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Neurotransmitter release is triggered by Ca 2� influx through voltage-dependent Ca 2� channels (VDCCs). Distinct expression patterns of
VDCC subtypes localized on the synaptic terminal affect intracellular Ca 2� dynamics induced by action potential-triggered Ca 2� influx.
However, it has been unknown whether the expression pattern of VDCC subtypes depends on each axon terminal or neuronal subtype.
Furthermore, little information is available on how these VDCC subtypes regulate the release probability of neurotransmitters. To
address these questions, we performed multiple whole-cell patch-clamp recordings from GABAergic neurons in the insular cortex of
either the male or the female rat. The paired-pulse ratio (PPR; 50 ms interstimulus interval) varied widely among inhibitory connections
between GABAergic neurons. The PPR of unitary IPSCs was enhanced by �-conotoxin GVIA (CgTx; 3 �M), an N-type VDCC blocker,
whereas blockade of P/Q-type VDCCs by �-agatoxin IVA (AgTx, 200 nM) decreased the PPR. In the presence of CgTx, application of 4 mM

[Ca 2�]o or of roscovitine, a P/Q-type activator, increased the PPR. These results suggest that the recruitment of P/Q-type VDCCs increases
the PPR, whereas N-type VDCCs suppress the PPR. Furthermore, we found that charybdotoxin or apamin, blockers of Ca 2�-dependent
K � channels, with AgTx increased the PPR, suggesting that Ca 2�-dependent K � channels are coupled to N-type VDCCs and suppress the
PPR in GABAergic neuronal terminals. Variance–mean analysis with changing [Ca 2�]o showed a negative correlation between the PPR
and release probability in GABAergic synapses. These results suggest that GABAergic neurons differentially express N-type and/or
P/Q-type VDCCs and that these VDCCs regulate the GABA release probability in distinct manners.
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Introduction
Short-term plasticity depends on neuronal activities and is ubiq-
uitously observed in both excitatory and inhibitory synapses in

the CNS (Atluri and Regehr, 1996; Reyes et al., 1998; Neher and
Sakaba, 2008; Yamamoto et al., 2010a; Satake and Imoto, 2014).
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Significance Statement

GABAergic neuronal axons target multiple neurons and release GABA triggered by Ca 2� influx via voltage-dependent Ca 2�

channels (VDCCs), including N-type and P/Q-type channels. Little is known about VDCC expression patterns in GABAergic
synaptic terminals and their role in short-term plasticity. We focused on inhibitory synaptic connections between GABAergic
neurons in the cerebral cortex using multiple whole-cell patch-clamp recordings and found different expression patterns of
VDCCs in the synaptic terminals branched from a single presynaptic neuron. Furthermore, we observed facilitative and depressive
short-term plasticity of IPSCs mediated by P/Q-type and N-type VDCCs, respectively. These results suggest that VDCC expression
patterns regulate distinctive types of synaptic transmission in each GABAergic axon terminal even though they are branched from
a common presynaptic neuron.
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The interval of repetitive spike firing delivered to the presynaptic
terminal affects the kinetics of consecutive transmitter releases,
i.e., facilitation or depression. Several mechanisms have been
postulated to explain short-term plasticity (Blitz et al., 2004). In
terms of paired-pulse depression, an initial high probability of
transmitter release leads to depletion of synaptic vesicles released
in response to the second action potential. On the other hand, a
number of mechanisms have been proposed to account for paired-
pulse facilitation (Xu-Friedman and Regehr, 2004). Zucker and
Regehr (2002) demonstrated that residual Ca2� in the synaptic ter-
minal with a low initial probability of release accumulates during
repeated stimulation at a short interstimulus interval, resulting in a
transient increase in release probability and inducing a facilitative
synaptic response.

Several types of voltage-dependent Ca 2� channels (VDCCs),
P/Q type (CaV 2.1) and N type (CaV 2.2), serve a critical role in
the process of fast vesicle fusion and transmitter release both in
excitatory and inhibitory synaptic terminals (Dunlap et al., 1995;
Ishikawa et al., 2005). Previous reports focusing on neurotransmit-
ter release in invertebrate and vertebrate synapses demonstrate that
properties of transmitter release are strongly influenced by Ca2�

dynamics in the synaptic terminal (Augustine et al., 1985; Sch-
neggenburger and Neher, 2005). Iwasaki and Takahashi (2001) re-
ported not only an age-dependent switching of VDCC subtypes but
also a decrease in paired-pulse depression that occurs in the calyx of
Held during the early postnatal stage. Interestingly, in hippocampal
CA1 synapses, two connections, i.e., a common presynaptic pyrami-
dal cell targeting both another postsynaptic pyramidal and GABA-
ergic neurons, demonstrate different profiles of short-term plastic-
ity, indicating that a mechanism for a divergent synaptic efficacy is
inherent in each terminal branched from a common presynaptic
neuron. Although electromicroscopic studies have demonstrated
the coexistence of P/Q-type and N-type VDCCs in mature synaptic
terminals (Éltes et al., 2017), electrophysiological studies propose
that each terminal expresses either P/Q-type or N-type VDCCs,
which determines the manner of transmitter release (Horne and
Kemp, 1991; Zaitsev et al., 2007). Therefore, it remains controversial
which VDCC subtype is expressed in each terminal and how these
VDCCs regulate short-term plasticity (Toledo-Rodriguez et al.,
2004; Ali and Nelson, 2006; Zaitsev et al., 2007).

GABAergic neurons in the cerebral cortex and hippocampus
form inhibitory synapses not only to excitatory pyramidal neu-
rons but also to various GABAergic neuronal subtypes (Letzkus
et al., 2015; Tremblay et al., 2016). The connections among
GABAergic interneurons attenuate the inhibition of excitatory
neurons by inhibiting presynaptic GABAergic neurons in a pro-
cess called disinhibition (Kisvárday et al., 1993; Pfeffer et al.,
2013; Tremblay et al., 2016). Recent behavioral studies using
optogenetic techniques demonstrate that the microcircuit of dis-
inhibition regulates several behavioral functions, such as senso-
rimotor integration, social behavior attention, and auditory fear
conditioning (Letzkus et al., 2015). Cortical fast-spiking neurons
(FSNs) connect not only to pyramidal cells but also to FSNs and
other types of GABAergic interneurons (non-FSNs) with a high
connection rate and impact (Pfeffer et al., 2013), and FSNs are
therefore considered to play a critical role in the regulation of
cortical functions. Clarification of the VDCC composition in
GABAergic synapses among GABAergic neurons and the profile
of short-term plasticity elucidate the mechanisms underlying
disinhibition-mediated functions of the cerebral cortex.

We performed multiple whole-cell patch-clamp recordings
and analyzed unitary inhibitory postsynaptic currents (uIPSCs)
to investigate the short-term plasticity profile between presynap-

tic FSNs and postsynaptic GABAergic interneurons. Our results
demonstrated that (1) VDCC subtypes, i.e., P/Q-type and N-type
VDCCs, are not homogenously expressed in each axon terminal
even if they branch from the same presynaptic FSN, and (2) P/Q-
type and N-type VDCCs increased and decreased, respectively,
the paired-pulse ratios (PPRs) in connections between FSNs and
either FSNs or non-FSNs.

Materials and Methods
All experiments were performed in accordance with the National Insti-
tutes of Health Guide for the Care and Use of Laboratory Animals and were
approved by the Institutional Animal Care and Use Committee at Nihon
University. All efforts were made to minimize the number of animals
used and their suffering.

Slice preparations. The data reported below consist of results from 137
vesicular GABA transporter (VGAT)-Venus line A transgenic rats (Nagai
et al., 2002; Uematsu et al., 2008). The techniques for preparing in vitro
cortical slices were similar to those described previously (Takei et al.,
2017). Briefly, rats of either sex, ages 17–32 d, were deeply anesthetized
with isoflurane (5%). After decapitation, tissue blocks including the in-
sular cortex (IC) were rapidly removed and stored for 3 min in ice-cold
modified artificial CSF (ACSF) containing the following (in mM): 230
sucrose, 2.5 KCl, 10 MgSO4, 1.25 NaH2PO4, 26 NaHCO3, 0.5 CaCl2, and
10 D-glucose. Coronal slices were cut at a thickness of 350 �m using a
microslicer (Linearslicer Pro 7, Dosaka EM). Slices were incubated at
32°C for 15 min in a submersion-type holding chamber that contained
50% modified ACSF and 50% normal ACSF, pH 7.35–7.40. Normal
ACSF contained (in mM) 126 NaCl, 3 KCl, 2 MgSO4, 1.25 NaH2PO4, 26
NaHCO3, 2 CaCl2, and 10 D-glucose. Modified and normal ACSF were
continuously aerated with a mixture of 95% O2/5% CO2. The slices were
transferred to a holding chamber with normal ACSF at 32°C for 1 h and
thereafter maintained at room temperature until used for recording.

Multiple whole-cell patch-clamp recordings. The slices were placed in a
recording chamber that was perfused continuously with normal ACSF at
a rate of 2.0 ml/min. To minimize the adherence of peptidergic drugs to
the perfusion route, we used the infusion pump whose head was made of
polytetrafluoroethylene (Q-100-TT-P-S, Tacmina) and silicon tubes (C-
flex tubing, Cole-Parmer Instrument). Multiple whole-cell patch-clamp
recordings were obtained from Venus-positive fluorescent GABAergic
interneurons identified in layer V by using a fluorescence microscope
equipped with Nomarski optics (40�, Olympus BX61W1) and an
infrared-sensitive video camera (C3077-78, Hamamatsu Photonics).
The distance between recorded cells was �75 �m. Electrical signals were
recorded with amplifiers (Multiclamp 700B, Molecular Devices) and a
digitizer (Digidata 1440A, Molecular Devices), observed on-line, and
stored on a computer hard disk using Clampex (pClamp 10, Molecular
Devices).

The composition of the pipette solution was as follows (in mM): 85
potassium gluconate, 70 KCl, 10 HEPES, 0.5 EGTA, 2 MgCl2, 2 magne-
sium ATP, and 0.3 sodium GTP. The pipette solution had a pH of 7.3 and
an osmolarity of 300 mOsm. The equilibrium potential of Cl � (ECl �) was
�15 mV. In the experiment measuring the kinetics of action potentials,
the pipette solution contained the following (ECl � �65 mV; in mM): 135
potassium gluconate, 10 HEPES, 0.5 EGTA, 2 MgCl2, 2 magnesium ATP,
and 0.3 sodium GTP. The liquid junction potentials of the high- and
low-[Cl �]i pipette solutions described above were �9 and �6 mV, re-
spectively. The voltage was not corrected in the present study. Thin-wall
borosilicate patch electrodes (2–5 M�) were pulled on a Flaming-Brown
micropipette puller (P-97, Sutter Instruments). Alexa Fluor 594 (Invit-
rogen) was added to the internal solution in a subset of the experiments
(Fig. 1A).

Recordings were obtained at 30�31°C. The seal resistance was �10
G�, and only data obtained from electrodes with an access resistance of
6 –20 M� and �20% change during recordings were included in this
study. Before uIPSC recordings, the voltage responses of presynaptic and
postsynaptic GABAergic cells were recorded by injection of depolarizing
and hyperpolarizing current pulses (300 ms) to examine basic membrane
properties, including input resistance, single-spike kinetics, voltage– cur-
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rent relationship, and repetitive firing patterns and frequency. Because
some cell pairs had reciprocal or two or more connections, most cells
were recorded under voltage-clamp conditions (holding potential, �60
mV) during uIPSC recording. Short depolarizing voltage step pulses
(2 ms, 80 –120 mV) were applied to the presynaptic cells to induce action
currents at 15 s interval. In the experiments using Ca 2�-dependent K �

(KCa) channel blockers, presynaptic cells were stimulated by short depo-
larizing current pulses (0.5 ms) to evoke action potentials under a
current-clamp condition to examine the blockers’ effect on presynaptic
action potentials. The membrane currents and potentials were low-pass
filtered at 5–10 kHz and digitized at 20 kHz.

VDCC blockers, �-conotoxin GVIA (CgTx; 3 �M; Peptide Institute)
and �-agatoxin IVA (AgTx; 200 nM; Peptide Institute) were added di-
rectly to the perfusate. For the variance–mean analysis, we measured
uIPSC amplitude under the application of ACSF with different [Ca 2�]o

(0.5, 1.0, 2.0, and 4.0 mM). [Mg 2�]o was kept constant (2.0 mM) when
[Ca 2�]o was �2.0 mM and kept at 1.0 mM in the recording under 4.0 mM

[Ca2�]o (Yamamoto et al., 2010b; Almado et al., 2012). A stock solution of
(R)-2-(1-ethyl-2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine
(roscovitine, 30 �M; Cell Signaling Technology) was prepared in dimeth-
ylsulfoxide at 50 mM. Apamin (1 �M, Peptide Institute) and charyb-
dotoxin (ChTx; 50 –100 nM, Peptide Institute) were also added to the

perfusate. Bicuculline (10 �M, Sigma-Aldrich) was added to block the
GABAA receptor-mediated component. uIPSC amplitude during drug
application was recorded and monitored on-line. To obtain the steady
uIPSC amplitude, drugs were applied for at least 10 min. We excluded the
recordings that showed a significant correlation between uIPSC ampli-
tude and time (150 s) as we previously described (Koyanagi et al., 2010).
After reaching the steady state, the next drug was applied. Other com-
pounds were purchased from Wako Pure Chemical Industries or Nakalai
Tesque.

Experimental design and statistical analysis. Clampfit (pClamp 10, Mo-
lecular Devices) was used for analysis of electrophysiological data. The
averaged amplitude and PPR determined by the ratio of the peak ampli-
tude of the second uIPSCs to that of the first uIPSCs were obtained from
10 –20 consecutive sweeps. The failure of uIPSCs was defined to be less
than three times the SD of the base line. PPRs were excluded from the
analysis if uIPSC responses showed a 50% failure rate during the appli-
cation of AgTx.

The variance–mean analysis was performed as described previously
(Silver, 2003; Yamamoto et al., 2010b; Almado et al., 2012). Briefly, we
obtained 20 – 40 uIPSC responses in each [Ca 2�]o, and the mean uIPSC
amplitude ( M) was calculated and plotted against their variance ( V).
Individual plots were fitted with a quadratic equation assuming zero
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Figure 1. Divergent PPRs obtained from two GABAergic connections composed of a common presynaptic FSN targeting different postsynaptic GABAergic neurons. A, Triple whole-cell patch-
clamp recordings were performed in layer V of the insular cortex under differential interference contrast infrared video microscopy (DIC). Green and red fluorescent images indicate VGAT-Venus-
positive neurons (Venus) and Alexa Fluor 594 added into the internal solution for visualization of somatic and dendritic shapes of recorded neurons, respectively. B, Firing properties of three
Venus-positive neurons (FSN1–3) induced by depolarizing current pulse injections (300 ms) to the neurons shown in A. These neurons were classified as FSNs based on a large and fast afterhyper-
polarization and high-frequency spike firing without spike adaptation. Synaptic inputs via autapses were observed after the end of repetitive spike firing (arrowheads). These responses were
depolarized because the internal solution contains a high concentration of Cl �. C, Distinct short-term plasticity observed in FSN1¡FSN2 and FSN1¡FSN3 connections. Postsynaptic uIPSCs
recorded from FSN2 and FSN3 were induced by paired depolarizing voltage pulses to FSN1 (top traces) that induced action currents (the second traces from the top). FSN1¡FSN2 and FSN1¡FSN3
connections showed PPRs of 0.80 and 1.37, respectively. Gray and black lines indicate 11 consecutive traces and their averaged traces, respectively. D, Mean PPRs in FSN¡FSN (n � 53) and
FSN¡non-FSN (n � 11) connections. There were no significant differences in PPRs between these connections. E, Cumulative curves of PPRs obtained from FSN¡FSN and FSN¡non-FSN
connections. There were no significant differences between these curves. Fa, Relationship between PPRs obtained from two connections with a common presynaptic FSN. Fb, Larger and smaller
PPRs were plotted onto the abscissa and ordinate, respectively. The data were obtained from 26 pairs of connections. Note that most plots are not on the dotted identity line.
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variance at zero amplitude. The quantal content (q) and number of re-
lease sites ( N) were estimated by using the following equation: V � qM �
M 2/N.

The release probability (Pr) was estimated by the following equation:
Pr � M/qN, where M is divided by the averaged uIPSC amplitude in 2
mM [Ca 2�]o. In this study, intrasite and intersite quantal variances de-
scribed by Silver (2003) were not estimated, and thus it is presumed that
putative individual release sites exhibit equal variances.

The values are expressed as the mean 	 SEM. Differences in the mean
values between two groups were compared with the paired t test or Stu-
dent’s t test. One-way ANOVA was used to compare spike kinetics
among three groups. The paired t test with Bonferroni’s correction was
used in the case of two comparisons among three groups. The Kolmogo-
rov–Smirnov test was used for a comparison of distributions. Correla-
tions between variables were evaluated with the parametric Pearson and
nonparametric Spearman correlation tests. Differences with p � 0.05
were considered significant.

Results
The present study focused on GABAergic synaptic transmission
between GABAergic interneurons in layer V of IC. To discrimi-
nate glutamatergic from GABAergic neurons, we used VGAT-
Venus line A transgenic rats in which GABAergic neurons are
marked with a green fluorescent protein, Venus.

Different short-term plasticity at synapses from a common
presynaptic FSN
GABAergic neurons in IC are classified as FSNs or non-FSNs
based on their membrane properties, including spike kinetics and
repetitive firing properties and duration. FSNs are characterized
by a high firing rate (typically �100 Hz) without spike adapta-
tion, short spike duration, and large and short afterhyperpolar-
ization (Kawaguchi and Kubota, 1997; Galarreta and Hestrin,
2002; Koyanagi et al., 2010, 2014; Fig. 1B). Autaptic responses,
which were blocked by bicuculline (10 �M; data not shown), were
often observed just after the end of the depolarizing pulse applied
to FSNs (Fig. 1B, arrowheads). In the present study, we quantita-
tively identified Venus-positive neurons as FSNs that showed
�1.25 of the adaptation ratio (last interspike interval/first inter-
spike interval; Kröner et al., 2007). On the other hand, non-FSNs
include neurons showing low-threshold spiking, late spiking, and
regular spiking (Koyanagi et al., 2010; Yamamoto et al., 2010a).

Alexa Fluor 594 present in the internal patch solution was
used to visualize three different Venus-positive neurons (Fig. 1A)
that showed repetitive spike firing classified as FSNs (Fig. 1B).
The presynaptic FSN1 induced different kinetics of short-term
plasticity in the postsynaptic FSN2 and FSN3 (Fig. 1C): the FSN1
projection to postsynaptic FSN2 exhibited paired-pulse depres-
sion (PPR, 0.80), whereas the FSN1¡FSN3 connection showed
paired-pulse facilitation (PPR, 1.37). Application of 10 �M bicu-
culline, a GABAA receptor antagonist, completely blocked uIPSCs
(data not shown). This finding suggests that even the same postsyn-
aptic GABAergic neuronal subtype and a common presynaptic FSN
could induce different kinetics of short-term plasticity.

This variation in the PPR was independent of postsynaptic
neuronal subtypes. We compared PPRs in the control between
FSN¡FSN and FSN¡non-FSN connections. The mean PPR of
FSN¡FSN connections (0.73 	 0.03, n � 53) was comparable
with that of FSN¡non-FSN connections (0.70 	 0.07, n � 11;
t(62) � 0.481, p � 0.63, Student’s t test; Fig. 1D), and the cumu-
lative plots of these connections were also comparable (p � 0.99,
Kolmogorov–Smirnov test; Fig. 1E). Furthermore, comparison
of the PPR between postsynaptic non-FSNs, late-spiking neurons
(n � 7), and regular spiking neurons (n � 4), showed an insig-

nificant difference (t(9) � 0.407, p � 0.694, Student’s t test).
These results suggest that the PPR is independent of postsynaptic
GABAergic neuronal subtypes.

The summarized result of triple whole-cell patch-clamp re-
cordings that consisted of a common presynaptic FSN and two
postsynaptic FSNs/non-FSNs is shown in Figure 1F. Although
several points are located close to the identity line, which indi-
cates the same PPR in two connections, most dots were sparsely
distributed. This result indicates that subsets of paired connec-
tions showed distinct PPRs in each synapse despite a common
presynaptic FSN. Thus, it is likely that each GABA release site has
different properties of short-term plasticity.

N-type and P/Q-type VDCC blockers suppress uIPSCs in
FSN¡FSN/non-FSN connections
uIPSCs were suppressed by bath application of VDCC blockers.
Among these blockers, the selective N-type VDCC blocker CgTx
and the selective P/Q-type VDCC blocker AgTx were the most
effective in suppressing uIPSCs, as shown in Figure 2. An example
of the effects of CgTx (3 �M) and AgTx (200 nM) showed that the
application of these two VDCC blockers almost completely
abolished uIPSCs and that the residual component of uIPSCs
was negligible (Fig. 2 A, B). The effectiveness of CgTx and
AgTx differed between FSN1¡FSN2 and FSN3¡non-FSN
connections: FSN1¡FSN2 connections were less sensitive to
CgTx than FSN3¡non-FSN connections, although AgTx al-
most completely abolished uIPSCs in both connections.

In summary, there was no significant difference in the rate of
suppression of uIPSC amplitude induced by CgTx and AgTx be-
tween FSN¡FSN and FSN¡non-FSN connections (CgTx: FSN,
15.8 	 2.4%, n � 53; non-FSN, 18.2 	 5.4%, n � 11, t(62) �
0.417, p � 0.791; AgTx: FSN, 69.7 	 3.0%, n � 53; non-FSN,
68.0 	 6.0%, n � 11, t(62) � 0.239, p � 0.812, Student’s t test; Fig.
2C). Considering the comparable PPRs (Fig. 1D,E) with similar
sensitivities to CgTx and AgTx between FSN¡FSN and
FSN¡non-FSN connections (Fig. 2C), the subsequent statistical
analyses were performed using combined data obtained from
FSN¡FSN and FSN¡non-FSN connections.

PPR of uIPSCs depends on sensitivity to VDCCs
Recent studies of cultured superior cervical ganglion (SCG) neu-
rons that artificially express either P/Q- or N-type VDCCs dem-
onstrate that the differential expression of these VDCC subtypes
provides distinct short-term plasticity (Mochida et al., 2008;
Mori et al., 2014). Moreover, in several excitatory synapses, includ-
ing calyx of Held and hippocampal and cultured SCG synapses,
Ca2� influx via P/Q-type VDCCs induces paired-pulse facilitation
(Iwasaki and Takahashi, 2001; Brown and Randall, 2005; Mochida et
al., 2008; Nanou et al., 2016). To investigate whether the involve-
ment of P/Q-type VDCCs increases the PPR of uIPSCs, we exam-
ined the effects of CgTx (3 �M) and AgTx (200 nM) on PPRs
obtained from GABAergic connections between a common presyn-
aptic FSN and postsynaptic FSNs/non-FSNs (Fig. 3).

Figure 3A–C shows an example of the effects of CgTx and
AgTx on uIPSC amplitude and PPR in FSN¡non-FSN connec-
tions. The synaptic responses in the FSN¡non-FSN1 connection
showed slight paired-pulse depression (PPR, 0.63; Fig. 3B). On
the other hand, the FSN¡non-FSN2 connection, which in-
cluded the same presynaptic FSN as in the FSN¡non-FSN1 con-
nection, showed potent paired-pulse depression (PPR, 0.34; Fig.
3B). Bath application of CgTx had little effect on uIPSC ampli-
tude and PPR (0.69) in the FSN¡non-FSN1 connection,
whereas the FSN¡non-FSN2 connection showed a shift from
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paired-pulse depression to facilitation (PPR, 1.09) with a de-
crease in the first uIPSC amplitude. Sequential application of
AgTx almost abolished uIPSCs in both connections, and PPRs of
the FSN¡non-FSN1 and non-FSN2 connections were too small

in amplitude to be estimated. These results suggest the distinct
expression of N-type and P/Q-type VDCCs in each connection
that receives inputs from the same presynaptic FSN. Moreover, it
is likely that N-type and P/Q-type VDCCs play reciprocal roles in
the regulation of PPRs: suppressive and facilitative effects, respec-
tively, on PPRs.

To confirm this possibility, we compared PPRs under either
AgTx or CgTx application with that in the control. A typical
example of the effect of AgTx is shown in Figure 3C. Bath appli-
cation of AgTx decreased the amplitude of both the first and
second uIPSCs (Fig. 3Cb). In parallel to the decrease in uIPSC
amplitude, AgTx also changed the profile of short-term plasticity:
AgTx decreased the PPR from 0.71 to 0.58 (Fig. 3Cc). Summary
results showed a decrease in the PPR by AgTx (0.69 	 0.04 in
control and 0.53 	 0.05 under AgTx application, n � 16. t(15) �
2.773, p � 0.014, paired t test; Fig. 3Da) and an increase in the
PPR with CgTx (0.67 	 0.03 in control and 0.78 	 0.06 under
CgTx application, n � 22, t(21) � 2.143, p � 0.044, paired t test;
Fig. 3Db). These summarized results support the hypothesis de-
scribed above.

We analyzed dual, triple, and quadruple recordings that in-
volved one, two, and three FS¡FSN/non-FSN connections, re-
spectively, to explore the relationship between AgTx-sensitive
percentages of uIPSCs and PPR in the control condition. There
was a positive correlation between the PPR in the control and the
effect on AgTx on the first uIPSC amplitude (n � 65, � � 0.479,
p � 0.0001, Spearman correlation; Fig. 3E): the connections with
larger PPRs in the control showed higher sensitivity to AgTx. This
relationship suggests that AgTx-sensitive components of uIPSCs
contribute to the induction of high PPRs.

The diversity of PPRs in each connection suggests the distinct
expression pattern of VDCCs. To examine this possibility, the
effects of N-type and P/Q-type VDCC blockers were tested in
triple whole-cell patch-clamp recordings, and the sensitivity of
each VDCC blocker to IPSC amplitude was compared between
the connections that received common inhibitory inputs from
the same presynaptic FSNs. Bath application of 3 �M CgTx
showed an imbalance in the suppression rate of uIPSC amplitude
(Fig. 3Fa): six pairs of connections showed comparable suppres-
sion rates, whereas the other five pairs showed a large difference
in the suppression rate between the pair connections. The incon-
sistent suppression rate of uIPSC amplitude by CgTx was also
observed in the case of AgTx (200 nM) application (Fig. 3Fb).
These results suggest that expression patterns of N-type and P/Q-
type VDCCs are not consistent even in the connections branched
from the same presynaptic FSN.

[Ca 2�]o changes release probability of GABA
It has been demonstrated that the PPR closely correlates with the
release probability of neurotransmitters. A higher release proba-
bility induces a larger amount of neurotransmitter release and
decreases the amount of neurotransmitter in the readily releas-
able pool. Thus, in the case that a presynaptic terminal induces
action potentials at a short interspike interval, the second release
of neurotransmitter is diminished, and as a result, the PPR is
decreased (Yamamoto et al., 2010b; Counotte et al., 2011). How-
ever, several studies report no correlation between release prob-
ability and PPR in glutamatergic synapses (Bellingham and
Walmsley, 1999; Yang and Xu-Friedman, 2008) and in GABAA

receptor-mediated synapses (Overstreet et al., 2000), one of
whose mechanisms is postulated to be desensitization of postsyn-
aptic receptors. Other previous studies demonstrate that lower-
ing the [Ca 2�]o in ACSF decreases the amplitude of the first
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EPSCs and increases the PPR by suppressing neurotransmitter
release in excitatory synapses (Oleskevich et al., 2000). Therefore,
we performed variance–mean analysis by changing the [Ca 2�]o

from 0.5 to 4.0 mM, which changes release probability (Silver et
al., 1998), to examine the relationship between release probability
and PPR in GABAergic synapses.

A typical example of the effect of [Ca 2�]o on uIPSC amplitude
obtained from an FSN¡FSN connection showed that the higher
[Ca 2�]o induced a larger uIPSC amplitude (Fig. 4Ba). Figure 4Bb
shows paired-pulse responses whose first uIPSC amplitude is
scaled. Higher [Ca 2�]o induced larger uIPSCs and a lower PPR.
The consecutive first uIPSC amplitude recorded under the appli-
cation of different [Ca 2�]o is shown in Figure 4C. The variance in
each [Ca 2�]o was plotted against the mean amplitude of uIPSC to
obtain the parabolic function that fits to the plots (Fig. 4D). We
estimated the release probability, the number of release sites, and
quantal content by using variance–mean analysis (Fig. 4E).

There was a significant correlation between release probability
and PPR (n � 14, r � �0.545, p � 0.044, Pearson correlation;
Fig. 4Ea). However, little correlation was observed between
quantal size and PPR (n � 14, r � �0.459, p � 0.099, Pearson
correlation; Fig. 4Eb) and between the number of release sites and
PPR (n � 14, r � 0.091, p � 0.758, Pearson correlation; Fig. 4Ec).
These results indicate that the PPR reflects release probability in
IC GABAergic synapses.

Enhancement of PPR by increasing [Ca 2�]o in combination
with an N-type VDCC blocker
In terms of the CgTx-induced increase in PPR, several possible
mechanisms could be hypothesized. First, a facilitative effect of
CgTx on the PPR could be attributed to a decrease in release
probability merely by decreasing Ca 2� influx via N-type VDCCs.
It is also possible to presume that Ca 2� influx via P/Q-type VD-
CCs increases PPR. To examine these possibilities, we elucidated
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the effect of high [Ca 2�]o under the appli-
cation of CgTx on PPR: if P/Q-type VD-
CCs contribute to an increase in PPR, an
increase in Ca 2� influx via P/Q-type VD-
CCs by replacing the normal ACSF with
high [Ca 2�]o ACSF would increase PPR.
On the other hand, the PPR would be de-
creased by the application of high [Ca 2�]o

ACSF in combination with CgTx if the
amount of Ca 2� influx itself is a critical
factor in the CgTx-induced increase in
PPR.

Figure 5A–C shows an example of the
effect of [Ca 2�]o ACSF on PPR. In this
case, CgTx (3 �M) decreased the ampli-
tude of the first uIPSCs with less effect on
the second uIPSCs, and as a result, the
PPR was increased. Under the application
of CgTx, an increase in [Ca 2�]o from 2 to
4 mM prominently enhanced both the first
and second uIPSCs. In parallel to the en-
hancement of uIPSC amplitude, the PPR
was also increased from 0.57 to 0.83 by
application of high [Ca 2�]o (Fig. 5B,C).

In summary, application of 4 mM

[Ca 2�]o with CgTx increased the PPR
from 0.59 	 0.04 in CgTx to 0.70 	 0.04
in 4 mM [Ca 2�]o with CgTx (n � 12;
t(11) � 2.413, p � 0.034, paired t test; Fig.
5D). Therefore, the reason for the CgTx-
induced increase in the PPR is likely that
Ca 2� influx via P/Q-type VDCCs serves
to yield an increase in PPR, and it is less
likely that a decrease in the amount of
Ca 2� influx via N-type VDCCs increases
PPR.

Besides, we examined whether post-
synaptic GABAA receptors were saturated
under application of CgTx and 4 mM

[Ca 2�]o (Fig. 5E–I). Before testing the ef-
fects of CgTx, uIPSCs were recorded un-
der application of 4 mM [Ca 2�]o, which
increases release probability (Fig. 5E–G).
All of the IPSC amplitudes observed un-
der application of 4 mM [Ca 2�]o were
larger than that in both application of
CgTx and 4 mM [Ca 2�]o (119.3 	 23.3 pA
in 4 mM [Ca 2�]o, 83.6 	 17.8 pA in CgTx
and 4 mM [Ca 2�]o, n � 5, t(4) � 2.950, p �
0.032, paired t test; Fig. 5H, I). These results strongly suggest that
GABAA receptors are not saturated under CgTx and 4 mM

[Ca 2�]o application.

Increase in PPR by roscovitine by facilitation of P/Q-type and
suppression of N-type VDCCs
Roscovitine is known to inhibit cyclin-dependent kinases 1, 2, and 5
and to activate CaV 2 (N-type and P/Q-type) channels by prolong-
ing the open time and increasing the open probability of these chan-
nels (Yan et al., 2002; DeStefino et al., 2010; Su et al., 2012; Satake and
Imoto, 2014). Thus, we examined the effects of roscovitine (30 �M)
on the PPR under the application of VDCC blockers.

Figure 6A–C shows an example of roscovitine in combination
with 3 �M CgTx on uIPSC amplitude in an FSN¡FSN connec-

tion. Bath application of CgTx decreased the first uIPSC ampli-
tude with an increase in the PPR (Fig. 6B,C). Additional
application of roscovitine increased the PPR (Fig. 6B,C). In sum-
mary, CgTx suppressed the first uIPSC amplitude from 92.9 	
17.2 to 72.1 	 18.6 pA (n � 13, t(12) � 2.715, p � 0.019, paired t
test with Bonferroni’s correction) but did not have a significant
effect on the second uIPSCs (from 55.7 	 12.6 to 48.5 	 12.6 pA,
n � 13, t(12) � 1.058, p � 0.28, paired t test with Bonferroni’s
correction). The application of roscovitine in combination with
CgTx enhanced the second uIPSCs (48.4 	 12.7 pA in CgTx;
59.5 	 11.6 pA in roscovitine with CgTx, n � 13; t(12) � 2.642,
p � 0.022, paired t test with Bonferroni’s correction) without a
significant effect on the first uIPSCs (71.9 	 18.6 pA in CgTx;
78.1 	 19.7 in roscovitine with CgTx, n � 13; t(12) � 0.684, p �
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0.507, paired t test with Bonferroni’s correction; Fig. 6D). As a
result, the PPR was increased from 0.71 	 0.06 to 0.83 	 0.06
(n � 13) by application of roscovitine in combination with CgTx
(t(12) � 2.182, p � 0.049, paired t test; Fig. 6E).

In a part of the experiment, uIPSCs were recorded under 4 mM

[Ca 2�]o to examine whether postsynaptic GABAA receptors are
saturated by application of CgTx and roscovitine (Fig. 6F–J).
uIPSCs under application of CgTx and roscovitine were smaller
than that in 4 mM [Ca 2�]o (153.4 	 47.6 pA in 4 mM [Ca 2�]o,
65.2 	 47.6 pA in CgTx and roscovitine, n � 8, t(7) � 3.051, p �
0.019; paired t test; Fig. 6G–J). Therefore, a facilitative shift of the

PPR in the presence of CgTx and roscovitine is unlikely to be
caused by saturation of GABAA receptors (Fig. 6E).

In contrast to the effect of roscovitine on P/Q-type VDCCs,
Finley et al. (2010) reported the suppression of N-type VDCCs by
roscovitine. In agreement with their observations, roscovitine
likely acted as an inhibitor of N-type VDCCs in FSN¡FSN/non-
FSN connections: roscovitine completely blocked uIPSCs medi-
ated by N-type VDCCs that were isolated by application of AgTx
(Fig. 7A,B). Overall, roscovitine suppressed uIPSC amplitude
under the application of AgTx from 12.5 	 2.2 to 3.6 	 4.3 pA
(n � 8, t(7) � 5.724, p � 0.001, paired t test; Fig. 7C).
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If roscovitine potentiates and sup-
presses P/Q-type and N-type VDCCs,
respectively, roscovitine itself would in-
crease the PPR. Figure 8A–C shows an ex-
ample of the effect of roscovitine on
paired uIPSCs. As presumed above, ros-
covitine increased the PPR with an in-
crease in the second uIPSC amplitude. In
summary, administration of roscovitine
alone increased the second uIPSC am-
plitude (34.2 	 6.1 to 43.4 	 7.7 pA, n �
18, t(17) � 3.150, p �0.006, paired t test;
Fig. 8D) without an effect on the first
uIPSC amplitude (53.3 	 10.8 to 58.6 	
13.0 pA, n � 18, t(17) � 1.022, p � 0.321,
paired t test). As a result, the PPR in-

100 ms
 20 mV 

375 pA

250

200

150

100

50

0IP
S

C
 a

m
pl

itu
de

 (p
A

)

0 10 20 30 40 50
Time (min)

FSN4

FSN3

4 mM Ca2+ CgTx

Ros

500
400
300
200
100

0

uI
P

S
C

1 
am

pl
itu

de
 (p

A
)

4 
m

M
 C

a2+

C
gT

x 
+ 

R
os

*

F

I J

20 ms
 20 pA 

 10 nA

scaled

FSN4

FSN3
soR + xTgCxTgClortnoC 4 mM Ca2+G

H
soR + xTgCxTgClortnoC 4 mM Ca2+

A B D E

FSN1 †
300

200

100

0

IP
S

C
 a

m
pl

itu
de

 (p
A

)

C
gT

x
C

gT
x 

+ 
R

os

C
gT

x
C

gT
x 

+ 
R

os

1.5

1.0

0.5

0

P
P

R

C
gT

x
C

gT
x 

+ 
R

os

1st 
†

2nd
uIPSC

FSN2

100 ms
 20 mV 

450 pA

C

scaled

 10 nA
Control

Control

CgTx

CgTx

CgTx + Ros

CgTx + Ros

20 ms
 20 pA 

FSN1

FSN2

Figure 6. Effects of roscovitine in combination with CgTx on uIPSC amplitude and PPR. A, Repetitive firing of presynaptic FSN1 and FSN2. B, Ten consecutive traces (gray) with averaged
traces (black) before (control), during CgTx (3 �M) application, and with additional application of roscovitine (CgTx and Ros; 30 �M). C, Scaled uIPSCs showing an increase in PPR. D, E,
Summary of the effects of roscovitine on uIPSC amplitude and PPR in the presence of CgTx (n � 13). The second but not the first uIPSCs were enhanced by roscovitine (D). As a result, the
PPR was increased by roscovitine (E). F, Repetitive firing of presynaptic and postsynaptic FSNs (FSN2 and FSN3, respectively). G, Consecutive traces and their averaged uIPSCs in control
and during application of 4 mM [Ca 2�]o, CgTx, and CgTx and roscovitine. H, The averaged uIPSCs obtained from 10 consecutive traces shown in G were scaled to compare the PPR. I, The
time course of uIPSC amplitude shown in G. J, uIPSCs under 4 mM [Ca 2�]o were larger than those under application of CgTx and roscovitine (n � 8). †p � 0.05, paired t test with
Bonferroni’s correction; *p � 0.05, paired t test.

450 pA

570 pA

AgTx Control AgTx + RosA B C

uI
P

S
C

1 
am

pl
itu

de
 (p

A
) **

20 ms

50 pA 

200 ms

 50 mV 

FSN2

FSN1

FSN2

FSN1  10 nA 15

10

5

0

A
gT

x
A

gT
x 

+ 
R

os

Figure 7. Roscovitine attenuated the N-type VDCC component of uIPSCs isolated by AgTx. A, Repetitive firing of presynaptic and
postsynaptic FSNs (FSN1 and FSN2, respectively). B, Effects of roscovitine (Ros; 30 �M) on the remaining uIPSC component in the
FSN1¡FSN2 connection after administration of AgTx (200 nM). C, Summary of the first uIPSC amplitude diminished by roscovitine
in the presence of AgTx (n � 8). **p � 0.01, paired t test.

9822 • J. Neurosci., November 14, 2018 • 38(46):9814 –9828 Yamamoto and Kobayashi • Distinct Roles of VDCCs in Short-Term Plasticity of IPSCs



creased from 0.66 	 0.03 to 0.82 	 0.07 (n � 18, t(17) � 2.576,
p � 0.020, paired t test; Fig. 8E).

Similar to Figure 6F–J, uIPSCs were recorded under 4 mM

[Ca 2�]o to examine whether postsynaptic GABAA receptors are
saturated by application of roscovitine (Fig. 8F–J). uIPSC ampli-
tude during application of 4 mM [Ca 2�] and roscovitine were
138.0 	 44.7 and 65.3 	 21.9 pA, respectively (n � 8, t(7) � 2.823,
p � 0.026, paired t test; Fig. 8G–J), suggesting that the increase in
the PPR by roscovitine is unlikely to be caused by saturation of
GABAA receptors (Fig. 8E).

Blockade of Ca 2�-dependent K � efflux attenuates
AgTx-induced suppression of PPR
VDCCs play a pivotal role in neurotransmitter release, and Ca 2�

influx via VDCCs often activates KCa channels, which hyperpo-
larize the membrane potential. KCa channels are classified into
three types, i.e., BK, IK, and SK channels, which have large, inter-
mediate, and small conductances, respectively (Berkefeld et al.,
2010). Some KCa channels are expressed on presynaptic and post-
synaptic membranes and regulate spike firing and synaptic trans-
mission (Kobayashi et al., 1997; Marrion and Tavalin, 1998;
Wikström and El Manira, 1998). In particular, BK channels have
been reported to couple with several types of VDCCs not only in
somata but also in axon terminals (Goldberg et al., 2005; Fakler
and Adelman, 2008). Thus, there is a possibility that Ca 2� influx
via N-type VDCCs may activate KCa channels in the presynaptic
terminals of FSN, which may suppress GABA release. To test this
possibility, we examined whether KCa channels activated by Ca 2�

influx through N-type VDCCs in the terminal modulate uIPSC
amplitude and induce associated changes in PPR.

First, we measured the half-widths of the first and second
action potentials in FSNs during the application of ChTx (50 –

100 nM), a BK and IK channel blocker, and apamin (1 �M), an SK
channel blocker (Fig. 9). This is because blockade of KCa channels
may prolong the duration of action potentials and induce longer
activation of VDCCs. If so, it is likely that these blockers induce
larger Ca 2� influx and increase release probability. Representa-
tive examples of the effects of AgTx and ChTx with AgTx are
shown in Figure 9A, and those of AgTx and apamin with AgTx are
shown in Figure 9B. AgTx application had little effect on the
half-width of the first and second action potentials (first action
potential, 1.14 	 0.07 ms, second action potential, 1.17 	 0.07
ms, n � 16, t(15) � 1.261, p � 0.227, paired t test; Fig. 9C).
Similarly, ChTx with AgTx and apamin with AgTx had little effect
on spike duration (ChTx: first action potential, 1.13 	 0.10 ms;
second action potential, 1.15 	 0.11 ms; n � 8, t(7) � 1.873, p �
0.103, paired t test; apamin, first action potential, 1.11 	 0.11 ms;
second action potential, 1.12 	 0.10 ms; n � 5, t(4) � 0.278, p �
0.795, paired t test; Figure 9C). There was no significant differ-
ence in the half-durations of the first and second action potentials
among the control, AgTx, ChTx with AgTx, and apamin with
AgTx (first action potential, F(3,41) � 0.078, p � 0.971; second
action potential, F(3,41) � 0.071, p � 0.975, one-way ANOVA).
Therefore, it is likely that the suppressive effect of the PPR by
Ca 2� influx through N-type VDCCs is not attributable to the
change in duration of action potential in presynaptic FSNs.

Next, we examined the effects of ChTx alone and in combina-
tion with AgTx, which extracts synaptic currents through N-type
VDCCs (Fig. 10). No significant change in the PPR was observed
under the condition in which ChTx was added in normal ACSF
(Fig. 10A–C): 0.81 	 0.07 in the control and 0.74 	 0.10 with
ChTx application (n � 7; t(6) � 1.042, p � 0.337, paired t test; Fig.
10D). In contrast, the PPR of uIPSCs was increased by ChTx
under application of AgTx accompanying with a suppressive ten-
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dency of uIPSCs that were mediated by
N-type VDCCs (Fig. 10E–I): IPSC1,
23.4 	 4.7 pA under application of AgTx
and 10.8 	 2.5 pA (n � 10; t(9) � 2.146,
p � 0.060, paired t test); IPSC2, 16.2 	 4.1
pA under application of AgTx and 10.0 	
1.6 pA (n � 10; t(9) � 1.933, p � 0.085,
paired t test; Fig. 10H); PPR, 0.68 	 0.11
with AgTx application and 0.97 	 0.09
with application of ChTx and AgTx (n �
10; t(9) � 2.420, p � 0.039, paired t test;
Fig. 10I).

Similar to the small effect of ChTx on
PPR, apamin alone had little effect on the
PPR by itself [Fig. 11A–C, 0.84 	 0.10 in
control and 0.68 	 0.11 (n � 7; t(6) �
1.157, p � 0.291, paired t test); Fig. 11D].
However, apamin increased the PPR ac-
companying a tendency of decreases in
amplitude under preapplication of AgTx
(Fig. 11E–I): IPSC1, 38.0 	 14.4 pA under
application of AgTx and 14.6 	 2.9 pA
(n � 7; t(6) � 1.924, p � 0.103, paired t
test); IPSC2, 18.9 	 8.4 pA under applica-
tion of AgTx and 14.69 	 4.30 pA (n � 7;
t(6) � 0.784, p � 0.463, paired t test; Fig.
11H); PPR, 0.50 	 0.09 under application
of AgTx and 0.92 	 0.10 under applica-
tion of apamin and AgTx (n � 7; t(6) �
2.742, p � 0.034, paired t test; Fig. 11I).

These results suggest an involvement
of KCa channels in AgTx-induced sup-
pression of PPR, and this effect has little
selectivity among KCa channel subtypes.

Discussion
In FSN¡FSN/non-FSN connections, each
projection from a common presynaptic
FSN to different postsynaptic GABAergic
neurons showed distinct short-term plas-
ticity and discrete sensitivity to P/Q-type
and N-type VDCC blockers, which sup-
pressed and facilitated PPR, respectively.
N-type VDCC-mediated PPR suppres-
sion was blocked by ChTx or apamin, sug-
gesting that Ca 2� influx through N-type
VDCCs suppresses the PPR by activating
KCa channels. These results suggest that
the expression pattern of VDCCs in the
GABAergic synaptic terminals is not ho-
mogenously organized even if these ter-
minals are branched from a common
presynaptic neuron, and such divergent
expression of VDCC subtypes makes it
possible to regulate short-term plasticity
precisely in each inhibitory connection.

Expression profiles of N- and P/Q-type
VDCCs in GABAergic
synaptic terminals
PPR of uIPSCs between presynaptic FSN
and postsynaptic GABAergic interneu-
rons showed wide variation even with a
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shared presynaptic FSN. Such target-cell-specific profiles of
short-term plasticity have been reported in glutamatergic syn-
apses in the cerebral cortex (Reyes et al., 1998; Rozov et al., 2001;
Koester and Johnston, 2005). A presynaptic pyramidal neuron
induces paired-pulse depression in connection with multipolar
cells and paired-pulse facilitation in connection with bitufted
cells. The present study did not identify the immunohistochem-
ical features of the recorded neurons such as somatostatin-, va-
soactive intestinal peptide-, and calbindin-immunopositive
neurons (Kawaguchi and Kubota, 1997). The immunohisto-
chemical variation of neural subtypes might be responsible for
the heterogeneity of VDCC expression; however, cell classifica-
tion according to electrophysiological properties did not show
consistency between the PPR and postsynaptic neuronal sub-
types. We thus found that not only glutamatergic pyramidal neu-
rons but also GABAergic FSNs show a distinct PPR for each
connection and extended that finding by demonstrating that in-
dividual connections between GABAergic neurons often exhibit
different sensitivities to N- and P/Q-type VDCC blockers. The
difference in uIPSC sensitivities to VDCC blockers indicates that
each synaptic terminal shows its own expression pattern of
VDCC subtypes.

Synaptic short-term plasticity depends on VDCC subtypes
expressed in the terminal
The expression profiles of VDCC subtypes in synaptic terminals
have been studied in various brain regions. Takahashi and Mo-
miyama (1993) reported that in the hippocampal CA1 region,
EPSCs evoked by Schaffer collateral stimulation are partially at-
tenuated by CgTx application and that the remaining component

is completely blocked by AgTx, demonstrating that N- and P/Q-
type VDCCs colocalize in Schaffer collateral terminals. In con-
trast to hippocampal synapses coexpressing N- and P/Q-type
VDCCs, presynaptic FSNs and postsynaptic pyramidal neurons
in neocortical slice preparations show uIPSCs that are completely
blocked by AgTx (Zaitsev et al., 2007). Among these studies, we
primarily demonstrated the distinct short-term plasticity in the
connections between GABAergic neurons in the cerebral cortex:
Ca 2� influx through P/Q-type VDCCs increased PPR, whereas
that through N-type VDCCs decreased PPR. Taking advantage of
using VGAT-Venus transgenic rats and a multiple whole-cell
patch-clamp technique, we compared short-term plasticity in the
GABAergic connections that consisted of a common presynaptic
FSN and excluded the possibility that different properties of
short-term plasticity are attributable to presynaptic neuron sub-
types. In contrast to FSN¡FSN/non-FSN connections in IC,
EPSCs evoked by stimulation of Shaffer collaterals in the hip-
pocampal CA1 region show suppressed and enhanced PPRs after
application of CgTx and AgTx, respectively (Scheuber et al.,
2004). This discrepancy may be attributed to distinct profiles of
glutamate and GABA release by activating VDCC subtypes.

We did not clarify whether N-type and P/Q-type VDCCs are
coexpressed or separately expressed in each GABAergic synapse.
Unless either CgTx or AgTx completely abolished uIPSCs, two
possibilities remain: (1) a subset of synapses express only N-type
or P/Q-type channels or (2) both VDCC subtypes are coex-
pressed in a synapse. In the active zone of glutamatergic terminals
arising from hippocampal CA3 pyramidal neurons, both N-type
and P/Q-type VDCCs are detected, and their numbers have been
counted by immunoelectron microscopy, suggesting that the lat-
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ter possibility is likely (Éltes et al., 2017). This expression pattern
might also apply to GABAergic synapses.

Mechanisms for short-term plasticity regulated by VDCCs
BK and SK channels are expressed in the soma, axon initial seg-
ment, and synaptic terminal in the neuron (Kobayashi et al.,
1997; Fakler and Adelman, 2008). In this study, the attenuation of
the PPR by application of AgTx was blocked by administration of
KCa channel blockers, suggesting that hyperpolarization induced
by activation of KCa channels in GABAergic synaptic terminals of
FSNs is among the mechanisms underlying the induction of low
PPR. Indeed, single-cell multiplex RT-PCR of rat neocortical
neurons in combination with electrical recording demonstrated
not only coexpression of N-type and P/Q-type VDCCs but also
expression of the gene for SK channels in the single parvalbumin-
expressing neuron, which is presumably an FSN (Toledo-
Rodriguez et al., 2004). KCa blockers tended to decrease N-type
VDCC-mediated uIPSCs, consistent with the previous report
that presynaptic BK channels increase transmitter release via un-
known mechanisms (Pattillo et al., 2001). This unknown mech-
anism should be explored further.

In hippocampal mossy fiber synapses, P/Q-type VDCCs gen-
erate homogeneous elevation of [Ca 2�]i, whereas N-type VDCCs
induce highly localized Ca 2� elevation, and these are mecha-
nisms of distinct roles in short-term plasticity (Chamberland et
al., 2017). If this is the case in GABAergic terminals of IC FSNs, it
is likely that N-type VDCCs and KCa channels are located in close
spatial proximity in GABAergic synaptic terminals, as previously
suggested (Kobayashi et al., 1997). It was also reported that syn-
aptic response and PPR are influenced by the application of BK

and SK channel blockers (Raffaelli et al., 2004; Berkefeld et al.,
2010; Griguoli et al., 2016). Under the application of a BK chan-
nel blocker, iberiotoxin, prolongation of the half-duration of ac-
tion potentials occurs in the soma and the axon initial segment of
the cortical pyramidal neuron, which may result in an increase in
Ca 2� influx and in transmitter release at the presynaptic termi-
nals. However, this is not the case in our preparation because
spike width was not changed by KCa channel blockers.

It is commonly assumed that the mechanisms underlying
paired-pulse depression and facilitation are depletion and accu-
mulation, respectively, of residual Ca 2� in the synaptic terminal
(Blitz et al., 2004). Molecular mechanisms for short-term plas-
ticity have been studied in detail in the cholinergic synaptic
connections among cultured SCG neurons transfected with
brain-derived P/Q-type VDCCs (Mochida et al., 2008; Mori et
al., 2014). SCG synapses show paired-pulse depression at inter-
stimulus intervals of �100 ms, whereas a facilitative shift in the
PPR is induced at interstimulus intervals of 100 –200 ms, suggest-
ing that short-term plasticity depends on the temporal binding
interaction of Ca 2� entered through P/Q-type VDCCs to Ca 2�

sensor proteins. In contrast, synaptic connections among SCG
neurons expressing N-type VDCCs show synaptic depression at
15–120 ms intervals, and the synaptic depression is attenuated by
EGTA-AM and BAPTA-AM, a slow and a rapid Ca 2� chelator,
respectively. These results indicate that N-type VDCCs suppress
the second release, presumably by unknown chelators (Mori et
al., 2014). In addition, according to previous work using knock-
out mice for parvalbumin, a slow Ca 2� chelator protein ex-
pressed abundantly in FSNs, parvalbumin potently modulates
short-term plasticity in presynaptic terminals of FSNs (Caillard et
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al., 2000). A detailed investigation of intracellular mechanisms
for short-term plasticity in GABAergic synapses should be fur-
ther conducted to elucidate whether the different distributions of
these Ca 2�-associating proteins in each terminal contribute to
the induction of distinct plasticities, as shown in the present
study.

Functional roles of short-term plasticity in GABAergic
neuronal connections
The profiles of short-term plasticity might reflect the mecha-
nisms of long-term synaptic plasticity, as demonstrated in the
connections from presynaptic pyramidal cells to postsynaptic
GABAergic neurons (Lu et al., 2007). The connections from py-
ramidal cells to FSNs, which exhibit short-term depression, show
long-term depression induced by repetitive correlated spiking. In
contrast, the connections from pyramidal cells to low-threshold
spiking cells showing short-term facilitation induce long-term
potentiation or depression that depends on the timing of presyn-
aptic spikes. Although the induction mechanisms for long-term
plasticity are different between glutamatergic and GABAergic
synapses, different kinetics of short-term plasticity between
GABAergic neurons may contribute to the characterization of
plastic changes in response to disturbances of bottom-up signals
from the peripheral nervous system.

In the anterior cingulate and barrel cortices, thalamocortical
axons project directly to GABAergic interneurons (Porter et al.,
2001; Delevich et al., 2015). Among these interneurons, FSNs
seem to receive strong excitatory inputs from the thalamus com-
pared with surrounding pyramidal neurons (Cruikshank et al.,
2007). Monosynaptic and disynaptic EPSC and IPSC recordings
from cortical neurons evoked by thalamic stimulation using
thalamocortical slice preparations suggest that inhibitory in-
terneurons are prevented from firing multiple spikes by disynap-
tic inhibition at a short latency mediated by other inhibitory
interneurons in the barrel column (Porter et al., 2001). Part of the
functional importance of short-term plasticity in the GABAergic
circuit is the filtration of excitatory information by direct inhibi-
tion to excitatory neurons and/or indirect regulation of pyrami-
dal neurons by disinhibition of the activities of excitatory
neurons (Fortune and Rose, 2001; Abbott and Regehr, 2004).
Therefore, the differences in short-term plasticity in FSN¡FSN/
non-FSN connections may contribute to fine regulation of disin-
hibition of pyramidal neuronal activities by different expression
patterns of N-type and P/Q-type VDCCs at the synaptic termi-
nals of FSNs.
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