — Brown)s and (4) HEALTH ;i itar vs own: Change
in Health weight, Dissimilar versus Own trials (i.e., Bspissimilar — Bown)- We
then computed Spearman’s rank-order correlations between ERPg;,..ir vs Own
and TASTESimilar vs Owmd ERPSimiIur vs Own and HEALTHSimilur vs Owmd
ERPDissimilar vs Own and TASTEDissimilur vs Owmd and ERPDissimilar vs Own and
HEALTH

Dissimilar vs Own*

Results

In this experiment, we investigated the neural and computational
bases of decisions for self and others by measuring behavioral and
ERP responses as participants with unrestricted diets made food
choices for themselves and 2 partners: a similar partner with
unrestricted preferences and a dissimilar self-identified healthy
eater (Own self, Similar other, and Dissimilar other conditions;
Fig. 1). First, participants rated 250 different appetitive snack
foods on their perceived tastiness and healthiness. Second, for a
subset of 200 foods selected to vary in taste and health, they were
asked to decide whether they would select the pictured food for
consumption after the experiment, making these choices once for
each of the 3 recipients. To ensure that choices were incentive
compatible, at the end of the study one random trial was selected
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for each recipient and the participant’s
choice on these trials was realized.

To characterize the neural and behav-
ioral correlates of this social decision sce-
nario, we performed a series of analyses as
detailed in the following sections. First, we
analyzed the behavioral choice and RT
data to verify that participants were taking
recipients’ preferences into consideration
when making their decisions, and to repli-
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cate patterns previously associated with 0
egocentric correction mechanisms. Next,
we examined the stimulus-locked ERP
data to find neural signals associated with
stimulus value computations, further as-
sessing how taste and health attributes
were incorporated for each recipient dur-
ing value integration. To determine how L
neural activity differed as a function of re-
cipient, we compared ERP responses in
each condition, time-locked to either the
stimulus or the keypress response.
Although these analyses gave us a set of
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ERP components that correlated with dif-
ferent aspects of the decision process, they
were blind to the specific cognitive opera-
tions indexed by these neural markers.
Thus, to shed further light on the nature
of these signals, we developed a set of novel
multi-attribute computational models of
choices for self and others based on exten-
sions of the DDM (Ratcliff et al., 2016)
and applied it to our event-related data.
The primary assumption of these models
is that weights on attributes, such as taste
and health, shape the evidence accumulated in favor of accept or
reject responses. These weights can vary, not only as a function of
choice recipient, but also as a function of time (i.e., biased toward
automatic, egocentric defaults early on and then shifting over
time with the application of controlled perspective-taking). To
test this latter assumption, we first implemented computational
models in which the construction of value was allowed to vary
systematically over time within a decision, and used formal
model comparison and selection procedures to test whether and
when this shift might occur. Second, having identified the sim-
plest behavioral computational model to account for patterns of
choice and RT, we then attempted to link trial-by-trial fluctua-
tions in neural response to trial-by-trial variation in specific cog-
nitive parameters, such as the rate of evidence accumulation and
threshold for response. Finally, applying our neurocomputa-
tional model to the behavioral data, we ran a series of simulation
exercises demonstrating that distributions of choice and RT,
which appear consistent with default egocentric biases and slow
effortful correction models of decision making, can in some cases
be explained without a correction mechanism, and assuming only
relatively egocentric attribute-weighting and value integration.

Own

Figure 2.

Behavior: observed choice and RT

To verify that participants made inferences consistent with their
partner’s preferences, we first examined whether recipient iden-
tity influenced the likelihood of making a healthy choice (i.e.,
accepting/rejecting items rated high/low on health; Fig. 2A). As
expected, participants made healthier choices when choosing for

Similar

Own Dissimilar Dissimilar  Similar

\ Same Response Different Response

Behavioral results. 4, Percentage of healthy choices for each recipient. B, Average observed RT by recipient. (—E,
Observed RTfor trials separated on the basis of whether, given the same food option, the decision maker chose the same for (C) Own
versus Similar, (D) Own versus Dissimilar, and (E) Dissimilar versus Similar. Thus, Own-Similar:Same Response reflects RT for trials
in which the choice was for Own self, and the response was the same as for the Similar other, whereas Own-Similar.Different
Response reflects RTs on those trials where the response was different from the comparable choice for the Similar other; and
likewise for the other comparisons. *p << 0.05, **p << 0.01.

the Dissimilar “healthy eater” compared with choosing either for
Own self (paired t5,) = 9.19, p = 5 X 10 °) or the Similar other
(paired #.5;, = 10.49, p = 1 X 10 ~'?). Participants made margin-
ally fewer healthy choices for the Similar other (paired ¢, =
1.87, p = 0.069).

We also asked how often participants made the same choice
for themselves and their partner, one way of testing for egocentric
responses. Participants made the same accept or reject choice for
the Similar other as for themselves on 72 * 11% of trials but
chose the same significantly less often (60 = 17% of the time)
when choosing for the Dissimilar other (paired t;,) = 3.69,p =
0.0007). These results suggested that participants tend to choose
similarly for both recipients, with a more pronounced egocentric
bias for the Similar other.

Next, we examined RTs for evidence that decisions for others
might require additional computational resources. We analyzed
behavior in two ways: average RT across all choices and RT as a
function of choice similarity between self and other. In line with
the idea that choosing for others is more computationally costly,
we observed significant differences in mean RTs depending on
the recipient’s similarity (Fig. 2B). Participants were fastest when
choosing for themselves (mean = SD, 1.11 % 0.18 s) and slowest
when choosing for the similar other (paired t5,, = 7.59,p = 5 X
10 %), with choices for the dissimilar partner lying in between
and significantly different from the other two conditions (both
paired ¢,y > 2.17, both p < 0.036).

A critical finding from previous research is that individuals
take longer to choose for similar others when making choices that
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Figure 3.  ERP analysis of stimulus value integration by recipient. 4, Heat map of significant p values associated with stimulus
value, showing significant effects from 500 to 650 ms (green box) and 700 to 850 ms (blue box) after stimulus onset. B, Source
reconstructions from 500 to 650 ms (green) and 700 to 850 ms (blue) overlaid on a representative brain image. Particularly during
the earlier 500 — 650 ms window, stimulus value activity was localized to regions including VMPFC (circled). Inset, Top, Spherical
masks based on peak coordinates from three neuroimaging studies: blue (Plassmann et al., 2007), magenta (Hare et al., 2009), and
cyan (Litt etal., 2011). Inset, Bottom, Source localization of stimulus value from ~450 to 600 ms after stimulus onset in two ERP
studies: red (Harris et al., 2013) and yellow (Harris and Lim, 2016). , Stimulus value integration by recipient. Topographic scalp
distribution (left) and average waveforms for the linear ordering of stimulus value (red represents Strong No; orange represents
Weak No; cyan represents Weak Yes; green represents Strong Yes) in the 500 — 650 ms window (shaded green box) and 700 - 850
ms window (shaded blue box), plotted separately for each recipient. Solid line indicates Own. Dashed line indicates Similar. Dotted
line indicates Dissimilar. D, Comparison of scalp topography at 550 ms (left) and 800 ms (right) after stimulus for the main effect of
stimulus value (top), the interaction of stimulus value with Similar recipient (middle), and the interaction of stimulus value with
Dissimilar recipient (bottom) revealed significant reductions in stimulus value signals for the 2 other recipients during the late
window, in line with average waveform data in C.
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Dissimilar: mean RTgepen = 1.23 = 0.26's,
mean RTg,,,. = 1.14 * 0.23 s, paired 5,
= 3.35, p = 0.002). This analysis has not
been reported previously, to our knowl-
edge, and raises important questions
about the most parsimonious explanation
of RT differences for divergent choices, as
we discuss in greater detail with respect to
our computational simulation results
below.

ERP: stimulus value integration

Given that participants adjusted their
choices to reflect the recipient’s prefer-
ences, a further question is when and how
relevant value signals emerge in the brain.
Although fMRI studies have identified
overlapping regions of VMPFC represent-
ing value for both oneself and others (Ni-
colle et al., 2012; Janowski et al., 2013),
some dual-process models suggest that
these signals should take longer to con-
struct for others. Therefore, the high
temporal resolution of ERP is of crucial
importance in determining the time
course of stimulus value integration
when choosing for oneself versus others.
We began by identifying neural corre-
lates of stimulus value computation,
which  previous neurophysiological
studies of choice for oneself have iden-
tified between 400 and 650 ms after
stimulus onset, localized to regions in-
cluding the VMPFC (Harris et al., 2011,
2013; Harris and Lim, 2016).

We applied a linear regression analysis
to the ERP data to identify neural activity
correlated with the decision made in each
trial (1 = Strong No to 4 = Strong Yes)
across participants. As shown in Figure
3A, ERP data were binned over 50 ms win-
dows from 100 to 1200 ms after stimulus
onset, for all 128 sensors grouped by scalp
location. Data were permutation-corre-
cted to account for multiple statistical
comparisons. This analysis revealed sig-
nificant main effects of stimulus value, re-

differ from their own preferences, but that this effect is reduced
when choosing for dissimilar others (Epley et al., 2004; Tamir and
Mitchell, 2013). As seen in Figure 2C-E, we replicated this pat-
tern, observing longer RTs when choices diverge from Own pref-
erences, for both Similar (different choice: 1.37 * 0.25 s; same
choice: 1.22 * 0.28 s; paired #5,, = 7.90, p = 2 X 10~°) and
Dissimilar (different choice: 1.23 = 0.26 s; same choice: 1.14 =
0.23 s; paired t(5,, = 3.35, p = 0.002) conditions. This effect was
marginally more pronounced in choices for the Similar part-
ner compared with the Dissimilar partner (paired t;,, = 1.75,
p = 0.089), in keeping with prior work (Tamir and Mitchell,
2013).

Intriguingly, however, we also found a slowing effect when
making choices for one’s self that diverged from the choices made for
partners (Own vs Similar: mean RTpigerene = 1.22 = 0.20 s, mean
RTg,me = 1.09 + 0.17 s, paired ¢ 5,y = 6.27,p = 2 X 10 % Own vs

gardless of recipient, at two major time windows leading up to the
time of choice. Generally consistent with the time range of stim-
ulus value effects reported in previous studies, the earliest major
cluster of value-related activity occurred from ~500 to 650 ms
after stimulus onset (Fig. 3A, green box), with additional activity
in roughly the same set of sensors reemerging from 700 to 850 ms
after stimulus onset (Fig. 3A, blue box). Distributed source re-
construction of scalp topography for these two time windows
localized the stimulus value signal to regions including VMPEC,
with a particularly pronounced localization to VMPFC in the
500—-650 ms time window (Fig. 3B, circled). Although the coarse
spatial resolution of ERP precludes detailed specification of
sources, the sources found here closely resemble those from pre-
vious fMRI studies (Fig. 3B, top inset), as well as prior ERP local-
izations (Fig. 3B, bottom inset) within the same latency range
(Harris et al., 2013; Harris and Lim, 2016).
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Given the overlapping sensor distributions and source local-
izations for the earlier and later time periods, what differentiates
neural value integration during these two windows? To address
this question, we examined stimulus value computations as a
function of recipient identity using the conjunction of significant
sensors 500—650 ms and 700—850 ms after stimulus onset (Fig.
3C). Grand average waveforms from central sensors (Fig. 3C, left)
revealed a clear linear ordering from Strong No to Strong Yes for
all recipients between 500 and 650 ms after stimulus (Fig. 3C,
shaded green region). In contrast, activity in the later 700—-850
ms window demonstrated a strong “self-relevance” effect (Grue-
schow et al., 2015): the strongest Stimulus Value responses were
observed for one’s Own self, perhaps reflecting sustained atten-
tion to one’s own choices, with diminished responses for Similar
and Dissimilar partners (Fig. 3C, shaded blue region).

To confirm these effects statistically, we examined covariates
representing the interaction of stimulus value with each recipient
that were computed as part of the larger regression analysis (Eq.
1). Visualizing these effects at the scalp separately for time win-
dows 550 and 800 ms after stimulus onset (Fig. 3D) revealed that,
despite highly significant activity at central sensors for stimulus
value in the earlier window (Fig. 3D, top left), the interactions of
stimulus value with Similar (Fig. 3D, middle left) and Dissimilar
(Fig. 3D, bottom left) were largely nonsignificant, with ¢ values
surviving a threshold of p = 0.05 in 0 and 1 sensors, respectively.
In contrast, during the later window (Fig. 3D, right), interactions
of recipient and stimulus value were significantly negative for
both partners (Similar: 18 sensors, average p = 0.01; Dissimilar:
12 sensors, average p = 0.03), suggesting that stimulus value
computations for others are diminished rather than enhanced
during this late time window. Thus, we did not find stronger
delayed value representations during decisions for others, as
would be expected if participants required additional time to
construct others’ preferences. Instead, later value responses more
likely reflect sustained attention and/or arousal to choices with a
direct impact on one’s own outcomes.

ERP: attribute-weighting by recipient

In line with the hypothesized role of VMPFC in context-
dependent value integration (Hare et al., 2009), ERP value signals
from ~500 to 650 ms after stimulus have previously been shown
to reflect increased weighting of health attributes when partici-
pants are incentivized to exercise dietary self-control (Harris et
al., 2013), overlapping with the time window of significant stim-
ulus value effects in our current data. Thus, we predicted that
neural activity in the time window of 500—650 ms after stimulus
onset would show differential weighting on taste and health de-
pending on the recipient of the choice.

To test this, we computed a second regression identifying sen-
sors in which neural activity significantly correlated with the in-
teractions of Similar and Dissimilar recipient by Taste and Similar
and Dissimilar recipient by Health (Eq. 2). The 8 maps resulting
from this regression were then compared using paired ¢ tests to
find sensors where the relative weighting of taste (Fig. 4A, left)
and health (Fig. 4A, middle) varied by recipient during our time
WOI from 500 to 650 ms after stimulus onset. Difference plots of
scalp topography in this time window identified a set of central
sensors (Fig. 44, right) for the interaction of taste and health in
both Similar and Dissimilar, overlapping those associated with
stimulus value in our initial analysis. SOIs were formally defined
via the conjunction of sensors associated with significant weight-
ing on Taste — Health in both Similar and Dissimilar recipient
conditions.
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To clarify the direction of the interaction defined by our con-
junction analysis, we next examined grand average waveforms
and linear contrasts extracted from the SOIs (Fig. 4B—D) sepa-
rately for taste and health attributes by recipient. In line with our
predictions, the clearest parametric effect of taste was visible
when deciding for one’s Own self versus the 2 partners (Fig. 4B,
left, C), whereas the linear ordering of health showed the greatest
effect for the Dissimilar healthy eater and negligible distinction by
health for one’s Own self (Fig. 4B, right, D). We confirmed these
observations statistically using a repeated-measures ANOVA on
the linear contrast weights with Attribute (Taste/Health) and Re-
cipient (Own/Similar/Dissimilar) as covariates, focusing on the
interaction of Attribute X Recipient. We found a significant in-
teraction of Attribute X Recipient (F,,, = 5.05, p = 0.009),
reflecting a significant linear contrast (F(, 55, = 8.39, p = 0.006)
driven by the opposing linear trends in neural weighting of taste
and health attributes across recipients. These results support the
idea that value integration from ~500 to 650 ms after stimulus
reflects differential attribute-weighting for oneself and others.

ERP: neural signals related to recipient identity

The findings described above bolster the idea that decisions for
others recruit similar value computation mechanisms as deci-
sions for oneself, on the same time scale, regardless of how dis-
similar the recipient’s preferences may be. However, these results
raise an additional question: how and when does the brain mod-
ify value computations to distinguish the intended recipient of
the choice? To address this issue, we next looked for neural activ-
ity that differentiated recipient identity, using ERP data time-
locked to both stimulus and response.

Some versions of a dual-process account suggest that inhibi-
tion of egocentric biases should emerge relatively late in the pro-
cess; and because similar individuals more strongly activate
egocentric biases that need correcting, such inhibition should be
more pronounced for the Similar other (Tamir and Mitchell,
2013). In contrast, other research suggests that attention and
perspective-taking mechanisms should be most pronounced for
the Dissimilar other, whose preferences differ most markedly
from one’s Own self (Silani et al., 2013). Given that we found a
similar time course of value integration by recipient, we hypoth-
esized that this perspective-taking and adjustment process might
actually occur early, before or during the window of stimulus
value computation (i.e., before 500—650 ms after stimulus). Pre-
vious neuroimaging research has suggested that regions associ-
ated with social cognition, such as TP] and STS, play a key role in
directing value integration in VMPFC during social decisions
(Hare et al., 2010; Hutcherson et al., 2015; Strombach et al.,
2015). Therefore, we further predicted that any differences would
localize to regions including TPJ.

To test these predictions, we computed a linear regression
with separate dummy-coded indicator variables for Similar and
Dissimilar recipient; the results of this analysis from 100 to 600 ms
after stimulus onset, our a priori time window of recipient com-
putation, are shown in Figure 5A. Although the covariate for
Similar recipient (Fig. 5A, left) was largely nonsignificant during
this time window, we found significant ERP activity for the Dis-
similar recipient from ~350 to 400 ms after stimulus onset (Fig.
5A, right). Average waveforms for these sensors and time window
(Fig. 5B) revealed a positive response for the Dissimilar condition
relative to one’s Own self, localized to sources including posterior
STS and TPJ (Fig. 5B, right). Consistent with previous studies
(Saxe, 2006; Andrews-Hanna et al., 2010; Hare et al., 2010;
Hutcherson et al., 2015), these results suggest a mechanism by
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stimulus revealed differences in neural weighting of taste ratings (left) and health ratings (middle) by recipient. SOIs were
identified by taking the conjunction of sensors showing significant ERP activity for Similar and Dissimilar in the Taste versus Health
comparison (black box, right). B, Average waveforms associated with the linear ordering of taste (left) and health (right) plotted
separately for each recipient. Solid line indicates Own. Dashed line indicates Similar. Dotted line indicates Dissimilar. Orange
represents taste. Green represents health. C, D, Linear contrast weights for taste (€) and health (D) as a function of recipient.
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which brain networks involved in mental-
izing about others may communicate
with valuation regions to adjust attribute
weights during value integration.

Although prevalue signals differenti-
ated the Dissimilar other from both Own
selfand Similar other trials, we also sought
to test predictions of several dual-process
models that there may also be a late ad-
justment process, unique to choices for
Similar others, that delays choices and
corrects egocentric values to account for
differing preferences. Although we did
not find evidence for late value integration
signals when deciding for Similar others
(see “Stimulus value integration” results
above), we nevertheless asked whether
there was a main effect of recipient iden-
tity in late-emerging response-locked ERP
signals, as might be predicted by some
dual-process models. Intriguingly, a lin-
ear regression on ERP data time-locked to
the keypress response revealed a signifi-
cant main effect of Similar recipient from
~—300 ms to —180 ms before response
(Fig. 5C), reflecting a more positive de-
flection for Similar relative to Own and
Dissimilar (Fig. 5D). To shed light on the
nature of this process, we performed
source localization from —300 to —180
ms before response. In this time window,
the main effect of Similar recipient was
predominantly localized to the intrapari-
etal sulcus (IPS), close to an area previ-
ously identified as being more activated
when choosing for others (Janowski et al.,
2013). In contrast, significant main effects
of Dissimilar recipient in this time win-
dow were largely confined to the period
immediately before response (—120 to 0
ms before response), and thus are more
likely to reflect the initiation of move-
ment potentials associated with the mo-
tor response.

Computational modeling

As described above, our analysis of the
time course of value integration suggests
that a single valuation mechanism, local-
ized to the VMPFC, computes stimulus
values using weighted attribute integra-
tion for both self and others, with similar
temporal dynamics. Yet the presence of
both early- and late-emerging compo-
nents in TPJ and IPS that were specific to
choosing for others is fully consistent with
dual-process models of choice in which
perspective-taking mechanisms alter value
computations to reduce egocentric biases.
This raises an important question: what is
the most parsimonious computational
framework to account for both the behav-
ioral and neural data?
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Differences in average ERP waveforms by recipient identity. A, Heat map of significant p values showing stimulus-locked regression results for the main effects of Similar (left) and

Dissimilar (right). Significant effects were visible for the Dissimilar recipient, but not the Similar recipient, at time windows from 350 — 400 ms after stimulus onset (green box). B, Scalp topography
(left) and average waveforms (right) associated with choice recipient identity (cyan represents Own self; blue represents Similar other; orange represents Dissimilar other) 350 — 400 ms after stimulus
onset. Inset, Source reconstruction from 350 to 400 ms after stimulus overlaid on a representative brain image localized this response to regions including the TPJ and STS. €, Heat map of significant
p values showing response-locked regression results for the main effects of Similar (left) and Dissimilar (right). Significant effects were visible for the Similar recipient, but not Dissimilar recipient,
~300 ms to 180 ms before the response (green box). Later effects in the Dissimilar condition coincide with motor activity related to initiation of the key press response. D, Scalp topography (left)
and average waveforms (right) associated with choice recipient identity. Cyan represents Own self. Blue represents Similar other. Orange represents Dissimilar other. Inset, Source reconstruction
from 300 to 180 ms before the response localized this differential response to regions including the IPS.

To address this issue, we used the power of formal model
comparison and selection procedures to identify the most parsi-
monious computational model of decision making for oneself
versus others, and then explored how changes in parameter val-
ues across choices for self and others shed light on neural and
behavioral responses. We began by specifying a multi-attribute
variant of the DDM that allowed us to capture basic assumptions
of dual-process accounts, which suggest that the construction of
value should vary in systematic ways over the course of a decision.
More specifically, we assumed that weights on taste and health
attributes influence the overall drift rate (v), and that these
weights should be egocentrically biased early on during a decision
but shift gradually after a delay to a new set of weights that reflect
a participant’s assumptions about the preferences of their partner
after deliberation. We compared this model with a nested model
in which, when choosing for others, participants simply begin at
the outset with a set of weights that reflect their assumptions
about the other person’s preferences, with no delay or gradual
adjustment process (for details, see Materials and Methods).
Remarkably, for the Similar condition, the nested model with
no time-varying parameters had a lower BIC value combining
over all subjects (1.2159 X 10°) compared with the time-
varying model (1.2189 X 10°), as well as a lower BIC value for

36 of 38 individual subjects. Conclusions were largely similar
using the more liberal Akaike Information Criterion instead of
BIC. We arrived at identical conclusions when examining
choices for the Dissimilar other (total BIC of the simple
model = 1.1487 X 10°, total BIC of the time-varying model =
1.1518 X 10°).

Having shown that a simple DDM provided a more parsimo-
nious fit to the data, we then sought to determine how the values
of different model parameters might change as a function of
choices for Own Self, Similar, and Dissimilar others. Specifically,
we implemented a multi-attribute version of the DDM with five
parameters: weights on the taste and health attribute in the drift
rate (v), threshold for choice (a), starting point bias (z), and ndt.
We fit four different versions of the DDM to the data, in which
drift rate, threshold, and starting point bias were allowed to vary
depending on the choice recipient (Table 1). The best-fitting
model, as assessed by both lower DIC values and lower mean
squared error (M2; Table 1) suggested that, as expected, weights
on health and taste varied significantly by recipient. On average,
participants weighted both the health and taste attributes more
similarly to themselves for the Similar individual than for the
Dissimilar individual (Table 2). However, in all cases, there were
significant pairwise differences between attribute weights for dif-
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Table 2. DDM posterior estimates and convergence for Model M2°

Parameter Mean SD
Drift (v), Intercept —1.982 0.055
Drift (v), HealthOwn 0.062 0.011
Drift (v), HealthSimilar 0.183 0.010
Drift (v), HealthDissimilar 0.660 0.011
Drift (v), TasteOwn 0.722 0.011
Drift (v), TasteSimilar 0.665 0.010
Drift (v), TasteDissimilar 0.007 0.011
Barrier (a), Intercept 2.006 0.047
Barrier (a), Similar 0.125 0.015
Barrier (a), Dissimilar 0.049 0.015
Starting point (z) 0.493 0.006
NonDecisionTime 0.357 0.026
Convergence
R 1.0002 0.0002

“Statistics for parameter estimates reflect the mean == SD of the N = 10,000 posterior samples of group-level
parameters.

ferent recipients. Taste ratings were weighted highest for Own
self, somewhat less for the Similar other, and not at all for the
Dissimilar other (all comparisons: 100% of the difference in pos-
teriors > 0, ie., all p values = 0.000). Health ratings were
weighted highest for Dissimilar, significantly less for the Similar
other, and least for Own self (all comparisons significantly differ-
ent, all p = 0.000).

Although weights on taste and health attributes differed sig-
nificantly on average during choices for both Similar and Dissim-
ilar others compared with Own self, most models of choice
assume that participants also show egocentric biases, using their
own preferences when making choices for others (e.g., Tarantola
etal., 2017; Devaine and Daunizeau, 2017). To test this possibil-
ity, we theorized that, if people do use their own preferences to
some degree when choosing for others, then individual differ-
ences in the weights estimated for Taste and Health attributes in
Own choices should predict the weights estimated for these attri-
butes when choosing for others, particularly when those prefer-
ences are relevant to the choice at hand. This prediction was
robustly confirmed. Individual weights on taste for one’s Own
self correlated strongly with weights on taste for the Similar other
(r36) = 0.58, p = 0.0002) but not for the Dissimilar other (r ;4 =
0.07, p = 0.66). Individual weights on health for one’s Own self
correlated with weights for both the Similar other (755, = 0.57,
p = 0.0002) and Dissimilar other (r;5, = 0.48, p = 0.003). Thus,
our best-fitting model strongly supports the existence of an ego-
centric bias when making choices for others.

Intriguingly, the best-fitting model also suggested significant
variation in the threshold parameter a as a function of choice
recipient. Participants adopted greater caution when choosing
for others compared with themselves, with the highest threshold
associated with choosing in the Similar other condition. We spec-
ulate that these thresholds are adjusted to accommodate greater
uncertainty about the appropriate choice, and that this uncer-
tainty may have been highest for the Similar other, a point we
return to in the Discussion. In contrast to attribute weights and
threshold, starting point (i.e., response bias) did not significantly
differ from an unbiased value of 0.5 (11.9% of posterior > 0.50,
i.e., p = 0.119) and was similar for all recipients.

To confirm the ability of the DDM to successfully capture
both observed choice and RT data, posterior predictive simula-
tions (Wiecki et al., 2013) were generated using 100 randomly
selected samples from the posterior, effectively generating 100
synthetic datasets. Posterior predictive checks using this simu-
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lated data confirmed the ability of the model to recreate accep-
tance rates and RTs at both the group and individual levels.
Pearson correlations between the true data and synthetic data for
participant-level average data were for high for both acceptance
rates (Own: 0.863; Similar: 0.750; Dissimilar: 0.755) and RT
(Own:0.934; Similar: 0.921; Dissimilar: 0.942). Importantly, con-
vergence statistics suggested stable parameter estimates across all
parameters in the hierarchical model (Table 2).

Combined ERP-model results

We next sought to validate our model not only through behavior,
but by linking specific ERP components to specific model param-
eters. We predicted that, if value signals in the VMPFC measured
online during decision making between 500 and 650 ms represent
the most proximal input into the evidence accumulation process,
fluctuations in this signal should be directly related to variation in
the model-estimated influence of taste and health on the drift
rate, even after accounting for behavioral ratings collected after
the fact. To test this prediction, we entered trial-by-trial stimulus-
locked ERP data from our SOIs and 500—650 ms time WOI (Fig.
6A) into the M2 specification for the DDV, interacted with both
Health and Taste ratings. Stimulus-locked signals in the VMPEC
were identified based on their association with health and taste
ratings collected independently of the choice, and are here as-
sumed to be an input into the accumulation process, and not an
output of it.

As predicted, during choices for both Own self and Similar
other, the amplitude of the ERP value response predicted a sig-
nificantly higher influence of Taste on the drift rate when choos-
ing for Own self and Similar other (Fig. 6B; 100% of the posteriors
for the interaction > 0, i.e., p = 0.000), but not when choosing for
the Dissimilar other (p = 0.380). Own and Similar Taste X ERP
effects were not significantly different from each other (Own >
Similar, p = 0.118) but were both significantly greater than Dis-
similar (p = 0.000). By contrast, the amplitude of the ERP re-
sponse significantly enhanced the influence of the Health
attribute when choosing for the Dissimilar other (p = 0.000), and
this effect was significantly greater than for Own (p = 0.001) or
Similar (p = 0.000) choices (Fig. 6C). Notably, the addition of
parameters reflecting ERP activity to the drift rate did not sub-
stantially alter the parameter estimates derived from behavioral
data (Table 3), suggesting that the neural data provide an addi-
tional, unique source of information to our computational
model. These results strongly support the idea that VMPFC value
signals from 500 to 650 ms contribute to choice by influencing
the accumulation of attribute evidence toward a choice.

If attribute representations in the VMPFC contribute to evi-
dence accumulation, shifting to represent preferences of the
choice recipient, what drives changes in those attribute represen-
tations, particularly during choices for the Dissimilar other?
Based on previous research implicating TPJ and STS in directing
VMPEC value integration during social decision (e.g., Hare et al.,
2010), we speculated that the ERP response for Dissimilar choices
from 350 to 400 ms after stimulus may play a role in perspective-
taking and attribute-weighting. If so, the strength of this response
across individuals should predict individual differences in alter-
ation of the weights on taste and/or health. To test this hypothe-
sis, we computed the mean differences in the amplitude of this
response for Dissimilar — Own and Similar — Own, and corre-
lated this difference with differences in taste and health weights
for the same contrast. Consistent with the idea that this response
may serve to inhibit the use of egocentric preferences, larger ERP
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Hierarchical Bayesian parameter estimates of the influence of neural response on model parameters. A-C, Trial-by-trial fluctuations in the ERP in SOIs for the value-related ERP from 500

t0 650 ms (A) were linked with significantly greater influence on the drift rate v of the taste attribute when choosing for Own self and Similar other (B) and the health attribute when choosing for
the Dissimilar other (C), suggesting that this response relates to evidence accumulation in the computational model. D-F, Trial-by-trial fluctuations in the response-locked ERP component (D)
differentiated choices for the Similar other to a greater extent than Dissimilar or Own choices, consistent with computational model-fitting of the behavioral barrier parameter (E), and likewise
demonstrated a significant influence on the barrier for response (F).

Table 3. DDM posterior estimates and convergence for Model M2 with stimulus-

locked ERP data“
Parameter Mean SD
Drift (v), Intercept —2.004 0.057
Drift (v), ERP —0.049 0.010
Drift (v), ERP HealthOwn 0.000 0.005
Drift (v), ERP HealthSimilar —0.003 0.004
Drift (v), ERP HealthDissimilar 0.017 0.004
Drift (v), ERP TasteOwn 0.028 0.004
Drift (v), ERP TasteSimilar 0.023 0.004
Drift (v), ERP TasteDissimilar —0.001 0.004
Drift (v), HealthOwn 0.054 0.011
Drift (v), HealthSimilar 0.179 0.01
Drift (v), HealthDissimilar 0.672 0.01
Drift (v), TasteOwn 0.734 0.01
Drift (v), TasteSimilar 0.675 0.010
Drift (v), TasteDissimilar —0.006 0.010
Barrier (a), Intercept 2.000 0.043
Barrier (a), Similar 0.118 0.016
Barrier (a), Dissimilar 0.043 0.016
Starting point (z) 0.494 0.006
NonDecisionTime 0.360 0.025
Convergence

R 1.0006 0.0010

“Statistics for parameter estimates reflect the mean == SD of the N = 10,000 posterior samples of group-level

parameters.

amplitude from 350 to 400 ms across participants significantly
predicted reduced weighting on taste for the Dissimilar recipient
(Spearman’s p = —0.41, p = 0.01). No other correlations were
significant, suggesting a specific role for this signal in reducing
egocentric use of taste preferences.

We next sought to use our computational model to under-
stand the nature of the response-locked signals localized to the
IPS, which showed the largest difference in signal for Similar
others (Fig. 6D). Notably, applying our computational model to
the behavioral data suggested that, rather than resulting from
serial correction mechanisms, longer RTs on average when
choosing for others could result in part from the adoption of
different response thresholds relative to the self, particularly in
the case of the Similar other (Fig. 6E). If so, we would predict that
response-locked ERPs localized to the IPS may contribute to ad-
justing the response threshold, rather than correcting egocentric
value signals.

Therefore, we directly tested whether this neural response-
locked component influenced the threshold parameter by enter-
ing the trial-by-trial ERP data from the response-locked posterior
SOIs and —300 to —180 ms time WOI into the M2 specification
for the DDM, interacted with the response threshold. Results
confirmed a significant relationship between neural response in
the IPS and the height of the response threshold (Fig. 6F). More-
over, adding this regressor improved model fit (DIC = 41421.1,
compared with DIC = 41625.6 for an equivalent to M2 with the
same set of trials used in the response-locked ERP version of M2).
Importantly, the estimate of the ERP regressor was strongly pos-
itive (p = 0.000), with no significant interaction as a function of
recipient. Although the polarity of the observed ERP signal de-
pends on a variety of factors, including reference electrode, sen-
sor location, and cortical anatomy, the positive influence of
this ERP component on the barrier coefficient is in line with
the more positive amplitude observed in the response-locked
data when choosing for the Similar other compared with the
other two conditions.
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health rating led to similar or different sim-
ulated choices (Fig. 7), as well as associated
RTs. All statistical comparisons of the simu-
lated RTs were performed using Bayesian
analysis incorporating Markov chain Monte
Carlo estimation to generate distributions
oflikely means and SDs (Kruschke, 2013). A
p value of zero thus represents completely
nonoverlapping simulated distributions.
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As expected, model simulations with
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agreement). More importantly, the simu-
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Figure7.  DDM simulations. 4, Simulations (N = 10,000) of RT data for same versus different choice using best-fitting specifi-

cation M2. Trials are separated based on the same criteria described for observed data in Figure 2, with observed data (left) plotted
next to predicted model RTs (right) for each combination of recipient. B, C, Predicted (B) and observed (C) relationship between
drift rates and percentage of different choices when comparing choices for 2 recipients, simulated separately for each of the 16
possible combinations of health and taste rating. Proximity of the dots to the diagonal reflects similarity of food values for 2
recipients, and size and color of dots are coded according to the percentage of different choices.

Simulation exercise: RTs for same and different choices

Above, we demonstrate that the best-fitting parameters of a sim-
ple weighted-integration, constant-value DDM can account for
overall choice and RT patterns, and can be linked to specific ERP
components. Notably, this model supports the idea of egocentric
biases but does not include a late-acting mechanism for adjusting
preferences when choice for self and similar or dissimilar others
diverges. This contrasts with dual-process models, such as
anchoring-and-adjustment, which are primarily supported by behav-
ioral and RT data. We thus asked whether our model could
generate the RT patterns typically associated with an anchoring-
and-adjustment mechanism: namely, longer RTs when choices
for Similar others diverge from choices for oneself. To do this, we
generated 160,000 simulated food choices for each recipient
(Own, Similar, Dissimilar) based on the 16 possible combinations
of health and taste ratings. Then, for each pairing of recipients
(i.e., Own vs Similar, Own vs Dissimilar, Similar vs Dissimilar), we
determined how often foods with each combination of taste and

value of a food for 2 given recipients to the
likelihood that the model simulations
make different choices about that food
(Fig. 7B). We divided foods by the 16 pos-
sible combinations of health and taste rat-
ings (e.g., health = 3 and taste = 2). Using
health and taste weights derived from
model M2, we mapped the projected value of the food versus the
percentage of different choices. As expected, this analysis shows
that the values of different foods fall closer to the diagonal when
comparing choices for one’s Own self with a Similar other, sug-
gesting that these values are more tightly related (Fig. 7B, left). In
this case, choices diverge more frequently for options with inter-
mediate overall values (i.e., ratings of Weak No or Weak Yes on
both taste and health attributes vs Strong No or Strong Yes),
largely due to noisier choices in the face of indifference. In con-
trast, when comparing choices made for Own self and a Dissimilar
other (Fig. 7B, middle), the values of the food are less correlated,
and a greater percentage of divergent choices are observed at the
extremes (e.g., very unhealthy but very tasty, or vice versa), due to
the differences in attribute weights. Divergent choices in this case
are also less likely to be errors.

Next, we examined the extent to which observed patterns of
choice divergence correspond to our model predictions (Fig. 7C).
We first used multiple regression to estimate the coefficients on
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health and taste for choices made in the Own, Similar, and Dis-
similar conditions, separately for each subject. From these coef-
ficients, we estimated the overall decision value for each subject
of each food in each condition. Then, for each of the 16 combi-
nations of health and taste ratings, we calculated the average de-
cision value across all subjects for that combination, separately
for each condition. Finally, we also calculated the percentage of
the time that choices diverged for 2 recipients, separately for each
of the 16 combinations. As can be seen from Figure 7C, the data
hew closely to the simulated predictions. Specifically, there is a
strong correlation between the value for one’s Own self and the
value for the Similar other, and the largest difference between
choices for Own and Similar occur for values close to 0 (Fig. 7C,
left). In contrast, when comparing values and choices for one’s
Own self and the Dissimilar other, the most divergent choices
occur at the extremes of conflict between health and taste (Fig.
7C, middle). Comparison of choices for Similar and Dissimilar lie
in between (Fig. 7C, right).

Thus, our model explains the longer RTs we observed when
making different choices for similar others, compared with dis-
similar others. Put simply, in this paradigm, people choose dif-
ferently for similar others in the same cases where they would be
less certain what to choose for themselves. Our simulations sug-
gest that the extra deliberation time and divergent choice in these
trials emerges organically from increased uncertainty within a
single decision process, despite giving the appearance of resulting
from a serial, slow-to-activate corrective process.

Discussion

To what extent do decisions for oneself and others rely on shared
neurocomputational mechanisms versus recruiting additional
slow or deliberative mechanisms (Epley et al., 2004; Tamir and
Mitchell, 2013)? Do increases in RT for others reflect effortful
correction or uncertainty within a process of stochastic evidence
accumulation? Here we exploited the high temporal precision of
ERP and the power of computational model fitting (Ruff and
Fehr, 2014; Crockett, 2016) to generate novel insights into these
important questions.

Consistent with previous work (Nicolle et al., 2012; Janowski
etal., 2013), our results strongly support the existence of a shared
value integration process for self and others, and further suggest
that this process follows similar temporal dynamics. Neural value
signals for other recipients emerged within the same temporal
window as those for oneself, ~500—650 ms after stimulus onset
and localized to regions including VMPFC. Importantly, how-
ever, these value signals represented taste and health attributes
differently depending on the decision context, in line with previ-
ous data on dietary self-control (Harris et al., 2013). Moreover,
we demonstrated a link between trial-level fluctuations in the
ERP value signal and trial-by-trial differences in the process of
evidence accumulation associated with each recipient. Whereas
VMPEFC signals promoted taste considerations when deciding for
oneself or the similar other, these same signals promoted health
attributes when deciding for the dissimilar, healthy eater. Nota-
bly, these signals emerged in the stimulus-locked data >400 ms
before the average RT, suggesting that they represent an input
into brain systems associated with choice selection (Hare et al.,
2011) rather than directly implementing accumulation-to-
bound and choice at the motor level. However, in light of previ-
ous work linking VMPFC response to choice selection processes
(Hunt et al., 2012; Strait et al., 2014), as well as other data dem-
onstrating rapid interactions between VMPFC and sensorimotor
systems (Harris and Lim, 2016), further research will be necessary
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to fully disentangle the relationship between ERP value signals
and evidence accumulation.

This shared VMPFC mechanism might also explain, in part,
the robust and consistent evidence for egocentric biases when
choosing for others (Ross et al., 1977; Devaine and Daunizeau,
2017; Tarantola et al., 2017). In our study, we found some evi-
dence that people use their own preferences to guide choices for
others, particularly when those preferences may be relevant.
One’s own weights on both taste and health predicted weights
used when choosing for a similar other, whereas when choosing
for a dissimilar, healthy eater, only one’s own health preferences
predicted choice. Thus, we find not only that people use their
own preferences, but also that they do so selectively based on
inferences about the intended recipient.

Our results also support the use of additional perspective-
taking mechanisms, particularly when deciding for people with
different preferences from one’s own. We observed an ERP com-
ponent specific to choosing for the Dissimilar recipient from 350
to 400 ms after stimulus onset, just before the time window asso-
ciated with stimulus valuation. This signal was localized to pos-
terior temporal areas near the TPJ, a region previously implicated
in various aspects of social cognition, including suppression of
egocentric biases (Silani et al., 2013), perspective-taking (Saxe,
2006; Tusche et al., 2016), and prosocial behavior (Morishima et
al., 2012; Hutcherson et al., 2015). However, the timing of this
response, as well as the failure of time-varying egocentrically bi-
ased computational models to better account for choice and
RT patterns, are both inconsistent with the idea that such
perspective-taking mechanisms activated slowly, after the emer-
gence of a default self-centered bias (Epley et al., 2004; Tamir and
Mitchell, 2013).

Nonetheless, we do find evidence for late-acting, response-
related control mechanisms. We observed a comparatively late
ERP signal differentiating choices by recipient from —300 ms
before response. Whereas the stimulus-locked component
showed an increased response specifically for the Dissimilar re-
cipient, this neural activity predominantly distinguished the Sim-
ilar condition. Yet, in contrast to the idea that this signal might be
needed to correct or inhibit egocentric values, our computational
analyses linked it only to variation in the response threshold for
choice. What could be driving increases in response threshold for
the similar recipient? One possible factor could be choice uncer-
tainty. In line with this idea, participants took longer on average
and had higher decision thresholds when choosing for the similar
other, suggesting the need for additional evidence accumulation
relative to the other conditions. Additionally, weights on taste
were modestly but consistently lower for the similar other com-
pared with choices for one’s self, whereas weights on health were
slightly higher, suggesting that participants may have “hedged”
their choices where the similar other was concerned. These re-
sults provide a different perspective on the role of controlled
processing in self-other decision-making. They suggest that some
forms of controlled processing may influence choices for others
not by modifying value signals, but by raising the criterion for
choice.

Given evidence of strong egocentric biases, rapid perspective-
taking, and no computational evidence for delayed adjustment,
what then explains patterns of longer RT when choosing differ-
ently from the self¢ Simulations performed using our combined
neurocomputational model suggested that choices for self and
other can diverge either due to differences in attribute-weighting
(as observed when making choices for the dissimilar other) or
simply due to noise in the process of evidence accumulation (as
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observed when making choices for partners with similar prefer-
ences). In other words, trials where choices for self and similar
others diverge may sometimes be trials on which choices for the
self alone might be inconsistent from one instantiation to the
next, due to ambivalent and noisy values. These will also tend to
be the choices with the longest RTs, for both self and others.
Although our model underestimated the observed RT differences
somewhat, we suspect that the extra time may stem from conflict-
triggered increases in threshold at the single-trial level (Cavanagh
et al., 2011). This effect would tend to magnify the difference in
RT beyond that predicted by a canonical DDM, in precisely
those trials where divergent choices are most likely to be ob-
served. Together, these results suggest that, at least in some
decision scenarios, patterns of behavior previously associated
with the action of both anchoring and adjustment may be
better explained simply by anchoring, implemented in a sto-
chastic decision system.

These results do not argue against the basic idea of dual-
system or even multisystem models of choice. If anything, our
results highlight the importance of both perspective-taking and
response inhibition, and tie them to value integration and thresh-
old computations, respectively. Moreover, there may be impor-
tant decision scenarios in which choices for others do engage
dissociable correction or perspective-taking mechanisms, oper-
ating at different timescales (Epley et al., 2004; Evans, 2008). For
example, our paradigm included no feedback. In cases where a
decision maker must integrate both general information (e.g.,
knowledge about a person’s culture, background, or similarity to
oneself) and direct experience with another’s choices, we might
expect an initial egocentric preference that is corrected based on
learning and memory (Devaine and Daunizeau, 2017; Tarantola
etal., 2017). There may also be important individual differences
in the speed or strength of social cognitive mechanisms, which
might depend on the integrity of areas such as the STS and TP]J.
Our work highlights the utility of computational modeling for
determining when patterns of choice, RT, and neural data that
appear on their face to support dual-process models are instead
more consistent with a single value integration mechanism (as
observed in our study) and when additional computational
mechanisms might be necessary to fully account for behavior.

Careful consideration of the timing of these processes also
generates a novel prediction regarding the effects of time pressure
versus cognitive load in social decision scenarios. Our data sug-
gest that making accurate choices for people with divergent pref-
erences relies more on early perspective-taking mechanisms,
occurring from 300 to 500 ms after stimulus onset in TPJ,
whereas making accurate choices for partners with uncertain
preferences relies more on later response threshold mechanisms
localized to intraparietal sulcus. If this is indeed the case, manip-
ulations using time pressure or cognitive load may sometimes
have quite different effects on social decision-making. Time pres-
sure, which in perceptual choice has been tied to reductions in
response threshold (Forstmann et al., 2010), might be expected to
result in reduced accuracy only when others’ preferences are un-
certain. In contrast, cognitive load may disrupt effortful
perspective-taking mechanisms, resulting in stronger reductions
in accuracy when preferences differ from those for oneself.

Our work provides the first computational account of deci-
sion making capable of explaining the full pattern of choice, RTs,
and neural dynamics when choosing for others, in a context
where preferences are well specified but can differ among indi-
viduals. Future studies will need to examine choices for others in
different contexts and with different information. We believe that
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the unique combination of neural and computational modeling
presented here provides a powerful and essential tool for this
research, and will foster exciting new avenues for exploring how
we choose for ourselves and others.
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