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Alzheimer’s disease (AD), the most
prevalent form of dementia, affects 1 in
9 individuals �65 years old (Alzhei-
mer’s Association, 2016). Cognitive de-
cline is the most distinctive symptom of AD,
and it strongly correlates with synapse loss
(Masliah et al., 1990; Terry et al., 1991). Cur-
rently, there is no effective strategy to halt or
revert AD progression in patients; this can
be partially attributed to the yet incipient
knowledge of pathophysiological processes
underlying disease progression.

The two major histopathological markers
of AD are intracellular neurofibrillary tangles,
formed by tau protein in its hyperphospho-
rylated form and extracellular plaques, com-
posed of amyloid-� (A�) peptides. A�
peptide assembles into aggregates of vari-
ous sizes, ranging from oligomers to fi-
brils, but soluble oligomers (A�Os) are
most strongly correlated with disease se-
verity (Bjorklund et al., 2012; Bilousova et
al., 2016). In the last couple of decades,
A�Os have consistently been found to be
associated with synapse failure and loss, as
well as with the memory decline germane
to AD pathology (for review, see Ferreira et

al., 2015). More recently, A�Os were shown
to induce neuroinflammatory processes
in AD brains, thereby influencing synaptic
pruning and cognition (Hong et al., 2016;
for review, see Santos and Ferreira, 2017).
Importantly, pharmacological alleviation of
A�O-induced inflammation is sufficient to
prevent cognitive impairment in murine
models of AD, indicating that inflammation
is central to pathological processes (Ledo et
al., 2016).

An intriguing aspect of A�Os is their
capacity to bind to synaptic terminals and
trigger neurotoxic signaling that leads to
synaptic failure. On the quest to find po-
tential “A�O receptors” at synapses, more
than a dozen molecules have been shown
to interact with A�Os (for review, see
Ferreira et al., 2015). Notably, the cellular
prion protein (PrP C) has high affinity for
A�Os (Laurén et al., 2009). PrPC is a glyco-
sylphosphatidylinositol-anchored protein lo-
calized to the plasma membrane, and it is
expressed in most cell types in mammals,
but particularly enriched in the nervous
system (for review, see Linden et al.,
2008). Although known to turn into a
misfolded version that causes neurode-
generation in transmissible spongiform
encephalopathies, PrP C is thought to be
involved in several normal physiological
processes, such as multiprotein complex
formation on the cell surface (for review,
see Castle and Gill, 2017). However, the
role of PrP C in synaptic plasticity remains
controversial. An early report from Col-
linge et al. (1994) showed that hippocam-

pal LTP was impaired in PrP C-null mice.
Consistent with this, another report indi-
cated that PrP C deletion alters neuronal
excitability in hippocampal CA1 (Mal-
lucci et al., 2002). However, Lledo et al.
(1996) reported that PrP C deletion had no
effects on hippocampal LTP formation.

Although A�Os may lead to memory
failure through multiple mechanisms
(Balducci et al., 2010), their interactions
with PrP C have been shown to mediate
aberrant signaling pathways, synapse loss,
and cognitive decline in AD models (for re-
view, see Salazar and Strittmatter, 2017).
Binding of A�Os to PrP C recruits Type 5
metabotopic gluatamate receptors (mGluR5)
to abnormally activate Fyn kinase and im-
pair synapse function (Um et al., 2012;
Haas and Strittmatter, 2016). These results
have raised the important question of
whether interfering with A�O-PrPC inter-
actions could mitigate AD phenotypes and
rescue memory. Interestingly, endogenous
or synthetic ligands of PrPC interrupt A�O-
mediated signaling and prevent neurotoxic-
ity in neurons (Haas et al., 2014; Beraldo et
al., 2016). Nonetheless, therapeutic impli-
cations and detailed mechanisms linking
PrP C to AD progression still remain to be
determined.

A recent report published in The Journal of
Neuroscience has investigated the effects of
PrP C ablation in advanced stages of AD
(Salazar et al., 2017). Salazar et al. (2017)
crossed mice that express AD-linked mu-
tated genes (APP/PS1) with a strain in
which Prnp, the gene encoding to PrP C,
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could be conditionally knocked out by ad-
ministering tamoxifen. Using these mice
enabled the authors to isolate the role of
PrP C in disease progression without disrupt-
ing any possible function during normal de-
velopment or the onset of pathology.

Salazar et al. (2017) investigated the ef-
fects of Prnp deletion in mice at 12 and 16
months of age by measuring performance
in a water maze test before and after treat-
ing mice with tamoxifen to delete Prnp.
Before treatment with tamoxifen, 12-month-
old APP/PS1 showed greater latency to find
the hidden platform than WT mice. Re-
markably, the tamoxifen administration
rescued impaired memory of both 12- and
16-month-old APP/PS1 mice in cognitive
tests (Salazar et al., 2017). This indicates that
blocking the action of PrPC may be a promis-
ing strategy to rescue cognition in late-onset
AD. Furthermore, conditional deletion of
Prnp rescued synapse loss in 12- and 16-
month-old APP/PS1 mice, as measured by
levels of the synaptic proteins PSD-95 and
SV2A (Salazar et al., 2017). Therefore, the

interaction between PrPC and A�Os ap-
pears to be involved in maintaining cogni-
tive impairment in later stages of AD,
making it an attractive therapeutic target.

The interaction between PrP C and
mGluR5 has previously been shown to
play a key role in the persistence of LTD in
AD models (Hu et al., 2014). The PrP C-
mGluR5 complex, triggered by A�Os, pro-
motes phosphorylation of eukaryotic
elongation factor 2 (eEF2). This results in
impaired protein synthesis and preferen-
tial translation of so-called “LTD proteins”
that orchestrate synaptic weakening and loss
(Um et al., 2013). Importantly, Salazar et
al. (2017) showed that ablation of PrP C in
APP/PS1 mice blocks increased phos-
phorylation of eEF2, which might result in
restoration of protein synthesis, thereby
restoring neuronal activity to a basal state.
Preclinical evidence indicates positive ef-
fects of modulating mGluR5-Fyn-eEF2
signaling pathways in AD models (Kauf-
man et al., 2015; Haas et al., 2017); thus,
the development of pharmacological

modulators is expected to test the clinical
relevance of these findings.

Notably, the late removal of Prnp gene
at 12 months altered neither soluble nor
insoluble A� species in APP/PS1 mouse
brains (Salazar et al., 2017). This corrob-
orates previous findings from the same
group showing that Prnp knock-out did
not affect A� levels (Gimbel et al., 2010)
and suggests that PrP C does not contrib-
ute to AD pathology by altering amyloid
burden. Nevertheless, it is possible that
PrP C deletion influences tau hyperphos-
phorylation because Fyn has been linked
to somatodendritic accumulation of Tau (Li
and Götz, 2017). Data showing a positive
effect of PrP C deletion on tau hyperphos-
phorylation may reinforce the potential of
a therapeutic strategy that targets A�O-
PrP C-mGlur5 interaction.

In line with previous findings (Gimbel
et al., 2010), Salazar et al. (2017) observed
no changes in either astrogliosis or micro-
gliosis after PrP C deletion in aged APP/
PS1 mice. Therefore, PrP C appears not to

Figure 1. A�O-induced PrP C signaling and neuroinflammation converge to cause cognitive decline. A�Os can bind to and trigger abnormal signaling cascade in both neurons and glial cells. At
synapses, A�Os bind to PrP C and recruit mGluR5, forming a multiprotein complex. This complex signals to increase activation of Fyn and inactivation of eEF2, resulting in reduced protein synthesis.
Depletion of PrP C, pharmacological modulation of mGluR5 by using Silent Allosteric Modulation (SAM) or inhibition of Fyn restores cognition. A�Os also induce neuroinflammation, which also leads
to cognitive decline. Anti-inflammatory agents, on the other hand, can rescue cognition. Thus, neuroinflammation and PrP C may be convergent or parallel pathways leading to cognitive decline in
AD. Neurons and glial cells were adapted from the software Mind The Graph. Left Inset, Expanded view of the synapse, showing A�O-PrP C-mGluR5 activity leading to Fyn activation and eEF2
inactivation. Right Inset, Reprinted with permission (Ledo et al., 2016). Hippocampal slice treated with A�Os and immunostained for Iba-1 and DAPI, showing pronounced microgliosis.
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be involved in the neuroinflammatory
process in AD brains. Notably, Haas et al.
(2017) reported that pharmacological
modulation of the interaction between
mGluR5 and PrP C did not alleviate astro-
cytosis and microgliosis of APP/PS1 mice,
although it rescued cognitive impairment
in these mice. These data point toward the
possibility that neuroinflammation and
PrP C-mGluR5 comprise parallel path-
ways downstream of A� accumulation
converging on synapse failure and cogni-
tive decline (Fig. 1). Importantly, it was
recently observed that treatment with ibu-
profen, a nonsteroidal anti-inflammatory
drug, prevents cognitive decline in APP/
PS1 mice independently of reduction of
inflammatory markers: instead, it changed
the expression of synaptic plasticity-related
genes (Woodling et al., 2016). The possibil-
ity that inflammatory and mGluR5-PrPC

processes act in synergy suggests that simul-
taneously targeting these processes would
be beneficial, opening a novel approach to
halt AD progression.

In conclusion, evidence provided by
Salazar et al. (2017) indicates that late de-
pletion of PrP C rescues cognition in APP/
PS1 mice. Importantly, the results show
that ablation of PrPC after disease onset has
this beneficial effect on cognition, without
changing major disease hallmarks. The col-
lection of preclinical findings regarding the
importance of the PrPC-mGluR5 pathway
in AD positions PrPC as an attractive thera-
peutic target and should encourage further
steps toward clinical trials.
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