Gram-negative Escherichia coli
|
|
|
|
|
|
|
-
simple •
Lack of post-translational modifications (PTMs)
-
simple •
Risk of translational errors due to the presence of a large number of rare codons
-
simple •
Expensive and often challenging purification process
|
|
Johnson, 1983; Abdin et al., 2003; Chang et al., 2007; Zhang et al., 2010; Ferrer-Miralles and Villaverde, 2013; Baeshen et al., 2015; Jozala et al., 2016; Sanchez-Garcia et al., 2016
|
Gram-positive Lactococcus lactis
|
|
|
|
|
|
-
simple •
Simplified downstream purification processes
-
simple •
Absence of endotoxins or unwanted glycosylation of proteins
-
simple •
Generally recognized as safe (GRAS)
-
simple •
Lack of secreted heterologous proteins degradation
-
simple •
Nisin-controlled gene expression system
-
simple •
Heterologous protein delivery in foodstuff or in the digestive tract
|
|
|
Steidler et al., 1998; Drouault et al., 2000; Martínez et al., 2000; Le Loir et al., 2005; Mierau and Kleerebezem, 2005; Glenting et al., 2007; Morello et al., 2008; Li and Vederas, 2009; Linares et al., 2010; Gyawali and Ibrahim, 2014; Bermúdez-Humarán et al., 2015; Li et al., 2015; Song et al., 2017
|
Streptomyces sp. |
-
simple •
Rapid growth
-
simple •
Abundant supply of secondary metabolite precursors
-
simple •
Ability to produce natural products.
-
simple •
Efficient protein secretion system such as Sec pathway and twin-arginine-translocation (Tat) pathway
-
simple •
Well-developed genetic manipulation
|
-
simple •
Forms pellets or clumps
-
simple •
Low protein yield
|
|
Stanley and English, 1965; Kaslow et al., 1994; Trischman et al., 1994; Mann, 2001; Jung et al., 2006; Copping and Duke, 2007; Park et al., 2008, 2016; Vrancken and Anne, 2009; Fracchia et al., 2010; Anné et al., 2012; De Lima Procópio et al., 2012; Sanchez et al., 2012; Yang et al., 2013; Kim et al., 2015; Blunt et al., 2016; Jozala et al., 2016; Gao et al., 2017
|
Bacillus sp. |
-
simple •
Outstanding fermentation properties and protein production yield (20–25 g per liter)
-
simple •
Completely free toxin production
-
simple •
Flexibility for genetic engineering
-
simple •
Presence of proteome secretory pathway
|
|
-
simple •
Ieodoglucomide C
-
simple •
Ieodoglycolipid
-
simple •
Bacillomycin D and L
-
simple •
Alkaline cellulose
-
simple •
Alkaline protease
-
simple •
Alkaline α-amylase
-
simple •
hIL-3
-
simple •
Fengycin
-
simple •
IL-1β
-
simple •
IFN-α2
-
simple •
Staphylokinase
-
simple •
Iturins
-
simple •
Surfactin
|
Palva et al., 1983; Peypoux et al., 1984; Bellini et al., 1991; Kim et al., 2001; Westers et al., 2006; Deleu et al., 2008; Chang et al., 2011; Van Dijl and Hecker, 2013; Wang T. et al., 2015; El-Hossary et al., 2017
|
Fungi/yeast Saccharomyces cerevisiae
|
|
|
|
|
|
-
simple •
Fast growth rate
-
simple •
Technically practical
-
simple •
Cost-effective
-
simple •
Ability to generate post-translational modification as O-linked glycosylation, phosphorylation, acetylation, and acylation
-
simple •
Advanced fermentation science
|
-
simple •
N-linked glycosylation patterns differ from higher eukaryotes
-
simple •
Lack some required precursor pathways
-
simple •
Codon usage is biased toward A + T
|
|
McAleer et al., 1984; Guisez et al., 1991; Kaslow et al., 1994; Ballance, 1999; Ferrer-Miralles et al., 2009; Nielsen, 2013; Paddon et al., 2013; Baeshen et al., 2014; Ding et al., 2014; Meehl and Stadheim, 2014; Moses et al., 2014; Kung et al., 2018; Nandy and Srivastava, 2018
|
Aspergillus sp. |
-
simple •
GRAS status
-
simple •
Tolerate extreme cultivation conditions
-
simple •
Degrade and utilize diverse biopolymers, allowing cultivation on renewable resources
-
simple •
Major Source of citric acid production
|
|
|
Gaffar and Shethna, 1977; Carrez et al., 1990; Hiort et al., 2004; Papagianni, 2004; Ward et al., 2004; Grimm et al., 2005; Maheshwari, 2006; Pel et al., 2007; Maiya et al., 2009; Meyer et al., 2011; Cragg and Newman, 2013
|
Hansenula polymorpha |
-
simple •
GRAS status
-
simple •
Combined genetic manipulations, low cost screening.
-
simple •
Efficient fermentation properties, and protein modification
-
simple •
Ability to use and grow on methanol, glucose, or glycerol as its primary carbon sources
-
simple •
Thermo-tolerant
|
-
simple •
The use of methanol creates hazardous conditions in lab use
-
simple •
Hyperglycosylation of heterologous products
-
simple •
Can lead to production instabilities due to sequence repetition on vector.
|
|
Janowicz et al., 1991; Gellissen et al., 1992; Hollenberg and Gellissen, 1997; Cox et al., 2000; Heijtink et al., 2002; Müller et al., 2002; Böer et al., 2007; Kunze et al., 2009; Celik and Calik, 2012
|
|