Skip to main content
. 2019 Jun 20;10:1404. doi: 10.3389/fmicb.2019.01404

Table 2.

Comparison between different microbial host systems for production of recombinant proteins and natural products.

Microbial hosts Advantages Disadvantages Compounds References
Gram-negative
Escherichia coli
  • simple •

    Fast growth

  • simple •

    Simple culture procedures

  • simple •

    Cost-effective

  • simple •

    High versatility of the enterobacterium and its associated systems

  • simple •

    Lack of post-translational modifications (PTMs)

  • simple •

    Risk of translational errors due to the presence of a large number of rare codons

  • simple •

    Expensive and often challenging purification process

  • simple •

    Recombinant human insulin

  • simple •

    Artemisinin

  • simple •

    Erythromycin A

  • simple •

    Somatrem

  • simple •

    Somatropin

  • simple •

    Pegloticase

  • simple •

    Insulin glargine

  • simple •

    Pneumococcal vaccines

  • simple •

    Filgrastim

  • simple •

    Pegfilgrastim

  • simple •

    Human serum albumin

  • simple •

    Hepatitis B virus immunization

  • simple •

    IFN α-2b

  • simple •

    IL-6

Johnson, 1983; Abdin et al., 2003; Chang et al., 2007; Zhang et al., 2010; Ferrer-Miralles and Villaverde, 2013; Baeshen et al., 2015; Jozala et al., 2016; Sanchez-Garcia et al., 2016
Gram-positive
Lactococcus lactis
  • simple •

    Simplified downstream purification processes

  • simple •

    Absence of endotoxins or unwanted glycosylation of proteins

  • simple •

    Generally recognized as safe (GRAS)

  • simple •

    Lack of secreted heterologous proteins degradation

  • simple •

    Nisin-controlled gene expression system

  • simple •

    Heterologous protein delivery in foodstuff or in the digestive tract

  • simple •

    Per liter secretion generally less robust than Bacillus sp.

  • simple •

    AT-rich codon usage and/or the distribution of rare codons

  • simple •

    Nisin A

  • simple •

    Pfs48/45

  • simple •

    Enterocin A

  • simple •

    Pediocin PA-1

  • simple •

    IL-2

  • simple •

    IL-6

  • simple •

    Peanut allergen

  • simple •

    Tetanus toxin fragment C

  • simple •

    Transforming growth factor-β1

Steidler et al., 1998; Drouault et al., 2000; Martínez et al., 2000; Le Loir et al., 2005; Mierau and Kleerebezem, 2005; Glenting et al., 2007; Morello et al., 2008; Li and Vederas, 2009; Linares et al., 2010; Gyawali and Ibrahim, 2014; Bermúdez-Humarán et al., 2015; Li et al., 2015; Song et al., 2017
Streptomyces sp.
  • simple •

    Rapid growth

  • simple •

    Abundant supply of secondary metabolite precursors

  • simple •

    Ability to produce natural products.

  • simple •

    Efficient protein secretion system such as Sec pathway and twin-arginine-translocation (Tat) pathway

  • simple •

    Well-developed genetic manipulation

  • simple •

    Forms pellets or clumps

  • simple •

    Low protein yield

  • simple •

    Streptomycin

  • simple •

    Pikromycin

  • simple •

    Kanamycin

  • simple •

    Nystatin

  • simple •

    Anthracyclines

  • simple •

    Rapamycin

  • simple •

    FK506

  • simple •

    Strepsesquitriol

  • simple •

    Salinamides A and B

  • simple •

    Cahuitamycin

  • simple •

    Actinomycin D

  • simple •

    Milbemycin

  • simple •

    Mollemycin A

  • simple •

    TNF α

  • simple •

    hIL-10

  • simple •

    Streptokinase

  • simple •

    IL-1β

  • simple •

    IFN-α1

  • simple •

    Transforming growth factor-α

  • simple •

    IL-2

  • simple •

    IFN-α2b

  • simple •

    Tetracycline

  • simple •

    Daptomycin

  • simple •

    Chloramphenicol

Stanley and English, 1965; Kaslow et al., 1994; Trischman et al., 1994; Mann, 2001; Jung et al., 2006; Copping and Duke, 2007; Park et al., 2008, 2016; Vrancken and Anne, 2009; Fracchia et al., 2010; Anné et al., 2012; De Lima Procópio et al., 2012; Sanchez et al., 2012; Yang et al., 2013; Kim et al., 2015; Blunt et al., 2016; Jozala et al., 2016; Gao et al., 2017
Bacillus sp.
  • simple •

    Outstanding fermentation properties and protein production yield (20–25 g per liter)

  • simple •

    Completely free toxin production

  • simple •

    Flexibility for genetic engineering

  • simple •

    Presence of proteome secretory pathway

  • simple •

    Primarily used in Enzyme production.

  • simple •

    Plasmid instability

  • simple •

    Presence of proteases: leads to difficulty in the production of recombinant proteins.

  • simple •

    Ieodoglucomide C

  • simple •

    Ieodoglycolipid

  • simple •

    Bacillomycin D and L

  • simple •

    Alkaline cellulose

  • simple •

    Alkaline protease

  • simple •

    Alkaline α-amylase

  • simple •

    hIL-3

  • simple •

    Fengycin

  • simple •

    IL-1β

  • simple •

    IFN-α2

  • simple •

    Staphylokinase

  • simple •

    Iturins

  • simple •

    Surfactin

Palva et al., 1983; Peypoux et al., 1984; Bellini et al., 1991; Kim et al., 2001; Westers et al., 2006; Deleu et al., 2008; Chang et al., 2011; Van Dijl and Hecker, 2013; Wang T. et al., 2015; El-Hossary et al., 2017
Fungi/yeast
Saccharomyces cerevisiae
  • simple •

    Fast growth rate

  • simple •

    Technically practical

  • simple •

    Cost-effective

  • simple •

    Ability to generate post-translational modification as O-linked glycosylation, phosphorylation, acetylation, and acylation

  • simple •

    Advanced fermentation science

  • simple •

    N-linked glycosylation patterns differ from higher eukaryotes

  • simple •

    Lack some required precursor pathways

  • simple •

    Codon usage is biased toward A + T

  • simple •

    Human serum albumin

  • simple •

    Recombinant human insulin

  • simple •

    Hepatitis B virus immunization

  • simple •

    Artemisinic acid

  • simple •

    Paclitaxel

  • simple •

    hIL-6

  • simple •

    Insulin aspart

  • simple •

    Pfs25

  • simple •

    Sapogenin

  • simple •

    Saponin

McAleer et al., 1984; Guisez et al., 1991; Kaslow et al., 1994; Ballance, 1999; Ferrer-Miralles et al., 2009; Nielsen, 2013; Paddon et al., 2013; Baeshen et al., 2014; Ding et al., 2014; Meehl and Stadheim, 2014; Moses et al., 2014; Kung et al., 2018; Nandy and Srivastava, 2018
Aspergillus sp.
  • simple •

    GRAS status

  • simple •

    Tolerate extreme cultivation conditions

  • simple •

    Degrade and utilize diverse biopolymers, allowing cultivation on renewable resources

  • simple •

    Major Source of citric acid production

  • simple •

    Production of mycotoxins (alpha toxins)

  • simple •

    Many host proteases

  • simple •

    Freely dispersed filaments or highly compact pellets formed during submerged fermentations

  • simple •

    Immunoglobulin G1(κ)

  • simple •

    Antibodies and Fab′ fragment

  • simple •

    Bicoumanigrin

  • simple •

    Aspernigrin B

  • simple •

    Lactoferrin

  • simple •

    Enniatin

  • simple •

    Human IL-2

  • simple •

    Human IL-6

  • simple •

    Phytase

  • simple •

    L-asparaginase

  • simple •

    Lovastatin

  • simple •

    Tryptostatin B

Gaffar and Shethna, 1977; Carrez et al., 1990; Hiort et al., 2004; Papagianni, 2004; Ward et al., 2004; Grimm et al., 2005; Maheshwari, 2006; Pel et al., 2007; Maiya et al., 2009; Meyer et al., 2011; Cragg and Newman, 2013
Hansenula polymorpha
  • simple •

    GRAS status

  • simple •

    Combined genetic manipulations, low cost screening.

  • simple •

    Efficient fermentation properties, and protein modification

  • simple •

    Ability to use and grow on methanol, glucose, or glycerol as its primary carbon sources

  • simple •

    Thermo-tolerant

  • simple •

    The use of methanol creates hazardous conditions in lab use

  • simple •

    Hyperglycosylation of heterologous products

  • simple •

    Can lead to production instabilities due to sequence repetition on vector.

  • simple •

    IFNα-2a

  • simple •

    Phytase

  • simple •

    IL-6

  • simple •

    Human serum albumin

  • simple •

    Human hemoglobin

  • simple •

    HBV L-protein

  • simple •

    Hepatitis B surface antigen

Janowicz et al., 1991; Gellissen et al., 1992; Hollenberg and Gellissen, 1997; Cox et al., 2000; Heijtink et al., 2002; Müller et al., 2002; Böer et al., 2007; Kunze et al., 2009; Celik and Calik, 2012