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Acetylcholine is released in the prefrontal cortex (PFC) and is a key modulator of cognitive performance in primates. Cholinergic
stimulation has been shown to have beneficial effects on performance of cognitive tasks, and cholinergic receptors are being actively
explored as promising targets for ameliorating cognitive deficits in Alzheimer’s disease. We hypothesized that cholinergic stimulation of
PFC during performance of a cognitive task would augment neuronal activity and neuronal coding of task attributes. We iontophoreti-
cally applied the general cholinergic receptor agonist carbachol onto neurons in dorsolateral PFC (DLPFC) of male rhesus macaques
performing rule-guided prosaccades and antisaccades, a well established oculomotor task for testing cognitive control. Carbachol appli-
cation had heterogeneous effects on neuronal excitability, with both excitation and suppression observed in significant proportions.
Contrary to our prediction, neurons with rule-selective activity exhibited a reduction in selectivity during carbachol application. Cholin-
ergic stimulation disrupted rule selectivity regardless of whether it had suppressive or excitatory effects on these neurons. In addition,
cholinergic stimulation excited putative pyramidal neurons, whereas the activity of putative interneurons remained unchanged. More-
over, cholinergic stimulation attenuated saccade direction selectivity in putative pyramidal neurons due to nonspecific increases in
activity. Our results suggest excessive cholinergic stimulation has detrimental effects on DLPFC representations of task attributes. These
findings delineate the complexity and heterogeneity of neuromodulation of cerebral cortex by cholinergic stimulation, an area of active
exploration with respect to the development of cognitive enhancers.
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Introduction
Acetylcholine (ACh) is central to optimal cognitive performance
in primates (Ballinger et al., 2016). Lesions of the basal forebrain

nuclei, which provide corticopetal cholinergic innervation in
primates (Mesulam et al., 1983), cause deficits in a variety of
contexts, including acquisition of visual discriminations (Ridley
et al., 1984), shifting of spatial attention (Voytko et al., 1994), and
mnemonic tasks such as delayed match-to-sample (Aigner et al.,
1991). The importance of prefrontal cholinergic tone was delin-
eated by Croxson et al. (2011), who tested macaques on a variety
of tasks after cholinergic deafferentation of prefrontal cortex
(PFC). Ablation of cholinergic neurons revealed selective, delay-
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Significance Statement

The neurotransmitter acetylcholine is known to be important for cognitive processes in the prefrontal cortex. Removal of acetyl-
choline from prefrontal cortex can disrupt short-term memory performance and is reminiscent of Alzheimer’s disease, which is
characterized by degeneration of acetylcholine-producing neurons. Stimulation of cholinergic receptors is being explored to
create cognitive enhancers for the treatment of Alzheimer’s disease and other psychiatric diseases. Here, we stimulated cholinergic
receptors in prefrontal cortex and examined its effects on neurons that are engaged in cognitive behavior. Surprisingly, cholinergic
stimulation decreased neurons’ ability to discriminate between rules. This work suggests that overstimulation of acetylcholine
receptors could disrupt neuronal processing during cognition and is relevant to the design of cognitive enhancers based on
stimulating the cholinergic system.
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dependent deficits in spatial working memory performance, but
not in other PFC-dependent behavioral tasks.

Extensive degeneration of cholinergic neurons is also a hall-
mark of Alzheimer’s disease (Whitehouse et al., 1982). Cholines-
terase inhibitors are the mainstay of pharmacological treatment,
but their efficacy has been questioned (Amenta et al., 2001). Al-
ternative measures of enhancing cholinergic stimulation are
being investigated as treatment strategies (Caccamo et al., 2009;
Foucault-Fruchard and Antier, 2017). For example, recent evi-
dence indicates that intermittent electrical stimulation of the
basal forebrain cholinergic nuclei is beneficial to working mem-
ory performance (Liu et al., 2017). In addition, advancements in
the design of cholinergic agonists allow researchers to dissociate
the actions of specific receptor subtypes (Bubser et al., 2012;
Ferreira-Vieira et al., 2016). Although cholinergic stimulation has
shown some promise in improving cognitive performance in ma-
caques (Buccafusco and Terry, 2004; Tsukada et al., 2004) and
Alzheimer’s disease patients (Bodick et al., 1997), its influence on
local PFC neurophysiology has been less examined in primates
(Inoue et al., 1983; Sawaguchi and Matsumura, 1985).

Previously, we examined the role of muscarinic receptors in
macaque dorsolateral PFC (DLPFC) by iontophoretically apply-
ing the general muscarinic receptor antagonist scopolamine dur-
ing performance of a conditional saccade task, in which subjects
made a saccade toward a peripheral stimulus (prosaccade) or made
an antisaccade away from a stimulus, depending on a previous in-
struction cue (Major et al., 2015). This cognitive control task, which
incorporates working memory for task rules, prepotent response
inhibition, and flexible stimulus–response associations, is sensi-
tive to DLPFC integrity (Pierrot-Deseilligny et al., 2003; Condy et
al., 2007; Hussein et al., 2014). Moreover, deficits in antisaccade
performance are a reliable indicator of prefrontal dysfunction in
neuropsychiatric disorders, including Alzheimer’s disease and
schizophrenia (Fukushima et al., 1994; Kaufman et al., 2010).
Iontophoretic blockade of muscarinic receptors resulted in general
inhibition of prefrontal neuron activity and decreased selectivity re-
lated to rule, stimulus, and response encoding (Major et al., 2015),
exemplifying the cortical basis of cognitive deficits following phar-
macological insults to the cholinergic system (Klinkenberg and
Blokland, 2010). Here, we explored the neurophysiological con-
sequences of locally stimulating cholinergic receptors in macaque
DLPFC using the general cholinergic agonist carbachol. Carba-
chol is a cholinomimetic, more resistant to cholinesterase-
mediated breakdown than ACh, and therefore hypothesized to
have longer-lasting effects than ACh (Rosenberry et al., 2008).
Extensively explored for its effects on neuronal physiology, car-
bachol results in the generation of graded persistent activity in
rodent entorhinal cortical neurons (Egorov et al., 2002) and aug-
ments gamma oscillations in the mouse medial PFC, which are
associated with working memory performance (Pafundo et al.,
2013). Based on our previous results (Major et al., 2015), and
other studies which found that stimulation of DLPFC nicotinic
receptor subtypes enhanced spatial working memory representa-
tions (Yang et al., 2013; Sun et al., 2017), we hypothesized that
iontophoretic application of carbachol in macaque DLPFC would
increase neuronal discharge rates and augment neuronal represen-
tation of task attributes during performance of prosaccades and
antisaccades.

We found that carbachol had complex effects on DLPFC neu-
ronal excitability, increasing discharge rates in putative pyrami-
dal neurons. Contrary to our hypothesis, cholinergic stimulation
of DLPFC disrupted neuronal representation of task rules in
working memory and diminished saccade direction selectivity in

putative pyramidal neurons. Our findings indicate that continu-
ous pharmacological stimulation of the DLPFC cholinergic sys-
tem is detrimental to cognitive performance.

Materials and Methods
Experimental procedures were performed on two adult male macaque
monkeys (Macaca mulatta; age 8 –11 years, weight 9 –12 kg) in accor-
dance with the Canadian Council of Animal Care policy and a protocol
approved by the Animal Care Committee of the University of Western
Ontario Council on Animal Care. These two monkeys were previously
the subjects of other published studies, including iontophoretic investi-
gations of muscarinic blockade (Major et al., 2015), dopaminergic recep-
tors (Vijayraghavan et al., 2016), and a multielectrode investigation of
the systemic effects of ketamine on prefrontal cortex (Skoblenick and
Everling, 2012, 2014; Ma et al., 2015; Skoblenick et al., 2016). Both ani-
mals had a plastic head restraint and plastic recording chambers im-
planted above their right lateral PFC as described previously (Skoblenick
and Everling, 2012).

Behavioral task. The behavioral task and physiological techniques are
similar to those described in previous reports (Major et al., 2015; Vijay-
raghavan et al., 2016). Briefly, animals performed a variant of the prosac-
cade and antisaccade task (Everling et al., 1998), in which the task rule
had to be maintained in working memory (Fig. 1A). After the monkey
fixates on a central white spot (0.2°, 300 ms, fixation window 4° � 4°),
this fixation spot briefly changed color to red or green (100 ms), indicat-
ing the task rule, before reverting to white. The rule cue had to be main-
tained in working memory, while the subject maintained fixation over
the delay period (800 –1300 ms). Subsequently, the fixation spot disap-
peared and after a brief gap period (150 –300 ms) a peripheral stimulus
was presented pseudorandomly to the left or right of the fixation spot
(17° eccentricity). Subjects had to make the appropriate saccade, speci-
fied by the current rule, either toward (prosaccade) or away from (anti-
saccade) the stimulus within 500 ms to receive liquid reward. Task,
behavior monitoring, and reward delivery were controlled using
CORTEX (National Institutes of Mental Health). The gap period was
used to increase task difficulty (Everling et al., 1998). Rule colors were
counterbalanced between subjects and rule/stimulus combinations were
presented in pseudorandom order.

Neuronal recordings and pharmacology. Carbachol was iontophoreti-
cally administered using custom-made seven-barreled glass ionto-
phoretic electrodes, which were modified from the design of Millar and
Williams (1989) and fabricated as described previously (Major et al.,
2015). Briefly, a 50 �m diameter tungsten wire (Midwest Tungsten Ser-
vice), which served as the recording electrode, was electrochemically
etched and inserted into the central capillary of a seven-barreled glass
pipette (Friedrich and Dimmock). The glass was then pulled over the
wire resulting in a multi-barrelled electrode with a fine tip (PMP107L-e
Multipipette Puller, MicroData Instrument). Typical recording electrode
impedances ranged from 0.5 to 1 M� (measured at 1 kHz). Carbachol
(carbamoylcholine chloride; Tocris Bioscience; 100 mM in pH 3 deion-
ized water) was top-filled into the peripheral capillaries of the multi-
barrelled glass and pushed pneumatically to the tip of the iontophoretic
electrode. Drugs were ejected using a Neuro Phore BH-2 iontophoretic
ejection system (Harvard Apparatus). Constant ejection currents (5–100
nA, median: 30 nA) were manually set and a retention current of �8 nA
was used to prevent leakage of drug from the barrel when ejection cur-
rents were not applied. Current balancing was not used as drug ejection
with such low current strengths typically does not stimulate neurons or
create electrophysiological noise with the electrode design used here
(Vijayraghavan et al., 2007). Previous iontophoretic studies have shown
there is no effect of pH of the drug solution on neuronal discharge rate
(Disney et al., 2007; Vijayraghavan et al., 2007). Carbachol was used as a
proxy for ACh due to its greater resistance to acetylcholinesterase-
mediated breakdown (Rosenberry et al., 2008), which we hypothesized
would result in more reliable stimulation of cholinergic receptors. Car-
bachol has been shown to have slightly larger magnitudes and duration of
effect than ACh in cat (Crawford et al., 1966) and rat cortex (Bassant et
al., 1990). The electrode was mounted on a hydraulic micromanipulator
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(MO-95, Narishige Group) and lowered into DLPFC (Fig. 1B) through a
23-gauge dura-penetrating stainless steel guide tube.

Neuronal signals were amplified, digitized, and filtered (300 Hz– 6
kHz, four-pole Bessel) with an OmniPlex Neural Data Acquisition Sys-
tem (Plexon). Neuron waveforms were sorted offline in principal com-
ponent space (Offline Sorter, Plexon) and analyzed offline (MATLAB,
MathWorks). Spike density functions were created by convolving spike
trains with a 50 ms Gaussian activation function (Richmond et al., 1987).

We collected data from blocks of trials with no drug application (con-
trol condition), followed by drug delivery (drug condition). For some
sessions, an additional recovery condition was collected after cessation of
drug application. Conditions typically lasted longer than 10 min (Fig.
1C) and neurons with �8 correct trials for each rule (prosaccade/anti-
saccade) and saccade direction (leftward/rightward) combination in any

of the conditions were discarded from further
analysis (n � 5). Behavioral effects are not usu-
ally expected with microiontophoretic drug
application because the small amount of drug
released does not spread to a large enough vol-
ume of cortical neuropil to affect behavior, es-
pecially in areas of broad specialization like
PFC (Vijayraghavan et al., 2007).

Data analysis. Discharge rate analyses were
performed in several epochs over the course of
the trial: “entire” trial epoch (1500 ms before to
1000 ms after stimulus onset), fixation epoch
(0 –200 ms after fixation onset), cue epoch (0 –
200 ms after colored cue onset), and delay ep-
och (600 ms before to 70 ms after peripheral
stimulus onset). Based on prior studies, this
delay epoch is when PFC neurons are found to
display maximal rule discriminability (Ever-
ling and DeSouza, 2005; Bongard and Nieder,
2010). We also analyzed the stimulus epoch
(0 – 400 ms after peripheral stimulus onset),
post-saccade epoch (0 – 400 ms after saccade
onset), and intertrial interval (0 –1000 ms after
reward onset). We excluded neurons with very
low discharge rates (�1 spike/s in both control
and drug conditions) from the analysis as the
low firing rates precluded reliable analysis of
physiological effects of the drug. The task-
selectivity profile of each included neuron was
determined by performing an ANOVA on the
trial discharge rates in the cue and delay epochs
with two factors: drug condition and rule.
Neurons with a significant main effect of rule
or an interaction of rule and drug ( p � 0.05)
were classified as rule-selective neurons (“rule
neurons”). Magnitude of rule selectivity was
further quantified using area under the receiver
operating characteristic curve (AUROC; 1000
steps; Green and Swets, 1966). AUROCs were
computed from the mean discharge rates dur-
ing the delay epoch for prosaccades and anti-
saccades. AUROC values range from 0 to 1. By
convention, neurons showing higher activity
(preference) for the prosaccade rule were
deemed to possess AUROC values �0.5. The
AUROC values for neurons with greater activ-
ity for the antisaccade rule would thus be �0.5
and were subtracted from 1, therefore reported
AUROC values were for preferred versus non-
preferred rule. An AUROC of 1 signified a
completely selective neuron with nonoverlap-
ping distributions of preferred and nonpre-
ferred rule discharge rates. An AUROC of 0.5
signified a lack of rule discriminability, wherein
preferred and nonpreferred rule discharge rate
distributions completely overlapped. Analysis

of task selectivity was also performed on the stimulus epoch with three-
way ANOVA (factors: drug condition, rule, and peripheral stimulus di-
rection), where neurons with a significant main effect of stimulus
direction or a significant interaction between stimulus direction and
condition were classified as “visual neurons”. These neurons significantly
discriminated between peripheral stimuli on the left versus right side of
the screen, regardless of trial rule. Similarly, discharge rates in the post-
saccade epoch were explored with three-way ANOVA (factors: drug con-
dition, rule, and saccade direction) to classify “saccade neurons”, with a
significant main effect of saccade direction or significant interaction be-
tween saccade direction and drug condition. Activity of these neurons
discriminated between leftward and rightward saccade directions. Selec-
tivities of visual and saccade neurons were also quantified with AUROC
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Figure 1. Experimental paradigm and single neuron recording with concurrent iontophoresis. A, After central fixation, a green
or red cue was flashed, signifying a prosaccade or antisaccade trial, respectively. This task rule was maintained over an 800 –1300
ms delay and a short gap. Monkeys then performed a saccade toward (prosaccade) or away from (antisaccade) the peripheral
stimulus to receive liquid reward. Dashed circles represent gaze of the animal and white arrows represent saccade direction. ITI,
Intertrial interval. B, Single neuron extracellular recordings were performed in the right dorsolateral prefrontal cortices of two
rhesus macaques. Custom-made glass iontophoretic electrodes were used to eject general cholinergic receptor agonist carbachol
onto neurons. Beige area represents recording locus. AC, Arcuate sulcus; PS, principal sulcus. C, Effect of carbachol on discharge rate
over experiment time course. Left, Discharge rate of an example neuron is shown over the course of the recording. This neuron was
inhibited during application of carbachol (shaded gray). Right, Carbachol application excited neuronal discharge rate of a different
example neuron. Discharge rates were derived from 1 s bins and smoothed with a 200 s width.
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between the contralateral and ipsilateral stimulus directions or saccade
directions, respectively. AUROC data are reported for the preferred ver-
sus nonpreferred direction. Since a change in AUROC can be explained
by changes in either the mean discharge rates or trial-to-trial discharge
rate variances between trial types (e.g., prosaccade vs antisaccade trials),
neuronal reliability was measured with Fano factor: trialwise discharge
rate variance divided by the mean. Fano factors for preferred and non-
preferred rule trails were determined separately then averaged together,
as these two trials types intrinsically vary between each other in rule-
selective neurons.

To compare discharge rate changes across task-selective neurons,
mean discharge rates for preferred and nonpreferred trial types in the
control and drug conditions were normalized as follows:

xnorm �
xt � xmin

xmax � xmin
.

The preferred and nonpreferred trial type would be the preferred rule
and nonpreferred rule in the case of rule selectivity, and would be pre-
ferred and nonpreferred saccade direction in the case of saccade direction
selectivity. xt is the mean discharge rate for a given trial type in control or
drug (e.g., activity in control preferred rule trials); xmin and xmax are the
minimum and maximum discharge rates among the four values: control
preferred, control nonpreferred, drug condition preferred, and drug
condition nonpreferred mean discharge rate; and xnorm is the normalized
mean discharge rate for that given trial type (e.g., preferred rule trials in
control condition). Relative contributions of changes in mean and vari-
ability of discharge rate on changes in neuronal selectivity were estimated
for the population of rule-selective neurons with the following multiple
linear regression model:

�AUROC � � � �1�FRpref � �2�FRnonpref � �3�Varpref

� �4�Varnonpref � �.

Here, �FRpref represents the carbachol-induced change in normalized
discharge rate for the preferred rule between the control and carbachol
conditions. � coefficients represent the slope between the respective pre-
dictor and change in AUROC when all other predictors are held constant.

We also performed an analysis of action potential waveforms to clas-
sify neuronal types (“broad-spiking” putative pyramidal neurons and
“narrow-spiking” putative nonpyramidal neurons), using methodology
derived from previous studies (Mountcastle et al., 1969; Mitchell et al.,
2007; Johnston et al., 2009). Action potential waveforms were extracted
from the delay epoch during the control condition at a temporal
resolution of 25 �s (40 kHz sampling frequency) and increased to 1 �s
resolution with spline interpolation. After aligning to voltage trough and
averaging all waveforms, duration from waveform trough (negative de-
flection) to peak (positive deflection) was measured. Neurons that did
not show the typical shape of a downward trough, followed by a positive
peak in voltage, were removed from further waveform analysis (n � 15;
Jacob et al., 2013). A neuron was defined as a broad-spiking neuron
(putative pyramidal neuron) if trough to peak duration was �270 �s
(Johnston et al., 2009; Ma et al., 2015) and defined as a narrow-spiking
neuron (putative nonpyramidal neuron) if trough to peak duration was
�270 �s.

Statistical analysis. Wilcoxon rank sum test was used for determining
significance of changes in discharge rate among individual neurons. Sig-
nificance of changes in population discharge rate, Fano factor, and selec-
tivity (AUROC) were determined using the Wilcoxon signed rank test.
Fisher’s exact test was used to determine whether excitability or suppres-
sion of discharge rate of task-selective neurons was contingent on trial
preference (e.g., preference for prosaccades or antisaccades, or ipsilateral
or contralateral saccade directions). To determine unimodality of the
distribution of trough to peak durations of narrow- and broad-spiking
neurons, we performed Hartigan’s Dip Test (Hartigan and Hartigan,
1985).

Results
Extracellular recordings and microiontophoretic carbachol ap-
plication were performed in 100 DLPFC neurons. After exclusion

of neurons due to cutoff criteria (see Materials and Methods) 83
neurons (50 from Monkey T, 33 from Monkey O) over the course
of 79 recording sessions remained for further analysis (37 from
Monkey T, 42 from Monkey O). Throughout control and drug
conditions, monkeys performed the prosaccade and antisaccade
task (described in Materials and Methods). Recovery from drug
effects was tested in 28 recording sessions. Although minute
decreases in performance were observed for both prosaccade
(correct performance; mean 	 SEM; control: 95.1 	 0.01%, car-
bachol: 93.4 	 0.01%) and antisaccade trials (control: 90.7 	
0.02%, carbachol: 88.0 	 0.02%), this declining trend continued
into the recovery condition (recovery prosaccade: 92.7 	 0.01%,
recovery antisaccade: 86.4 	 0.02%), and therefore was more
likely a consequence of non-drug-related factors, such as waning
motivation over the course of the experiment. Similarly, reaction
times were longer in the carbachol condition (control prosac-
cade: 138 	 1 ms, carbachol prosaccade: 142 	 1 ms; control
antisaccade: 192 	 3 ms, carbachol antisaccade: 194 	 3 ms), but
continued to increase in recovery conditions (recovery prosac-
cade: 144 	 1 ms, recovery antisaccade: 196 	 3 ms).

Effect of carbachol on discharge rates
We examined the effects of microiontophoretic application of
carbachol at various current doses on discharge rates of 83 pre-
frontal neurons. We found that carbachol had heterogeneous
effects on population activity. Figure 2A shows the mean dis-
charge rate of each neuron in control (abscissa) and after drug
application (ordinate). Carbachol application did not have a sig-
nificant overall effect on population neuronal activity (p � 0.212,
Wilcoxon signed rank test; median change in discharge rate of

0.4 spikes/s), although individual neurons were excited or sup-
pressed. Of the 83 neurons, discharge rates of 41 neurons (49%)
were significantly increased (entire epoch, p � 0.05; Wilcoxon
rank sum test), 32 neurons (39%) were inhibited, and discharge
rates of 10 neurons (12%) were unaffected after carbachol appli-
cation (Fig. 2A). Further, change in population discharge rate was
nonsignificant in every task epoch (fixation epoch: p � 0.241,
cue: p � 0.124, delay: p � 0.238, stimulus: p � 0.256, post-
saccade: p � 0.364, intertrial interval: p � 0.316; Wilcoxon signed
rank test), indicating that the drug did not differentially affect
discharge rate during a specific component of the task.

To further explore the heterogeneous effects of carbachol ap-
plication on prefrontal neuronal activity, we examined 23 neu-
rons on which successive doses of carbachol were applied, and
wherein drug application resulted in a significant change (in-
crease or decrease) in the discharge rate (entire epoch, p � 0.05;
Wilcoxon rank sum test). Figure 2B demonstrates the effects of
progressively increasing doses of carbachol on two of these
DLPFC neurons that were excited and suppressed by cholinergic
stimulation (top and bottom, respectively). Increasing doses of
carbachol application on the neuron depicted in the top progres-
sively and significantly increased discharge rate (control: 5.3 	
0.1 spikes/s; highest dose of carbachol: 14.2 	 0.3 spikes/s). After
cessation of drug application, there was significant partial recov-
ery from carbachol-induced excitation, with neuronal discharge
rate declining to 12.2 	 0.2 spikes/s. However, carbachol appli-
cation did not have an excitatory effect on all recorded neurons.
This trend is illustrated by the neuron depicted in Figure 2B
(bottom). This neuron was gradually suppressed after successive
doses of carbachol (control: 9.1 	 0.2 spikes/s; highest dose of
carbachol: 3.2 	 0.1 spikes/s), followed by partial recovery of
discharge rate (control: 8.0 	 0.2 spikes/s).
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We further analyzed effects of dose on discharge rates in the 23
aforementioned neurons with multiple carbachol dose applica-
tions (13 excited, 10 inhibited) by grouping doses into “low” and
“high”, based on a median split of the applied dose range (median
carbachol dose � 30 nA). Figure 2C shows the effects of low and
high doses of carbachol on neurons that were excited (top) and
inhibited (bottom) by drug application. Discharge rates of carba-
chol-excited neurons increased monotonically with carbachol dose.
Low-dose application caused significant increase in excitability
compared with control, and high-dose application resulted in
further increases to neuronal discharge rate (Fig. 2C, top; entire
epoch). Carbachol-suppressed neurons, however, did not show
monotonicity of suppression with drug dose (Fig. 2C, bottom).
High-dose carbachol application (�30 nA) could not further
suppress neuronal discharge rates. It is noteworthy that this was
not due to a floor effect, as neurons still had substantial activity
after high-dose application.

We tested 27 neurons (15 excited, 12 inhibited) for recovery
from physiological effects after cessation of drug application.
Figure 2D shows these data for neurons that were significantly
excited (top) or inhibited (bottom) by carbachol application.
Neurons that were excited by carbachol had reduction in dis-
charge rates after drug cessation, though not reaching signifi-
cance, thus indicating partial recovery from drug effects (entire
epoch, p � 0.169; Wilcoxon signed rank test). However, in neu-
rons that were significantly suppressed, recoveries did not occur
during our recording sessions of �10 min (p � 1). Thus, differ-
ential effects of carbachol on neuronal excitability were accom-
panied by different post-drug physiological effects.

Effect of carbachol on task-selective neurons
Next, we examined the effects of cholinergic stimulation with
carbachol on task selectivity of neurons in the prosaccade and
antisaccade task. Our task involved retaining the specified rule
in working memory, and we explored the effects of carbachol on
working memory representation of the rule in prefrontal neuro-
nal activity (Everling and DeSouza, 2005). We identified task
selectivity in prefrontal neurons using a two-way ANOVA with
factors: rule (prosaccade or antisaccade trial) and drug condition
(control or carbachol), using discharge rates during the delay
epoch of the task. Based on the ANOVA, we classified 24 neurons
as possessing rule selectivity (rule neurons; significant main effect
of rule or interaction of rule and drug). We assessed the magni-
tude of rule selectivity in this population with the AUROC metric
(see Materials and Methods). Figure 3A displays an example neu-
ron that had a greater delay epoch discharge rate in the control
condition during antisaccade trials (17.4 	 1.4 spikes/s) com-
pared with prosaccade trials (9.0 	 1.3 spikes/s). Upon carbachol
application, the baseline activity of this neuron was excited
(fixation epoch control vs carbachol discharge rate: p � 0.0001;
Wilcoxon rank sum test) and selectivity for the task rule was
decreased (carbachol antisaccade: 16.3 	 0.8 spikes/s, carbachol
prosaccade: 11.5 	 0.8 spikes/s; control AUROC: 0.74, carbachol
AUROC: 0.67). Another prefrontal neuron (Fig. 3B) displayed a
preference for antisaccades during the control condition delay
epoch (antisaccade: 11.2 	 0.4 spikes/s, prosaccade: 8.3 	 0.3
spikes/s). Similar to the first example, this neuron was excited in
the fixation (p � 0.0001) and delay epochs (control: 9.8 	 0.2
spikes/s, carbachol: 12.5 	 0.1 spikes/s, p � 0.0001) after
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Figure 2. Effects of carbachol on prefrontal neuron discharge rate. A, Discharge rates during control (abscissa) and carbachol application (ordinate) are plotted (filled circles: neurons significantly
excited or inhibited by carbachol application; open circles: no significant effect of carbachol application; entire epoch, p � 0.05, Wilcoxon rank sum test). Dashed equality line is shown. Median
change in discharge rate was 
0.4 spikes/s, although discharge rates were not significantly affected by carbachol as a population ( p � 0.212, Wilcoxon signed rank test). Inset, Pie chart with
proportions of neurons that were significantly excited (red; n�41, 49%), inhibited (blue; n�32, 39%), or not affected (white; n�10, 12%) by carbachol application. Discharge rates are calculated
from 1500 ms before stimulus onset to 1000 ms after stimulus onset. B, Bar charts depicting the mean trial discharge rates for two example neurons. Top, Increasing dose of carbachol progressively
increased discharge rate of this neuron. Cessation of drug ejection resulted in a significant, partial recovery of discharge rate. All changes between sequential doses or recovery were significant.
Bottom, In another neuron, increasing doses of carbachol resulted in gradually stronger inhibition of neuronal excitability. Partial recovery was observed. Statistical significances were determined
by Wilcoxon ranked sum test with Holm-Bonferroni correction for multiple comparisons. C, Population effects of carbachol dose are shown. Mean discharge rates during control, low (	30 nA), and
high (�30 nA) doses of carbachol (dose ranges based on median split of all applied doses) are shown for neurons that were significantly excited (top) or inhibited (bottom) by carbachol. In excited
neurons, higher doses resulted in a further significant increase to discharge rate. Among suppressed neurons, higher doses of carbachol did not result in further suppression of discharge rate.
Significance determined by Wilcoxon signed rank test with Holm–Bonferroni correction for multiple comparisons. D, Recovery of population discharge rates after cessation of carbachol application.
Top, Neurons significantly excited by carbachol ( p � 0.05, Wilcoxon rank sum test) that were tested for recovery exhibited partial, albeit nonsignificant ( p � 0.169) recovery after cessation of
carbachol application. Bottom, Suppressed neurons did not recover discharge rates during our observed recovery condition. Error bars indicate SEM. In all panels, asterisks indicate significant ( p �
0.05) comparisons with Holm–Bonferroni correction for multiple comparisons, where applicable.
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Figure 3. Effect of carbachol application on two representative rule-selective prefrontal neurons. A, Rasters (top; each row of dots is from a single trial) and spike density functions (bottom;
mean 	 SEM) are shown for a neuron with preferentially higher discharge rate during antisaccade trials (red) compared with prosaccade trials (blue) during the delay epoch, before (left) and after
(right) iontophoretic application of carbachol. Delay epoch is shaded in gray (see Materials and Methods). Qualitative schematic of main trial events is shown above. After carbachol application, this rule neuron
increases delay epoch discharge rate and preference for antisaccade trials is reduced. Rasters and spike density functions are aligned to onset of peripheral stimulus. B, A neuron with selectivity for antisaccades
during the delay epoch is shown. All colors and conventions like A. After carbachol application, discharge rate is increased, especially during prosaccade trials, and rule preference is diminished.

1142 • J. Neurosci., January 31, 2018 • 38(5):1137–1150 Major et al. • Carbachol Reduces Rule Selectivity in Rhesus PFC



Control Delay Rule AUROC

C
ar

ba
ch

ol
 D

el
ay

 R
ul

e 
A

U
R

O
C

Time from Stimulus Onset (ms) Time from Stimulus Onset (ms)

N
or

m
al

iz
ed

 D
is

ch
ar

ge
 R

at
e

N
or

m
al

iz
ed

 D
is

ch
ar

ge
 R

at
e

A

B C

-1000 -500 0 500 1000

0.2

0.4

0.6

0.8

-1000 -500 0 500 1000

0.2

0.4

0.6

0.8

0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

n = 24

0.5

0.6

0.7

0.8

Control Low Dose High Dose

D
el

ay
 R

ul
e 

A
U

R
O

C

n = 7

*

n = 24
p = 0.0397

Control Carbachol

Preferred
Nonpreferred

D

-0.8 -0.4 0 0.4 0.8

-0.8

-0.4

0

0.4

0.8 n = 24

Change in Normalized Preferred
Rule Discharge Rate

C
ha

ng
e 

in
 N

or
m

al
iz

ed
 N

on
pr

ef
er

re
d

R
ul

e 
D

is
ch

ar
ge

 R
at

e

Figure 4. Effects of carbachol on population rule selectivity. A, Mean normalized spike density functions of preferred (blue) and nonpreferred (green) rule trials for 24 DLPFC rule-selective neurons
during control (left) and carbachol conditions (right) are shown. Neurons were identified as rule-selective by ANOVA (see Materials and Methods). Overall difference between discharge rates for
preferred and nonpreferred rules diminished. B, Rule selectivity (measured by AUROC) is shown for each rule neuron during control (abscissa) and carbachol application (ordinate). Drug application
significantly decreased selectivity of rule neurons, as quantified by AUROC ( p � 0.0397, Wilcoxon signed rank test). Prosaccade-preferring and antisaccade-preferring rule neurons are represented
in blue and red, respectively. Dashed equality line is shown. C, Change in normalized discharge rate during preferred rule trials for 24 rule neurons (abscissa) is compared with change in normalized
discharge rate of nonpreferred rule trials (ordinate). Based on k-means cluster analysis (k�2), two clusters of neurons were identified (labeled pink and orange; filled circles: neurons with decreased
AUROC; open circles: neurons with increased AUROC) with centroids shown as black crosshairs. D, Dose-dependent effects on rule selectivity by carbachol. Mean delay epoch rule AUROCs are shown
for seven rule neurons that were subject to both low (	30 nA) and high doses (�30 nA) of carbachol (split by median of applied dose range). High doses of carbachol resulted in significant
diminishment of delay epoch rule selectivity in this subset of rule neurons whereas low-dose carbachol did not. Significance determined by Wilcoxon signed rank test ( p � 0.05; asterisk indicates
significant comparison) with Holm–Bonferroni correction for multiple comparisons.
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carbachol application and rule selectivity was diminished (con-
trol AUROC: 0.76, carbachol AUROC: 0.59).

For the 24 rule neurons, we examined changes in population
rule selectivity due to carbachol application (15 from Monkey T,
9 from Monkey O; 14 prosaccade-preferring, 10 antisaccade-
preferring). Figure 4A shows the population normalized spike
density functions (mean 	 SEM) of rule neurons before (left;
blue: preferred rule, green: nonpreferred rule) and after carba-
chol application (right). Change in rule selectivity was quantified
using AUROC. Figure 4B shows the AUROCs for each rule neu-
ron during control (abscissa) and carbachol conditions (ordi-
nate). Although drug effects on selectivity of individual neurons
varied, carbachol significantly decreased population rule selectivity
(p � 0.0397, Wilcoxon signed rank test; blue: prosaccade-rule-
preferring, red: antisaccade-rule-preferring). We also examined
Fano factor as a measure of trial-to-trial variability of neuronal
spike count. Fano factor was not significantly affected during
application of carbachol (control: 2.7 	 0.4, carbachol: 2.4 	 0.3,
p � 0.0675). As reduced rule AUROC can be due to either re-
duced difference in prosaccade versus antisaccade discharge rates
or increased neuronal variability, we explored the relative contri-
butions of changes in neuronal discharge rate and variability us-
ing multiple linear regression with four predictors: change in
normalized preferred rule discharge rate, change in normalized
nonpreferred rule discharge rate, change in preferred rule vari-
ance, and change in nonpreferred rule variance (see Materials
and Methods). This multiple regression model was significant
(F(4,19) � 25.56, p � 0.0001) with R 2 � 0.843. As seen in Table 1,
carbachol-induced change in normalized preferred and nonpre-
ferred rule discharge rates and change in preferred rule variance were
significant predictors of change in AUROC. Of these three factors,
change in preferred and nonpreferred rule discharge rate contrib-
uted the most to altered selectivity, as the magnitude of their � coef-
ficients were much larger than that of preferred rule variance.

We further explored the relative changes in preferred and
nonpreferred discharge rate in Figure 4C. Change in normalized
preferred discharge rate is plotted (abscissa) against change in
normalized nonpreferred discharge rate (ordinate). Neurons in
which carbachol application reduced or increased the AUROC
are labeled with filled and unfilled circles, respectively. Because
change in AUROC is largely determined by the change in pre-
ferred and nonpreferred discharge rate, neurons above the equal-
ity line (dark gray dashed line) generally experienced decreased
AUROC and neurons below the line increased AUROC. We ob-
served two distinct clusters of neurons (k-means clustering, k �
2; centroids shown as crosshairs), one of suppressed neurons
(n � 10, 42%; labeled in purple), and one of excited neurons (n �
14, 58%; orange). Carbachol reduced selectivity of almost all sup-
pressed neurons, although the change in selectivity did not reach
significance (n � 10, p � 0.0840). This decreased selectivity was
due to greater inhibition during preferred rule trails compared

with nonpreferred rule trials. Carbachol had more equivocal ef-
fects on the AUROC of excited rule neurons (n � 14, p � 0.296).
Some neurons decreased selectivity due to relatively greater exci-
tation of nonpreferred rule (above equality line), and others in-
creased selectivity due to greater excitation of preferred rule.
Thus, carbachol both excited and suppressed discharge rate of
rule neurons, often resulting in decreased selectivity, which can
be attributed to either a relatively greater suppression of activity
for preferred rules or a relatively greater increase in nonpreferred
rule discharge rate.

Selectivity of prosaccade-preferring rule neurons (Fig. 4B,
blue) were not significantly affected by carbachol (n � 14, p �
0.463), but selectivity of antisaccade-preferring rule neurons
(red) was significantly decreased (n � 10, p � 0.0371). The pref-
erence of rule neurons for prosaccade or antisaccade did not have
any bearing on whether rule neurons were excited or inhibited by
carbachol (p � 0.421, Fisher’s exact test).

In some rule neurons (n � 7), multiple doses of carbachol
were applied (Fig. 4C). In these rule neurons, low doses (�30 nA)
did not significantly change AUROC values (p � 0.688), but high
doses (�30 nA) resulted in significant diminishment of rule se-
lectivity (p � 0.0156). Thus, disruption of rule selectivity in the
delay period by cholinergic stimulation is dose-dependent.

Unlike the disruptive effects on rule representation in the
delay epoch, population rule selectivities were unaffected in
the cue epoch (n � 11, p � 0.0830, Wilcoxon signed rank test; 4
prosaccade-preferring, 7 antisaccade-preferring), stimulus epoch
(n � 25, p � 0.757; 11 prosaccade-preferring, 14 antisaccade-
preferring), and post-saccade epoch (n � 24, p � 0.265; 6 pro-
saccade-preferring, 18 antisaccade-preferring).

We examined the effects of cholinergic stimulation on neu-
rons with selectivity for other attributes observed in the task. We
identified 19 prefrontal neurons that were selective for peripheral
stimulus location during the stimulus epoch (8 contralateral-
stimulus-preferring, 11 ipsilateral-stimulus-preferring). Ad-
ditionally, 40 neurons were selective for the direction of saccade
in the post-saccade epoch (32 contralateral-saccade-preferring, 8
ipsilateral-saccade-preferring). Carbachol application had equiv-
ocal effects on population selectivity of both peripheral stimulus
direction (control vs carbachol stimulus direction AUROC: p �
0.968, Wilcoxon signed rank test) and for the saccade direction
(control vs carbachol saccade direction AUROC: p � 0.122).

Effects of carbachol on putative pyramidal and
nonpyramidal neurons
Past studies have reported that drug-induced modulation of
discharge characteristics, signal-to-noise ratio, and coding of task
attributes can be different between cortical neuronal classes (Mount-
castle et al., 1969; Jacob et al., 2013; Ma et al., 2015; Thiele et al.,
2016). To ascertain whether cholinergic stimulation had differential
effects on putative pyramidal neurons and interneurons defined by
electrophysiological characteristics, we performed a similar anal-
ysis, whereby we classified prefrontal neurons (n � 68; see Mate-
rials and Methods) as broad-spiking (putative pyramidal
neurons) or narrow-spiking (putative nonpyramidal neurons;
see Materials and Methods; Johnston et al., 2009). The distribu-
tion of waveform trough to peak durations was not unimodal
(Fig. 5A; p � 0.00910, Hartigans’ Dip Test; Hartigan and Harti-
gan, 1985). Based on a previous study in our laboratory, neurons
with a waveform trough to peak duration �270 �s were classified
as narrow-spiking and neurons with a trough to peak duration
�270 �s were classified as broad-spiking (Fig. 5B; green: mean
narrow-spiking waveforms, pink: broad-spiking waveforms),

Table 1. Summary of multiple linear regression analysis for rule neurons

Predictor of �AUROC � Coefficient p

�FRpref 0.231 1.04e-7
�FRnonpref �0.193 9.32e-6
�Varpref �0.0494 0.0162
�Varnonpref 0.000602 0.983

� coefficients and p values from the multiple regression analysis (see Materials and Methods) are shown to asses the
impact of four predictors on change in rule AUROC: �FRpref, change in mean normalized discharge rate during
preferred rule trials;�FRnonpref, change in mean normalized discharge rate during nonpreferred rule trials;�Varpref,
change in normalized variance during preferred rule trials; �Varnonpref, change in normalized variance during
nonpreferred rule trials.
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yielding 21 narrow waveform neurons (31%) and 47 broad wave-
form neurons (69%).

Discharge rates of narrow-spiking neurons were not signifi-
cantly affected by carbachol application at the population level
(Fig. 5C; entire epoch, p � 0.876, Wilcoxon signed rank test).
Population discharge rate of narrow-spiking neurons was not signif-
icantly excited or suppressed in any task epoch (fixation epoch: p �
0.639, cue: p � 0.664, delay: p � 0.931, stimulus: p � 0.986, post-
saccade: p � 0.848, intertrial interval: p � 0.903). In addition to the
lack of significant effect on discharge rates, carbachol also did not
affect the selectivity of task-selective narrow-spiking neurons for any
task attributes, including rule selectivity during the delay and cue
epochs, stimulus direction selectivity in the stimulus epoch, and sac-
cade direction selectivity in the post-saccade epoch.

In contrast, we found that broad-spiking neurons were signif-
icantly excited by carbachol application at the population level

(Fig. 5D; p � 0.0444), notwithstanding some individual neurons
that were suppressed. Broad-spiking neurons were also signifi-
cantly excited in the fixation, cue, delay, and stimulus epochs
(p � 0.0235, p � 0.0163, p � 0.0490, p � 0.0455, respectively),
but not in the post-saccade (p � 0.0865) or intertrial interval
epochs (p � 0.0904).

Carbachol did not significantly affect selectivity of broad-spiking
rule-selective neurons in the cue or delay epochs, or broad-spiking
visual neurons in the stimulus epoch. However, although we found
that saccade direction selectivity in the population of 40 saccade
neurons was not significantly changed by carbachol, we found
that the subset of this population comprised of broad-spiking
neurons did show changes in population saccade selectivity. Fig-
ure 6A shows a prefrontal neuron with higher discharge rate for
contralateral saccades (2.9 	 0.4 spikes/s) than for ipsilateral
saccades (1.8 	 0.3 spikes/s) during the post-saccade epoch, re-
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Figure 5. Effects of carbachol on putative pyramidal and nonpyramidal neurons. Waveforms were extracted and trough to peak duration was measured in 68 neurons (see Materials and
Methods). A, Histogram of trough to peak durations. Trough to peak duration distribution was not unimodal as determined by Hartigans’ Dip Test ( p � 0.00910). Similar to previous reports, a
threshold of 270 �s (dashed line) was used to classify neuronal waveforms as narrow-spiking (green, putative nonpyramidal neurons) or broad-spiking (pink, putative pyramidal neurons). 30 �s
bin width. B, Normalized waveforms aligned to initial trough (negative inflection) are shown with narrow-spiking (green) or broad-spiking (pink) label. C, Discharge rates among narrow-spiking
neurons were not significantly affected by carbachol (entire epoch, p � 0.876, Wilcoxon signed rank test). Shown as filled circles, discharge rates of 8 neurons (38%) were significantly excited ( p �
0.05, Wilcoxon rank sum test) and 10 (48%) were significantly suppressed. D, Broad-spiking neurons were significantly excited by carbachol ( p �0.0444, Wilcoxon signed rank test). Discharge rates
of 27 neurons (57%) were significantly excited ( p � 0.05, Wilcoxon rank sum test) and 16 (34%) were significantly suppressed.
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gardless of trial rule. Although the base-
line activity of this neuron was not
significantly excited (fixation epoch con-
trol vs carbachol, p � 0.06, Wilcoxon rank
sum test) this neuron was excited in the
post-saccade epoch (control: 2.4 	 0.3
spikes/s, carbachol: 3.8 	 0.2 spikes/s, p �
0.000415) and selectivity for saccade di-
rection was reduced (control AUROC:
0.61, carbachol AUROC: 0.53). Population
normalized spike density functions of
broad-spiking saccade neurons show this
augmentation of population discharge rates
(Fig. 6B). Analysis of saccade direction se-
lectivity by AUROC (Fig. 6C; red: con-
tralateral, n � 14; blue: ipsilateral, n � 4)
revealed that carbachol application re-
sulted in a small, but significant, decrease
in population selectivity (mean control
AUROC: 0.66 	 0.02, mean carbachol
AUROC: 0.62 	 0.01, p � 0.0429;
Wilcoxon signed rank test). We also
examined Fano factor as a measure of
trial-to-trial variability of neuronal spike
count. Fano factor was not significantly
affected during application of carbachol
(control: 1.5 	 0.2, carbachol: 1.6 	 0.2,
p � 0.286). We explored the relative con-
tributions of changes in neuronal dis-
charge rate and variability in decreasing
selectivity in broad-spiking saccade neu-
rons using a multiple linear regression
model similar to that used for rule neu-
rons. This multiple regression model was
significant (F(4,13) � 14.43, p � 0.000104)
with R 2 � 0.816. Carbachol-induced
change in normalized preferred and non-
preferred saccade direction discharge
rates and change in preferred rule vari-
ance were significant predictors of change
in AUROC (Table 2). Change in preferred
and nonpreferred direction discharge rate
contributed more to altered selectivity
than change in preferred direction vari-
ance, as measured by their � coefficients.
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Figure 6. Effect of carbachol on saccade direction selectivity of broad-spiking, putative pyramidal neurons. A, Rasters (above)
and spike density functions (bottom) aligned on saccade onset are shown for a neuron with preferentially higher discharge rate
during contralateral saccade trials (green) compared with ipsilateral saccade trials (purple) during the post-saccade epoch is shown
before (left) and after (right) iontophoretic application of carbachol. The post-saccade epoch is shaded in gray (see Materials and
Methods). Qualitative schematic of main trial events is shown above. After carbachol application, this saccade neuron increased
discharge rate in the post-saccade epoch, with a greater increase for ipsilateral trials, thereby reducing saccade direction selectivity.
B, Mean normalized spike-density functions of preferred (blue) and nonpreferred (green) saccade trials for 18 DLPFC saccade-

4

direction-selective neurons during control (left) and carbachol
conditions (right) are shown. C, Carbachol significantly de-
creased selectivity of broad-spiking saccade neurons, as quan-
tified by AUROC (abscissa: control AUROC values, ordinate:
drug AUROC values; n � 18, p � 0.0429, Wilcoxon signed
rank test). Ipsilateral-saccade-preferring and contralateral-
saccade-preferring neurons are represented in blue and red,
respectively. Dashed equality line is shown. D, Change in nor-
malized discharge rate during preferred saccade direction tri-
als of the 18 saccade neurons is compared with change in
normalized discharge rate during nonpreferred saccade direc-
tion trials. Based on k-means cluster analysis (k � 2), two
clusters of neurons are shown (pink and orange; filled circles:
neurons with decreased AUROC, open circles: neurons with in-
creased AUROC) with centroids shown as black crosshairs.
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We further explored the relative changes in preferred and non-
preferred discharge rate in Figure 6D. Neurons are labeled with
filled and unfilled circles, indicating carbachol condition AU-
ROC was less than or greater than control AUROC, respectively.
Because change in AUROC is largely determined by these two
variables, change in preferred and nonpreferred discharge rate,
neurons above the equality line (dark gray dashed line) often had
decreased AUROCs and neurons below the line, increased selec-
tivity. Similar to the overall subset of broad-spiking neurons,
saccade-direction-selective broad-spiking neurons were more of-
ten excited (n � 13, 72%; orange) by carbachol than suppressed
(n � 5, 28%; purple). Carbachol reduced selectivity of almost all
excited neurons (n � 13, p � 0.0479). There was no relationship
between whether a neuron was excited or suppressed by carba-
chol and whether it preferred ipsilateral or contralateral saccade
(p � 1, Fisher’s exact test).

Thus, carbachol-induced effects on saccade selectivity were
found in broad-spiking, putative pyramidal neurons, but not
in narrow-spiking, putative nonpyramidal neurons. Carbachol
mostly excited discharge rate of broad-spiking saccade neurons,
resulting in decreased selectivity, which can be attributed to rel-
atively greater increase in nonpreferred saccade direction dis-
charge rate.

Discussion
In this study we examined the effects of localized cholinergic
stimulation on primate DLPFC neurons engaged in a clinically
relevant oculomotor task, which involved using a rule main-
tained in working memory to produce the appropriate saccadic
responses to visual stimuli. Local carbachol application both
excited and suppressed DLPFC neurons. Surprisingly, we also
found carbachol disrupted neuronal rule representation in work-
ing memory, due to either suppression of preferred rule activity
or excitation of nonpreferred rule activity. Moreover, broad-
spiking putative pyramidal neurons were excited after cholin-
ergic agonist application, and postsaccadic directional selectivity
in these neurons was attenuated largely due to preferentially in-
creased activity for the nonpreferred saccade direction.

Effect of carbachol on neuronal discharge rate in DLPFC
We found that local cholinergic stimulation excited a greater
proportion of DLPFC neurons than those that were inhibited.
However, our observation of both facilitation and inhibition with
carbachol is consistent with previous iontophoretic applications
of ACh in macaque DLPFC (Inoue et al., 1983; Sawaguchi and
Matsumura, 1985), orbitofrontal (Aou et al., 1983), premotor
(Nelson et al., 1973), motor (Matsumura et al., 1990), and pri-
mary visual cortex (V1; Soma et al., 2012). Mixed effects of ACh
on neuronal activity have also been observed in marmoset V1
(Roberts et al., 2005; Zinke et al., 2006), cat V1 (Sato et al., 1987),

rat medial PFC (Pirch et al., 1992; Nagy et al., 2014), and in
guinea pig cortical slices (McCormick and Prince, 1985). Intrigu-
ingly, Sawaguchi and Matsumura (1985) found that ACh-excited
and ACh-inhibited DLPFC neurons were found in separate
layers.

We also found that carbachol increased activity in putative pyra-
midal neurons, while having equivocal effects in putative interneu-
rons. Heterogeneity in responses to carbachol on interneurons has
also been reported previously in rodent medial PFC (Pafundo et al.,
2013), hippocampal slices (Zheng et al., 2011), and insular cortical
slices (Yamamoto et al., 2010).

Effects of carbachol on task selectivity of DLPFC neurons
Systemic blockade of muscarinic receptors has detrimental ef-
fects on cognitive performance in a variety of tasks (Klinkenberg
and Blokland, 2010), including spatial working memory. In ma-
caque DLPFC, systemic injections of muscarinic antagonist sco-
polamine disrupted spatial working memory (Zhou et al., 2011),
whereas local iontophoretic application strongly attenuated se-
lectivity for all task attributes, including rule selectivity (Major et
al., 2015). We therefore hypothesized that stimulation of DLPFC
neuronal cholinergic receptors would augment the selectivity of
rule representation in working memory. Contrary to our predic-
tion, we found that carbachol reduced selectivity of rule neurons
and broad-spiking neurons with saccade direction selectivity. Se-
lectivity of rule neurons was reduced by two different mecha-
nisms: in carbachol-inhibited neurons, preferred rule activity was
suppressed more than nonpreferred rule activity, whereas in
carbachol-excited neurons, activity for the nonpreferred rule in-
creased more than preferred. Additionally, carbachol decreased
postsaccadic selectivity in putative pyramidal saccade-direction-
selective neurons, due to greater increase in nonpreferred saccade
direction activity.

Our results suggest that cholinergic stimulation can weaken
DLPFC task representations. Herrero et al. (2008) examined cho-
linergic modulation and attentional enhancement in macaque
V1. They found that lower dose ACh application increased neu-
ronal activity and enhanced attentional modulation, whereas at
higher doses, attentional modulation was unaffected or even dis-
rupted due to nonspecific increase in neuronal activity. Although
we did not find systematic enhancement in rule selectivity at lower
doses (Fig. 4D), disruption of rule at higher doses in carbachol-
excited neurons agree with Herrero et al. (2008), wherein ceiling
effects in increased excitability impaired task representation.
Similarly, Zinke et al. (2006) found that ACh iontophoresis
broadened orientation tuning of most ACh-excited neurons in
marmoset V1, possibly due to ceiling effects in optimal stimulus-
induced responses and increased activity to stimuli with nonpre-
ferred orientations. Regardless of stimulus orientation, Sato et al.
(1987) found that ACh increased stimulus-evoked responses in
cat V1, resulting in no systematic effects on orientation selectiv-
ity. These findings from several groups suggest that cholinergic
stimulation of cortical regions resulted in “inverted-U” dose-
dependency of physiological effects on cortical neurons, whereby
too little or too much ACh is detrimental to task performance and
neuronal selectivity. This phenomenon has also been demon-
strated in the dopaminergic system (Vijayraghavan et al., 2007).
Our carbachol results may reflect the rightmost portion of a cho-
linergic inverted-U, whereby excessive cholinergic stimulation is
disruptive to cognitive processing. Unlike the aforementioned
investigations, we did not observe population enhancement of
task-related selectivity during low-dose cholinergic stimulation.
However, we cannot discount that the relative potency of carba-

Table 2. Summary of multiple linear regression analysis for broad-spiking saccade
neurons

Predictor of �AUROC � Coefficient p

�FRpref 0.194 1.69e-5
�FRnonpref �0.144 0.00520
�Varpref �0.0599 0.00140
�Varnonpref 0.0195 0.414

� coefficients and p values from the multiple regression analysis (see Materials and Methods) are shown to asses the
impact of four predictors on change in saccade direction AUROC: �FRpref, change in mean normalized discharge rate
during preferred saccade direction trials; �FRnonpref, change in mean normalized discharge rate during nonpre-
ferred saccade direction trials; �Varpref, change in normalized variance during preferred saccade direction trials;
�Varnonpref, change in normalized variance during nonpreferred saccade direction trials.
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chol compared with ACh may have precluded the potential ob-
servation of improvements in neuronal task-selectivity. Future
experiments contrasting ACh and carbachol in the same para-
digm may clarify this possibility.

We found trial-to-trial variance was not significantly affected
after carbachol. Moreover, regression analysis suggested that ef-
fects on trial discharge rate variability had less impact on rule
selectivity relative to changes in activity. Similarly, Herrero et al.
(2008) found that ACh-induced changes in Fano factor did not
contribute to attentional modulation of macaque V1 neurons.

Recently, Liu et al. (2017) examined the effects of electrical
stimulation of the macaque nucleus basalis during performance
of a delayed match-to-sample task. Intriguingly, they found that
continuous stimulation was detrimental to task performance, but
intermittent stimulation resulted in significant improvement. Our
results showing reduced task selectivity during continuous ionto-
phoretic carbachol application in DLPFC suggest overstimulation of
the cholinergic system can be detrimental to cognitive performance.

Because carbachol is a general cholinergic agonist, both nico-
tinic and muscarinic receptors could potentially mediate these
effects on physiology and task selectivity. Previously it was re-
ported that muscarinic receptor antagonism blocked the effects
of ACh iontophoresis on orbitofrontal cortex (Aou et al., 1983)
and DLPFC (Inoue et al., 1983). We found that carbachol inhib-
ited a significant population of DLPFC neurons and disrupted
rule selectivity in some neurons with activity suppression. Be-
cause nicotinic actions in macaque DLPFC reported heretofore
were excitatory (Yang et al., 2013; Sun et al., 2017), the inhibitory
actions of carbachol may be muscarinic. Indeed, muscarinic re-
ceptors can directly suppress prefrontal neurons via activation of
G-protein coupled inward-rectifying potassium or SK channels
(Gulledge and Stuart, 2005). Although activation of nearby in-
terneurons is another potential mechanism to inhibit neuronal
activity (Disney and Aoki, 2008; Disney et al., 2014), we believe
this is less likely as we did not observe significant excitation in
narrow-spiking neurons, similar to previous reports (Gulledge et
al., 2007; Pafundo et al., 2013). Further supporting a role of mus-
carinic receptors, and akin to previous studies applying ACh to
DLPFC (Nelson et al., 1973; Sawaguchi and Matsumura, 1985),
we generally found that carbachol effects had longer latencies of
onset and partial recovery (seconds to minutes; Fig. 1C). This is
inconsistent with fast ionotropic actions mediated by nicotinic
receptors, since recoveries from nicotinic agonist stimulation are
rapid (Disney et al., 2007).

However, we cannot discount nicotinic involvement in carba-
chol’s actions reported here. Although nicotinic receptor stimu-
lation can augment working memory activity in PFC (Yang et al.,
2013; Sun et al., 2017) and can improve cognitive performance
(Terry et al., 2015), other studies have shown that low doses of
nicotinic antagonist enhanced attentional performance in ro-
dents (Hahn et al., 2011) and improved delayed match-to-sample
performance in monkeys (Terry et al., 1999). In the physiological
context, Yang et al. (2013) showed that low-dose iontophoretic
stimulation of �7 nicotinic receptors during oculomotor delayed
responses increased macaque DLPFC neuronal excitability and
improved memory period spatial tuning, whereas �7 receptor
antagonist reduced delay period activity and spatial tuning.
Moreover, high-dose �7 receptor stimulation eroded tuning due
to general activity increase for nonpreferred spatial directions,
similar to the effects on DLPFC task selectivity reported here. Sun
et al. (2017), in the same paradigm, found that nicotinic �4�2
receptor stimulation strengthened delay period activity for pre-
ferred spatial locations, while, interestingly, having no effect on

neurons with saccade direction selectivity (Wang et al., 2004).
Because we found that carbachol disrupted saccade direction
selectivity of putative pyramidal cells, this suggests muscarinic
receptors mediate carbachol’s effects on postsaccadic activity.
Notably, carbachol has a lower affinity and channel opening rate
constant for nicotinic receptors than ACh (Akk and Auerbach,
1999). Thus, both muscarinic and nicotinic mechanisms may
have contributed to carbachol’s actions. Future experiments ex-
amining these receptor families with subtype-specific com-
pounds will be necessary to delineate the signaling mechanisms
that mediate the actions of carbachol on PFC task-related activity
reported here.

The data reported here and previously (Major et al., 2015; Liu
et al., 2017), suggest that continuous cholinergic receptor stimu-
lation or blockade can be detrimental to prefrontal neuronal rep-
resentations in cognitive tasks. Endogenous ACh is transiently
released with high temporal precision (Parikh et al., 2007; Sarter
et al., 2009) and continuous stimulation of cholinergic receptors
may not be beneficial to cognitive performance (Bentley et al.,
2011). Subtype-selective cholinergic agonists are being actively
investigated to ameliorate cognitive dysfunction in neuropsychi-
atric disorders, including Alzheimer’s disease and schizophrenia
(Bodick et al., 1997; Wienrich et al., 2002; Shekhar et al., 2008).
Our findings offer a cautionary note and suggest that general cholin-
ergic stimulation using pharmacology may in fact be detrimental to
cognitive functions. Future work with more selective agonists may
shed light on which downstream signaling mechanisms are benefi-
cial in treatment of cognitive dysfunction.
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