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Neurotransmitter release at synapses is
mediated by the fusion of synaptic vesicles
with the plasma membrane. Fusion is me-
diated by the interaction of three SNARE
proteins (soluble NSF-attachment recep-
tor): synaptobrevin in the vesicle mem-
brane and syntaxin and SNAP-25 in the
plasma membrane (Figure 1C). Full as-
sembly of the SNARE complex pulls the
vesicle to the plasma membrane and over-
comes the energy barrier for fusion (Melia
et al., 2002). The formation of the SNARE
complex is called “priming.” In addition
to SNAREs, priming also involves the ac-
cessory proteins Unc18 (called UNC-18
in Caenorhabditis elegans and Munc18 in
mice), Unc13 (called UNC-13 in C. elegans
and Munc13 in mice), and tomosyn (Fig.
1A). Unc18 and Unc13 proteins align
SNAREs during complex assembly (Lai et
al., 2017), whereas tomosyn inhibits ves-
icle priming (Gracheva et al., 2006).
Despite numerous studies, the precise mo-
lecular steps of synaptic vesicle priming are
largely unknown.

The Unc18 proteins act during calcium-
mediated fusions and are members of the

SM superfamily of cytosolic proteins,
which are required for membrane fusion
during different membrane trafficking
steps in eukaryotic cells. Unc18 adopts
two conformations. In one conformation,
Unc18 forms a clamp on syntaxin, locking
it in a closed, fusion incompetent, state
(Misura et al., 2000). This interaction is
necessary for trafficking syntaxin to the
plasma membrane (Medine et al., 2007).
At the synaptic terminal, syntaxin opens
to permit SNARE assembly (Richmond et
al., 2001). In Unc18’s second conforma-
tion, a “helical hairpin” in domain 3a is
extended (Hu et al., 2011) (Fig. 1C). A
conserved proline in Munc18 (P335)
forms the hinge point of the hairpin bend,
producing an “unfurled loop conforma-
tion.” The role of this conformation is not
entirely understood, but a P335A muta-
tion designed to favor this helical exten-
sion enhances Unc18 activity in liposome
fusion assays (Parisotto et al., 2014) and
caused an increase in exocytosis in secre-
tory cells (Han et al., 2014; Munch et al.,
2016). Biochemical evidence suggests also
that P335A is a gain-of-function mutation
that favors Unc18 binding to synapto-
brevin (Xu et al., 2010; Parisotto et al.,
2014). Furthermore, expressing the P335A
mutation in chromaffin cells increased the
primed vesicle pool without affecting the
kinetics or calcium dependence of fusion
(Munch et al., 2016). These data strongly
support a model where domain 3a plays a
central role in catalyzing nucleation of the

SNARE complex in vesicle priming. This
hypothesis is consistent with the recent
x-ray structure of the distantly related
protein Vps33 with its cognate SNARE
proteins (Baker et al., 2015). However,
these studies did not answer two impor-
tant questions. First, does the Munc18
P335A mutation alter priming in neu-
rons? Second, does the mutation give rise
to altered behavior?

The nematode C. elegans is a well-esta-
blished genetic organism for examining
molecular mechanisms in synaptic func-
tion. To investigate the role of the un-
furled loop conformation in the context
of a whole organism, Park et al. (2017)
introduced the corresponding gain-of-
function mutation (P334A) into worm
UNC-18. To do so, the authors overex-
pressed UNC-18 (P334A) from an extra-
chromosomal array, or modified the
endogenous locus using CRISPR-Cas9.
Such animals exhibited increased loco-
motion speed and enhanced neurotrans-
mitter release in a pharmacological assay.
Electrophysiological recordings indicated
an increase in tonic miniature currents at
neuromuscular junctions. Expression of
Munc18 P335A in mouse neurons also
augmented exocytosis. Together, these data
support the hypothesis that Unc18 in the
extended hairpin configuration is a positive
regulator of synaptic transmission, likely by
increasing vesicle priming (Fig. 1C).

Unc13 proteins are large proteins asso-
ciated with the plasma membrane that are
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also thought to be involved in SNARE com-
plex formation. The central MUN domain
of Unc13 interacts with the amino terminus
of syntaxin, and expression of a consti-
tutively open form of syntaxin bypasses
secretion defects of unc-13 mutants in C.
elegans (Richmond et al., 2001), suggest-
ing that Unc13 opens syntaxin. Interest-
ingly, the UNC-18 (P334A) also partially
suppresses locomotor defects in unc-13
mutants and bypasses the requirement for
Unc13 in in vitro fusion assays. One pos-
sible explanation for the ability of this mu-
tation to bypass the Unc13 requirement is
that Unc13 normally promotes this con-
formational change in Unc18. Unc18 in-
teracts physically and genetically with
Unc13 (Sassa et al., 1999), which suggests
that Unc13 might directly facilitate the
transition from furled to an unfurled
loop conformation. Alternatively, Unc13’s

participation in the Unc18 conformational
switch might be an indirect consequence of
Unc13’s role in the closed-to-open syntaxin
transition.

Another important implication of the
“unfurled” Unc18 mutant bypassing the
requirement for Unc13 involves SNARE
complex assembly. To fuse membranes,
SNARE proteins must nucleate assembly
by aligning their helices in a parallel con-
figuration (Sutton et al., 1998). SNAREs
can also form dead-end antiparallel con-
figurations, suggesting that a parallel ori-
entation is not ensured (Weninger et al.,
2003). Recently, Unc13 has been shown to
orient SNARE proteins during pairing, so
that synaptobrevin binds in a parallel
orientation (Lai et al., 2017). Because un-
furled Munc18 favors binding to synapto-
brevin (Xu et al., 2010; Parisotto et al.,
2014), it is possible that unfurled Unc18

restores function by facilitating correct
synaptobrevin orientation during assem-
bly. Consistent with this idea, Park et al.
(2017) found that the Munc18 P335A mu-
tation increased SNARE assembly and
Munc18 binding to the SNARE complex.

In contrast, unfurled Unc18 does not
seem to play a role in relieving SNARE
inhibition by the tomosyn. Tomosyn has
an N-terminal �-propeller region, followed
by a C-terminal region containing a
synaptobrevin-like SNARE motif. To-
mosyn blocks incorporation of synapto-
brevin into the SNARE complex by
occupying the same binding site. To-
mosyn forms dead-end tomosyn-SNARE
complex with syntaxin and SNAP25 (Hat-
suzawa et al., 2003) (Fig. 1B). When over-
expressed, tomosyn causes a significant
reduction in neurotransmitter release;
and loss of tomosyn enhances exocytosis
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Figure 1. Unc18 in vesicle priming. A, Diagram representation of the proteins discussed. B, Tomosyn forms dead-end tomosyn-SNARE complex with syntaxin and SNAP25. C, Unc18 adopts two
conformations. In a fusion incompetent state, furled Unc18 binds closed syntaxin. In the second conformation, unfurled Unc18 nucleates the assembly of the SNARE complex in a fusion competent
state.
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by increasing the number of primed vesi-
cles (Gracheva et al., 2007). Park et al.
(2017) found that Unc18 and tomosyn
function in parallel: a double mutant lack-
ing tomosyn and also expressing UNC-18
(P334A) further increases neurotransmit-
ter release, demonstrating that UNC-18
(P334A) does not solely act by removing
inhibition by tomosyn. Additionally, strong
synergy in rescuing secretion defects of
unc-13 mutants was observed in triple
mutants lacking Unc13 and tomosyn and
expressing the unfurled Unc18. An alter-
native interpretation for these findings is
that the unfurled Unc18 can displace to-
mosyn from dead-end complexes allow-
ing synaptobrevin binding. This would
facilitate Unc18’s role catalyzing the nu-
cleation of the SNARE complex in vesicle
priming. This hypothesis is consistent
with biochemical interactions between
Unc18 and synaptobrevin (Xu et al.,
2010; Parisotto et al., 2014; Sitarska et
al., 2017) and structural studies (Baker
et al., 2015).

For years, a mechanistic understand-
ing of Unc18’s role in neurotransmitter
release has been lacking. With the identi-
fication of the unfurled loop conforma-
tion as central for the postdocking role
of Unc18 in cells, the reconstitution of
Unc18 functions in vitro (Parisotto et al.,
2014; Munch et al., 2016), the structural
data that show Unc18 as a template for
SNARE complex assembly (Hu et al., 2011;
Baker et al., 2015), and the important con-
tribution by Park et al. (2017), this is fi-
nally starting to change. Park et al. (2017)
show compelling evidence that an Unc18
conformational change has physiological
implications in SNARE priming (Fig. 1C).
Mutations in the human Unc18 have been
associated with intellectual disability and
early infantile epileptic encephalopathies
(Barcia et al., 2014; Park et al., 2017),
opening new venues to understand the
implications of priming in neurological
disorders.
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