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Injuries to the CNS lead to severe and of-
ten irreversible deficits in sensorimotor
and autonomous function. In spinal cord
injury (SCI), mechanical damage results
in the death of local neurons and glia at
the lesion site within minutes to hours.
This is followed by a delayed secondary
damage phase characterized by neuronal
and glial apoptosis (Liu et al., 1997), an
increase in blood—spinal cord barrier (BSB)
permeability (Popovich etal., 1996) and a
neuroinflammatory response (Fleming et
al., 2006) that remains poorly understood.
This secondary damage process worsens
the outcome and thus should serve as an
important target for therapy (Oyinbo,
2011).

The neuroinflammatory response after
SCI is mediated by various cell types,
including astrocytes, resident microglia,
infiltrating immune cells, and endothelial
cells, which form the linings of the blood
vessels (Hausmann, 2003). The spinal
cord has a more pronounced inflamma-
tory response to injury than the brain,
with twice as many neutrophils infiltrat-
ing within 24 h, a sustained macrophage
infiltration, and enhanced lymphocyte in-
filtration (Schnell et al., 1999). This spe-
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cial property may make the spinal cord
particularly vulnerable to secondary le-
sion processes.

In recent years, the understanding of
the functional role of the inflammatory
response after SCI has developed signifi-
cantly, with support for both beneficial
and detrimental effects that promote tis-
sue repair or degeneration, respectively
(David and Kroner, 2011). On the one
hand, activated microglia in the injured
spinal cord produce various proinflamma-
tory cytokines, including IL-18, TNF-q,
proteases, and other cytotoxic factors. In-
fusions of IL-1 antagonists 72 h after SCI
in rats markedly reduced injury-induced
apoptosis, indicating that the early ex-
pression of IL-1f3 is detrimental (Nesic et
al., 2001). Moreover, immunobased neu-
tralization of TNF-a improves functional
recovery and reduces apoptosis and tissue
loss after SCI (Genovese et al., 2008). On
the other hand, macrophages and micro-
glia have also been implicated in protec-
tion after injury. Beside the detrimental
effects of TNF-q, appropriate TNF-« sig-
naling seems to be required for proper
remyelination by promoting the prolifer-
ation of oligodendrocyte progenitors (Ar-
nett et al., 2001). Additionally, specific
parts of the astrocytic scar were recently
shown to have a supportive function for
axon regeneration following SCI (Ander-
son et al., 2016) and might be induced
by activated microglia (Liddelow et al.,
2017). This Janus-faced inflammation

control of immune cells depends on many
factors, such as environmental cues and
intracellular and intercellular signaling,
and it is incompletely understood.

In a study recently published in The
Journal of Neuroscience, Cohen et al. (2017)
revealed a new mechanism of inflamma-
tion control after SCI. It is orchestrated by
the CD200 ligand (CD200L) in endothe-
lial cells and delivers an inhibitory signal
for infiltrating macrophages and micro-
glia. Under normal conditions, CD200L is
expressed in the CNS at the blood—CSF
barrier and in the spinal cord meninges,
but not in the endothelium of the BSB.
After SCI, however, proliferating endo-
thelial cells located in the core of the lesion
upregulate CD200L (Cohen et al., 2017,
their Fig. 2A). Immunohistological analy-
sis of the BSB showed coexpression of
CD200L with the endothelium-specific
antigen CD31 (Cohen et al., 2017, their
Fig. 2B) and the proliferation marker
Ki67, suggesting that newly formed en-
dothelial cells are the source of CD200L
(Cohen et al., 2017, their Fig. 2F). To in-
vestigate whether CD200L is essential
for functional recovery, CD200L '~ and
wild-type (WT) control animals were
subjected to a mild SCI and analyzed for
hindlimb motor function in an open field
using a crude scoring test (Basso Mouse
Scale). Spontaneous recovery of hindlimb
function was impaired in CD200L '~
mice compared with controls (Cohen et al,,
2017, their Fig. 2G). Because bone marrow-
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Figure 1. Molecular processes after SCI. The following four sequential stages follow spinal cord injury: within the first hours, mechanical injury is associated with opening of the blood— brain

barrier (BBB); over the next several days, immune cells infiltrate the injured area through the vascular system; next, activated astrocytes form a glial scar to protect the surrounding of the injured area;
and, finally, limited levels of structural tissue regeneration occur several weeks up to months following SCI. The (D200 ligand is upregulated several days after SCl and is therefore temporally
coexpressed with newly formed endothelial cells and the inflammatory response. Time points are reviewed in the study by Shechter and Schwartz (2013).

derived cells also express CD200L and in-
filtrate the lesion site, CD200L ~/~ mice
were injected with WT bone marrow cells
(WT>CD200L '~ mice) and vice versa
(CD200L ~/~>WT mice) to rule out the
role of bone marrow cells in functional
recovery. Only the deletion of CD200L in
CNS-resident cells impaired recovery fol-
lowing SCI (Cohen et al., 2017, their Fig.
2H), emphasizing the crucial role of CNS-
resident endothelial cells in this process.
Expression of the CD200L receptor
(CD200R) was highly upregulated in
isolectin B4-activated myeloid cells in
the spinal cord parenchyma at the lesion
site as early as 3 d after SCI (Cohen et al.,
2017, their Fig. 3A,B). Further analysis
by fluorescent-activated cell sorting of
CD200R expression revealed different
subpopulations of myeloid cells including
activated microglia (CD11b¥CD45.2"")
and monocyte-derived macrophages
(CD11b"8"CD45.2M8: Cohen et al.,, 2017,
their Fig. 3C-G). A direct interaction
between CD200L ™" endothelial cells and
CD200R " activated myeloid cells was
confirmed by both in vitro and in vivo
assays. Initially, isolated bone marrow-
derived cells were differentiated into mac-
rophages and cultured with or without
endothelial cells. An inflammation re-
sponse was induced by lipopolysaccha-
ride, and the gene expression profile was
analyzed by quantitative PCR. In the pres-

ence of endothelial cells, expression levels
of proinflammatory cytokines decreased
in macrophages (Cohen et al., 2017, their
Fig. 5C). This effect was blocked by add-
ing a CD200L inhibitor to the coculture,
suggesting that endothelial cells directly
reduce macrophage-derived inflamma-
tion through CD200 signaling. To con-
firm the functional relevance of CD200L,
infiltrating macrophages were isolated
from the lesion site of WT and CD200L '~
animals. Flow cytometric analysis of proin-
flammatory (TNF-« and IL-13) and anti-
inflammatory factors (Dectin-1, CD206,
IL-4R) confirmed increased inflammation
levels in CD200L '~ mice relative to WT
(Cohen et al., 2017, their Fig. 6G,H).

Opverall, these results support the key
finding about a new cellular interaction
among newly formed CD200L " endothelial
cells, which negatively control the inflamma-
tory response in CD200R * immune cells and
thereby enhance functional recovery fol-
lowing a spinal cord injury.

In contrast to studies focusing on
neuron—microglia interaction as an im-
portant mediator of the inflammatory
response in CNS diseases such as experi-
mental autoimmune encephalomyelitis
(EAE) (Chitnis et al., 2007), Cohen et al.
(2017) provide evidence for another cell
type to interact with immune cells: prolif-
erating endothelial cells. Their work indicates
that angiogenesis is not only enhanced by

immune cells, as previously shown (for
review, see Ribatti and Crivellato, 2009)
but, conversely, that angiogenesis can reg-
ulate immune cells. This is in agreement
with previous results indicating that en-
dothelial growth factors enhance immune
cell recruitment and the interaction of im-
mune cells with the vessel wall (Zitter-
mann and Issekutz, 2006).

Newly generated blood vessels can
grow in the developing body via several
modes, which include angiogenesis from
pre-existing blood vessels and vasculo-
genesis from infiltrating endothelial precursor
cells. Although the major mechanism of vas-
cular regeneration after injury is thought
to be angiogenesis, there is emerging evi-
dence that endothelial precursor cells are
also able to enter the lesion site (Popa-
Wagner et al., 2010). However, there is a de-
bate about whether these new vessels are
functional or just serve to facilitate macro-
phage infiltration and removal of cellular
debris from necrotic tissue. Cohen et al.
(2017) provide evidence that the newly
formed blood vessels also function as
immune modulators through CD200L/
CD200R.

Deletion of the ligand was shown here
to attenuate spontaneous functional re-
covery in a selected motor task after SCI.
However, in addition to proliferating en-
dothelial cells, CD200L is expressed in a
variety of cells, including neurons, oligo-
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dendrocytes, and astrocytes (Koning et
al., 2009). Therefore, the worse outcome
in the behavior of CD200L-KO mice after
SCI might also be explained by a difference
in neuronal, oligodendrial, or astrocytic
responses. The generation of an endothe-
lial cell-specific conditional CD200L KO
would give additional evidence for the
suggested positive, damage-restricting, or
proregenerative role of immune cells after
SCI. Analysis of lesion size, neuronal
sprouting, and revascularization levels af-
ter SCI in WT and CD200L /" animals
would, in the meantime, answer further
questions about the mechanisms of recov-
ery that are seen in this study.

From a clinical point of view, it would
be of great interest to investigate whether
overexpression of endothelial CD200L
can be beneficial for functional recovery
after SCI. Several experimental studies
have been conducted to enhance sponta-
neous recovery using neuroprotective
and anti-inflammatory treatments, pro-
motion of axonal regeneration and com-
pensatory sprouting, transplantation of
stem cells into the lesion site, electrophysio-
logical stimulation of supralesional or sub-
lesional spinal networks, and rehabilitative
training, respectively (Hawryluk et al.,
2008; Marsh et al., 2011). Cohen et al.
(2017) might provide a new treatment op-
tion using CD200 signaling for spinal cord
injury by specifically targeting neovascular-
ization and the endothelial cell-associated
regulation of inflammation (Fig. 1).
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