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A Selective Role for Dopamine in Learning to Maximize
Reward But Not to Minimize Effort: Evidence from Patients
with Parkinson’s Disease
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Instrumental learning is a fundamental process through which agents optimize their choices, taking into account various dimensions of
available options such as the possible reward or punishment outcomes and the costs associated with potential actions. Although the
implication of dopamine in learning from choice outcomes is well established, less is known about its role in learning the action costs such
as effort. Here, we tested the ability of patients with Parkinson’s disease (PD) to maximize monetary rewards and minimize physical
efforts in a probabilistic instrumental learning task. The implication of dopamine was assessed by comparing performance ON and OFF
prodopaminergic medication. In a first sample of PD patients (n = 15), we observed that reward learning, but not effort learning, was
selectively impaired in the absence of treatment, with a significant interaction between learning condition (reward vs effort) and medi-
cation status (OFF vs ON). These results were replicated in a second, independent sample of PD patients (n = 20) using a simplified
version of the task. According to Bayesian model selection, the best account for medication effects in both studies was a specific ampli-
fication of reward magnitude in a Q-learning algorithm. These results suggest that learning to avoid physical effort is independent from
dopaminergic circuits and strengthen the general idea that dopaminergic signaling amplifies the effects of reward expectation or obtain-
ment on instrumental behavior.
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Theoretically, maximizing reward and minimizing effort could involve the same computations and therefore rely on the same
brain circuits. Here, we tested whether dopamine, a key component of reward-related circuitry, is also implicated in effort
learning. We found that patients suffering from dopamine depletion due to Parkinson’s disease were selectively impaired in
reward learning, but not effort learning. Moreover, anti-parkinsonian medication restored the ability to maximize reward, buthad
no effect on effort minimization. This dissociation suggests that the brain has evolved separate, domain-specific systems for
instrumental learning. These results help to disambiguate the motivational role of prodopaminergic medications: they amplify the
impact of reward without affecting the integration of effort cost. j

ignificance Statement

formal models of instrumental learning assume that action selec-
tion is based on the comparison of hidden values, which are
updated following a delta rule when choice outcomes are deliv-
ered (Sutton and Barto, 1998). A delta rule means that value
update is proportional to prediction error (actual value minus

Introduction
Instrumental learning is a fundamental process through which
animals get to obtain rewards and avoid punishments. Simple
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expected value of the outcome). Numerous studies have investi-
gated the neural underpinnings of such instrumental learning
processes in mammals. One key finding is that midbrain dopa-
mine neurons seem to signal reward prediction error (RPE)
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across species (Hollerman and Schultz, 1998; Zaghloul et al.,
2009; Eshel et al., 2015). Moreover, direct activation of dopamine
neurons using optogenetics or microstimulation is sufficient to
reinforce the behavior (Tsai et al., 2009; Steinberg et al., 2013;
Arsenault et al., 2014). Consistently, systemic administration of
drugs boosting or mimicking dopamine release (levodopa or do-
pamine receptor agonists) improves learning from positive but
not negative outcome (Pessiglione et al., 2006; Rutledge et al.,
2009; Schmidt et al., 2014). Prodopaminergic medication was
even shown to have detrimental effects on punishment learning,
in stark contrast to the beneficial effects on reward learning
(Frank et al., 2004; B4di et al., 2009; Palminteri et al., 2009).

Although differential implication of dopamine in reward ver-
sus punishment learning is well established, less is known about
how dopamine could affect other dimensions of choice options,
notably physical effort. In principle, the same computations
(delta rule) could be used to learn how much effort is associated
with each choice option. Whether dopamine participates in this
effort learning process has never been assessed to our knowledge.
In decision-making tasks that involve choosing between high re-
ward/high effort and low reward/low effort options, dopamine
depletion shifts preferences toward making less effort, whereas
dopamine enhancers produce the opposite effect in both rodents
(Denk et al., 2005; Salamone et al., 2007; Floresco et al., 2008) and
humans (Wardle et al., 2011; Treadway et al., 2012; Chong et al.,
2015). These observations suggest that dopamine might be in-
volved in promoting willingness to produce effort and, by exten-
sion, that dopamine could play a role in effort learning. However,
a modulation of reward weight in cost/benefit trade-offs would
be sufficient to explain the effects on willingness to work (Le Bouc
etal., 2016). This parsimonious explanation would be consistent
with voltammetric or electrophysiological recordings in mid-
brain dopaminergic nuclei showing higher sensitivity to reward
than effort (Gan et al., 2010; Pasquereau and Turner, 2013;
Varazzanietal., 2015). In instrumental learning paradigms, fMRI
studies have reported correlates of reward prediction and predic-
tion errors in dopaminergic projection targets such as ventral
striatum and ventromedial prefrontal cortex (O’Doherty et al.,
2003; Pessiglione et al., 2006; Rutledge et al., 2010; Chowdhury et
al., 2013), whereas correlates of punishment prediction and pre-
diction errors have been observed in the anterior insula and dor-
sal anterior cingulate (Seymour et al., 2004; Nitschke et al., 20065
Palminteri et al., 2012; Harrison et al., 2016). Because these
punishment-related regions overlap with the network activated
in relation to effort (Croxson et al., 2009; Kurniawan et al., 2010;
Prévost et al., 2010; Skvortsova et al., 2014; Scholl et al., 2015), it
could be inferred that, if anything, dopamine should have a det-
rimental effect on effort learning, as was reported for punishment
learning.

To clarify the role of dopamine in effort learning, we com-
pared the performance of PD patients with and without dopami-
nergic medication (“ON” and “OFF” states). Patients performed
an instrumental learning task that involves both maximizing re-
ward and minimizing effort. The task was used in a previous
fMRI study (Skvortsova et al., 2014), which showed that although
reward and effort learning can be accounted for by similar com-
putational mechanisms relying on partially distinct neural cir-
cuits. Here, we found in a first study using the exact same task that
dopaminergic medication improves reward but not effort learn-
ing. This result was replicated in a second study for which the task
was simplified and thus was better adapted to patients. Finally, we
used computational modeling and Bayesian model selection
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Table 1. Demographic and dinical data

Study 1 Study 2

PD PD Controls
Laterality (R/L) 141 18/2 171
Sex (F/M) 1/14 7713 7m
Age (y) 59. 75 (6.48) 57.7(10.18)  59.5(7.8)
Education (y) .8(1.9) 4,84 (2.03) 5.4 (2.4)
Disease duration (y) 8(2.51) 10.35(2.72) —
MMS score 27. 73 (2.71) 28.25 (1.94) 29.2(0.71)
UPDRS Ill score OFF 30.27 (5.84) 32.85(9.46) —
UPDRS Il score ON 5.73 (4.83) 7.25 (3.68) —
MDRS 138 (8.50) 140.3 (4.38) 138 (4.2)
WCST score 16.73 (5.82) 17.7 (2.74) —
Starkstein apathy scale score (ON state) 6(2.04) 78(3.72) 7.94(3.0)

1121.8(337.32)  1159.2(331.82) —

MMS, Mini-Mental Status; MDRS, Mattis Dementia Rating Scale; WCST, Wisconsin Card Sorting Test.
Values in parentheses are SD.

Levodopa equivalent dosage (mg)

(BMS) procedures to better characterize the differential implica-
tion of dopamine in reward versus effort learning.

Materials and Methods

Subjects. All patients (Study 1: n = 15, 1 female, age 59.75 = 6.48 years;
Study 2: n = 20, 7 female, age 57.7 £ 10.18 years) gave their informed
consent to participate in the study. Patients were screened by a certified
neurologist, psychiatrist, and neuropsychologist for the absence of de-
mentia, depression, and neurological disorders other than PD. Clinical
and demographic data are summarized in Table 1. All patients were
candidates for deep-brain stimulation as an alternative treatment for
their Parkinson’s disease (PD). Presurgery screening included an over-
night withdrawal from dopaminergic medication followed by levodopa
tolerance test in the next morning. All patients were tested twice during
the morning (~8:00 A.M.) after the overnight withdrawal (“OFF” state)
and after intake of their usual dose of dopaminergic medication (“ON”
state). The last dose was therefore taken at least 10 h before testing (before
10:00 P.M. on the preceding day) in the OFF state and ~1 h before testing
(~7:00 A.M. on the same day) in the ON state. Session order (ON-OFF
or OFF-ON) was counterbalanced between patients. Most of the patients
(10/15 in Study 1 and 16/20 in Study 2) received a daily combined med-
ication that consisted of both levodopa and various dopamine agonists.
The rest of the patients were treated with levodopa only.

To give a reference point for patients’ performance, we also tested 18
age-matched control subjects (7 females, age 59.5 = 7.8 years) in Study 2.
Control participants were recruited from the community and were not
taking any dopaminergic medication at the time of the study. They were
screened for the absence of acute depression and dementia using ques-
tionnaires (Table 1). Control participants were tested only once on the
second version of the task. For both patients and controls, monetary
rewards received during the tasks were purely virtual. Note that virtual
money was shown to induce qualitatively similar effects as real rewards in
reinforcement learning, intertemporal choice, or incentive motivation
paradigms (Frank et al., 2004; Bickel et al., 2009; Chong et al., 2015).

Behavioral data. Physical effort was implemented using homemade
power grips with two mold wood cylinders compressing an air tube,
which was connected to a transducer. Isometric compression was trans-
lated into a differential voltage signal proportionally to the exerted force
and read by custom-made MATLAB functions. Task presentation was
coded using the Cogent 2000 toolbox for MATLAB (Wellcome Trust for
Neuroimaging, London). Feedback on the produced force was translated
visually to subjects via a mercury level moving up and down within a
thermometer drawn on the computer screen. Before the task, patients
were required to squeeze the handgrip as hard as possible during a 5 s
period, twice with their left and right hands. Maximal force for each hand
(Fpax) Was computed as the average over the data points above the me-
dian across the two contractions. These maximal force measures were
acquired separately for ON and OFF states and were used to normalize
the forces produced during the task.
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Figure 1. Behavioral tasks used in Study 1 (4) and Study 2 (B). Successive screenshots from left to right illustrate the timing of stimuli and responses for one example trial. When interrogation
dots appeared on screen, subjects had to choose between right and left options. Each option was associated with both monetary reward and physical effort. For the chosen option only (left in the
example), reward level was indicated by an image of corresponding coin and effort level by the horizontal bar on the thermometer. At the GO! signal, subjects had to squeeze the chosen handgrip
(left in the example) until the red fluid level reached the horizontal bar. At that moment, subjects were notified that the reward was added to their cumulative payoff. Changes between the two
studies relate to the symbolic cues (one per conditionin Study 1vs one per option in Study 2), the timing (subjects had to wait for a fixed delay before respondingin Study 1, whereas they could choose
and squeeze as soon as cues and outcomes were displayed in Study 2), and the reward levels (10¢ and 20¢ in Study 1vs 10¢ and 50¢ in Study 2). Effort levels (20% and 80% of maximal force) were
unchanged. Bar graphs on the right illustrate the contingencies between symbolic cues and both reward (red) and effort (blue) outcomes (left and right graphs). Bars indicate the probability of
getting high reward/effort outcomes (or one minus the probability of getting low reward/effort outcomes) for left and right options (empty and filled bars, below and above the x-axis). In Study 1,
there were four different contingency sets cued by four different symbols (A-D), whereas in Study 2, there were only two contingency sets cued by two different pairs of symbolic cues (4, €). In each
contingency set, one dimension (reward or effort) was fixed such that learning was only possible for the other dimension. Reward learning was assessed by red sets (4, Bin Study 1; Ain Study 2) and

effort learning by blue sets (€, Din Study 1; Cin Study 2). The illustration only applies to one task session. Contingencies were fully counterbalanced across the four sessions.

Task version 1. The first version of the task (version 1) was identical to
the task previously used in a published fMRI study (Skvortsova et al.,
2014) except for suppression of temporal jitters, which served to opti-
mize the fit of hemodynamic response. It was a probabilistic instrumen-
tal learning task with binary choices (left or right) and the following four
possible outcomes: two reward levels (20¢ or 10¢) times two effort levels
(80% and 20% of F,,,,). Every choice option was paired with both a
monetary reward and a physical effort. Patients were encouraged to ac-
cumulate as much money as possible and to avoid making unnecessary
effort. Every trial started with a fixation cross, followed by an abstract
symbol (a letter from the Agathodaimon font) displayed at the center of
the screen (Fig. 1A). When two interrogation dots appeared on the
screen, patients had to make a choice between left and right options by
slightly squeezing either the left or the right power grip. Once a choice
was made, patients were informed about the outcome (i.e., the reward
and effort levels materialized, respectively, as a coin image and a visual
target). Next, the command “GO!” appeared on the screen and the bulb
of the thermometer turned blue, triggering effort exertion. Patients were
required to squeeze the grip until the mercury level reached the target
(horizontal bar). At this moment, the current reward was displayed with
Arabic digits and added to the cumulative total payoff. The two behav-
ioral responses (choice and force exertion) were self-paced. Therefore,
participants needed to produce the required force to proceed further,
which they managed to achieve on every trial.

Patients were given no explicit information about the stationary prob-
abilistic contingencies that were associated with left and right options,
which they had to learn by trial and error. The contingencies were varied
across contextual cues such that reward and effort learning were separa-

ble as follows: for each cue, the left and right options differed either in the
associated reward or in the associated effort (Fig. 1A). For reward learn-
ing cues, the two options had distinct probabilities of delivering the big
reward (75% vs 25% and 25% vs 75%), whereas probabilities of having to
produce the high effort were identical (either 100% or 0%). Symmetrical
contingencies were used for effort learning cues, with distinct probabil-
ities of high effort (75% vs 25% and 25% vs 75%) and unique probability
of big reward (100% or 0%). The four contextual cues were associated
with the following contingency sets: reward learning with high effort,
reward learning with low effort, effort learning with big reward, and
effort learning with small reward. The best option was on the right for
one reward learning and one effort learning cues and on the left for the
two other cues. The associations between response side and contingency
set were counterbalanced across sessions and subjects. Each of the three
sessions contained 24 presentations of each cue randomly distributed
over the 96 trials and lasted ~15 min. The four symbols used to cue the
contingency sets changed for each new session and thus had to be learned
from scratch.

Task version 2. Because of the complexity of this first version of the
task, many patients failed to learn the contingencies in Study 1 (Fig. 2A).
Therefore, in Study 2, we ran a simplified version of the task on a different
group of PD patients and on a group of age-matched controls. Each
session now included only two contingency sets (instead of four), one for
reward and one for effort learning (Fig. 1B). Furthermore, each learning
type was reduced to 20 trials, resulting in a total of 40 trials per session
instead of 96. To accentuate the difference between the two options,
probabilities were changed to 80% versus 20% (instead of 75% vs 25%)
for both reward and effort contingencies. To help in building associa-
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Figure 2.

Behavioral results of Study 1(4) and Study 2 (B). Left, Learning curves show cumulative scores, thatis, money won (big minus small reward) in the reward context (empty and filled red

circles for OFF and ON medication states, respectively) and effort avoided (low minus high effort outcomes) in the effort context (empty and filled blue circles for OFF and ON states, respectively).
Shaded areas represent trial-by-trial intersubject SEM. Lines indicate linear regression fit. Right, Bar graphs show mean correct response rates (same color coding as for the learning curves, with gray
bars for the control group in Study 2). Dotted lines correspond to chance-level performance. Error barsindicate = intersubject SEM. Stars indicate significant main effects of treatment and interaction

with learning condition (p << 0.05). CON, Control; EL, effort learning; RL, reward learning.

tions between options and outcomes, the two options were now repre-
sented visually on the screen with two abstract cues. In addition, to make
the choice more salient, a red cross was presented for 500 ms below the
selected cue while the unchosen alternative was removed from the screen.
As in the original design, the probabilities associated with left and right
options of a same cue pair differed only on one dimension (reward or
effort). To enhance the difference between reward outcomes, the big
reward was increased to 50¢ (instead of 20¢) while keeping the small
reward unchanged (10¢). We also kept the effort levels unchanged (20%
vs 80% of F,,,,) because they were already well discriminated. Once the
effort was fulfilled, the monetary gain and the full thermometer were
presented for 500 ms before the onset of the next trial.

Statistical analysis. We analyzed two dependent behavioral variables,
correct choice rate and squeezing time, with the same series of ANOVAs
followed by post hoc t tests using Stata Statistical Software: Release 13
(StataCorp) in both studies. The correct option was the one with highest
probability of big reward in the reward learning condition and that with
the lowest probability of high effort in the effort learning condition. To
answer our primary question of interest, we ran two-way repeated-
measures ANOVA with learning type (reward vs effort) and medication
state (ON vs OFF) as within-subject factors. To assess the influence of
potential confounds, we performed three-way ANOVA with side (left vs
right hand) or session order as additional factors. We also compared
performance between levels in the irrelevant dimension (high vs low
effort for reward learning and big vs small reward for effort learning).
Significant results were then qualified by post hoc paired t tests, one-tailed
when comparing with chance level and two-tailed when comparing be-
tween experimental conditions. Finally, we searched for correlations be-

tween behavioral effects in the task and demographic or clinical variables
[age, disease duration, levodopa equivalent dosage and Unified Parkin-
son’s Disease Rating Scale Part III (UPDRS-III) score] by testing Pear-
son’s rho coefficient.

We took a similar approach to analyze squeezing time, defined as the
time needed to reach the target from the onset of GO signal. As a manip-
ulation check, we verified that effort production did not depend on med-
ication status, meaning that patients were equally able to adjust their
squeezing performance to imposed force targets in the ON and OFF
states. Two-way repeated-measures ANOVA on normalized force with
medication status (ON vs OFF) and effort level (high vs low) showed a
main effect of effort level (Study 1: F, ,,, = 35.73, p < 0.001: Study 2:
F(119) = 162, p < 0.0001), but no significant effect of medication or
interaction between medication and effort level (both p > 0.1).

Computational modeling. The same Q-learning model was used to fit
choices made by PD patients in the two studies. This model was shown
previously to best account for learning performance of healthy subjects in
the same task (Skvortsova et al., 2014). On every trial expectations at-
tached to the chosen option were updated according to a delta-rule:
Qult+1) = Qult) + ag * PEg(1) and Qg(t+1) = Qy(#) + ag * PE(D),
where Qg (#) and Qy(¢) are the expected reward and effort at trial ¢, o and
oy the reward and effort learning rates, PE,(t) and PE(¢) the reward and
effort prediction errors calculated as PE,(t) = R(t) — Qy(t) and PEg(t) =
E(t) — Qg(t), and R(¢) and E(t) are the reward and effort outcomes
obtained at trial ¢. To avoid specifying an arbitrary common currency,
reward levels were coded as 1 for big reward and 0 for small reward and
effort levels were coded as —1 for high effort and 0 for low effort. This
ensured that reward and effort were treated equally by the model. In
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Study 1, there were four contextual sets (two for reward learning and two
for effort learning) times two response sides (left and right), resulting in
eight option values, whereas in Study 2, there were only two contextual
sets times two response sides resulting in four option values. All reward
Q-values were initiated at 0.5 and all effort Q-values at —0.5, which are
the true means of all possible reward and effort outcomes. We used a
linear formulation for the net value that was shown previously to better
model subjects’ performance in the same task compared with a hyper-
bolic discount function (Skvortsova et al., 2014). The net value for each
choice option was computed as follows: Q(t) = Qg(#) + v * Qg(), where
7vis a positive linear discount factor. The two net values corresponding to
the two options on a given trial were compared using a softmax decision
rule, which estimates the probability of each choice as a sigmoid function
of the difference between the net values of left and right options: Py (1) =
/(1 + exp((Quigne(1) — Qier(1))/B), with B being a positive temperature
parameter that captures choice stochasticity.

Opverall, the null model (no medication effect) included four free pa-
rameters: reward and effort learning rates (ay and ay), discount factor
(), and choice temperature (3). In principle, each of these parameters
could potentially be affected by dopaminergic treatment: change in o or
ap would alter the updating process for one dimension specifically,
change in y would shift the relative weight of reward and effort expecta-
tions at the decision stage, and change in 8 would make choices closer to
random (or exploratory) behavior regardless of the dimension. We also
hypothesized that dopamine could affect the subjective valuation of re-
ward or effort outcomes. To test these hypotheses, we included two mul-
tiplicative modulations of the objective reward and effort (R and E)
outcomes by two additional non-negative parameters (kR and kE): r =
kR * Rand E = kE * E. This makes a total of six parameters that could or
not be affected by dopaminergic modulation.

All possible combinations of modulations including the null model
resulted in 2° = 64 models that were inverted using a variational Bayes
analysis (VBA) approach under the Laplace approximation (Daunizeau
et al., 2014). Model inversions were implemented using the MATLAB
VBA toolbox (available at http://mbb-team.github.io/VBA-toolbox/).
This iterative algorithm provides a free-energy approximation for the
model evidence, which represents a natural trade-off between model
accuracy (goodness of fit) and complexity (degrees of freedom) (Friston
etal., 2007; Penny, 2012; Rigoux et al., 2014). In addition, the algorithm
provides an estimate of the posterior density over the free parameters
starting with Gaussian priors. Log model evidence was then taken to
group-level random-effect analysis and compared by families for each
parameter of interest using a BMS procedure (Penny et al., 2010). This
procedure results in an exceedance probability (XP) that measures how
likely it is that a given family of models is implemented more frequently
than the others in the population (Stephan et al., 2009; Rigoux et al.,
2014). Therefore, for each of the six parameters of interest, we compared
two halves of the model space: the family of models in which the consid-
ered parameter is affected by dopaminergic medication and the family in
which it is not. The exceedance probability of the latter family can be
interpreted as the p-value of the null hypothesis: if lower than 0.05, then
the medication effect is significant. This is equivalent to exceedance
probability of the former family (with medication effect) being >0.95.

Some of the computational parameters are obviously not indepen-
dent. To assess whether medication effects on specific parameters could
be identified nonetheless, we performed a parameter recovery simulation
focusing on Study 2. For each patient, we took the best-fitting parameters
of the computational model in the OFF state. To simulate a potential
medication effect on each parameter of interest (reward and effort sen-
sitivity, reward and effort learning rates, discount factor, and choice
temperature), we changed its value by 40% in the direction of the ob-
served medication effect. We chose 40% because it was the dopaminergic
medication effect size that was observed for the parameter kR in Study 2.
We next fitted these simulated data using the full model, in which mod-
ulations of all parameters by dopaminergic medication were allowed
simultaneously. We performed these simulations and fits 100 times for
each patient and each parameter of interest. Then, we compared the
parameter values between the OFF state (fitted on actual data) and the
ON state (fitted on simulated data) using a two-tailed paired ¢ test for
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each target parameter. A significant difference (p < 0.05) between the
initial value of the target parameter in the OFF state and the recovered
value of the parameter in the ON state indicates a good sensitivity of our
fitting procedure for capturing the simulated specific modulation. In
contrast, any difference between the initial OFF state and the recovered
ON state values for the nontarget parameters indicates a lack of specific-
ity. The target modulation was significantly recovered in 70-90% of the
simulations and the proportion of false alarms varied between 0% and
20% of simulations depending on the considered parameter. Therefore,
medication effects on each of the six parameters could be recovered
independently and with reasonable sensitivity and specificity.

Results

Learning performance

To illustrate learning dynamics, we computed trial-by-trial cu-
mulative scores for earned money and avoided effort. On every
trial, the cumulative score was increased by one when the out-
come was big reward or low effort and decreased by one when it
was small reward or high effort. To show whether the balance was
progressing over trials, we regressed these cumulative scores on
trial number separately for reward and effort learning contexts
(Fig. 2, left).

The main working hypothesis was that dopamine is involved
differentially in reward and effort learning. Consistently, we found in
both studies that dopaminergic medication affected reward but not
effort learning (Fig. 2, right): two-way repeated-measures ANOVA
on the correct choice rate revealed a significant interaction (Study 1:
Fiiia) = 497, p = 0.043; Study 2: F,, 1o, = 8.16, p = 0.01) between
medication status (ON vs OFF) and learning type (reward vs effort).
Specifically, two-tailed paired ¢ tests showed that patients learned
better from rewards while on compared with off medication in both
Study 1 (Ron: 57.29 = 2.84%, Rop: 47.71 & 2.36%, 1,4 = 2.82,p =
0.014) and Study 2 (Ropg: 56.4 % 2.20%, Ro: 65.06 % 2.15%, 110, =
3.55, p = 0.002). In contrast, there was no medication effect on effort
learning in either Study 1 (Eopg 52.99 *= 3.58%, Eqn: 49.72 =
3.47%, t(14) = 0.64, p = 0.53) or Study 2 (Eopp 59.82 *+ 1.92%, Eqy:
59.14 * 2.47%, t,9) = 0.28, p = 0.78).

We also conducted similar two-way repeated-measures
ANOVA on the regression slopes of cumulative curves. Consis-
tent with the analysis on average correct choice rate, the interac-
tion between learning type and medication status was borderline
in Study 1 (F,,) = 3.45, p = 0.084) but significant in Study 2
(F9y = 13.41, p = 0.002). Two-tailed paired t tests showed a
marginally significant medication effect for the reward slope in
Study 1 (£,4) = 1.95, p = 0.072), which was significant in Study 2
(t(19y = 3.47, p = 0.0025). In contrast, the effort slope was not
significantly improved by medication in either Study —1 (#,, =
~1.07,p = 0.3) or Study 2 (£, = —1.183, p = 0.15).

In our view, the replication provided by the second study, with
simplification of the design, was necessary to conclude in favor of
the dissociation. This is because, in Study 1, patients might have
been overwhelmed by the complexity of the task, precluding any
effect on effort learning. Indeed, correct choice rate in Study 1
only differed from chance level (50%) for reward learning in the
“ON” state (t,4) = 2.84, p = 0.007). In Study 2, performance was
above chance level in all conditions (all p-values <0.0125, corre-
sponding to Bonferroni-corrected threshold for four tests). In
addition, Study 2 allowed comparison with healthy controls to
assess disease effect. As expected, OFF patients were impaired
relative to controls in reward learning (t4 = 2.10, p = 0.042)
but not effort learning (¢35 = 0.61, p = 0.54). There was no
difference between ON patients and controls (reward learning:
tie) = 0.40, p = 0.69; effort learning: t;,, = 0.1, p = 0.92),
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suggesting that dopaminergic medication simply normalized
performance in the reward learning condition.

We ran additional analyses to assess potential confounds. Im-
portantly, performance pooled across medication states did not
differ between reward and effort learning contexts (t,,) = 0.63,
p = 0.54 in Study 1 and t,4y = 0.74, p = 0.47 in Study 2). This
suggests that medication did not affect learning from feedback in
general, but learning from reward outcome specifically. In addi-
tion, the two conditions appeared to be matched in difficulty
because there was no significant difference between reward and
effort learning performance in healthy subjects either in this
study (.,,, = 1.45,p = 0.17) or in the previous study (Skvortsova
etal., 2014).

We next examined the possible interactions with session or-
der, side of correct response, and irrelevant dimension (effort
level in reward learning and reward level in effort learning).
Mixed-effect three-way ANOVA with learning context (reward
vs effort) and medication status (ON vs OFF) as within-subject
factors and session order (ON-OFF vs OFF-ON) as a between-
group factor showed no main effect of session order (Study 1:
F(1 13 = 2.24, p = 0.08; Study 2: F(; ;5 = 0.21, p = 0.65) or any
two-way or three-way interactions (Study 1: all p-values >0.15;
Study 2: all p-values = 0.2). In any case, session order could not
have been a confound because it was orthogonal to the other
factors. Similarly, a three-way interaction with hand (left vs right)
as an additional within-subject factor showed no side effect
(Study 1: F(; 14y = 2.01, p = 0.18; Study 2: F; ;5 = 1.9, p = 0.18)
or any interaction (all p-values >0.37). This suggests that medi-
cation affected learning processes at a central cognitive stage and
were not influenced by potentially asymmetrical motor distur-
bances. To test the effect of the irrelevant dimension, we com-
puted the relative performance score (difference between high
and low effort for reward learning and difference between bigand
small reward for effort learning). This relative performance was
not different from zero and was not affected by medication
(Study 1, all p-values >0.13, Study 2 all p-values >0.41). Simi-
larly, we did not find any significant relative performance differ-
ence in healthy aged controls: (reward learning t.,,, = 1.04,
p = 0.31; effortlearning t,,) = 1.21, p = 0.24). This is consistent
with our previous findings in young healthy adults performing
the same task (Skvortsova et al., 2014) and suggests that reward
and effort learning performance was not affected by the irrelevant
condition.

Finally, we searched for correlations between medication ef-
fects and relevant clinical variables. Medication effects on reward
and effort learning were uncorrelated across patients in both
studies (Study 1: R* = 0.15, p = 0.6; Study 2: R* = 0.26, p = 0.27;
studies pooled together: R = 0.13, p = 0.47). This strengthens
the notion that the two learning processes are underpinned by
different brain circuits, one involving dopamine and the other
not. Even when pooling the two groups to increase statistical
power, we could not detect any significant correlation between
reward learning improvement (ON minus OFF state) and age
(R* = —0.07, p = 0.9), daily levodopa equivalent dose (LED)
(R*=0.23,p = 0.19), disease duration (R* = 0.14, p = 0.41), or
medication effect on UPDRS III score (R* = 0.05, p = 0.76).

Squeezing performance

ANOVA performed on squeezing time (the time that it took pa-
tients to reach the target) with reward level, effort level, or med-
ication status as within-subject factors only revealed a significant
main effect of effort level in both studies (Study 1: F(, ,,, = 12.04,
p = 0.004; Study 2: and F, 4, = 40.48, p < 0.0001). This means
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that patients were reliably faster to reach 20% F,,,, compared
with 80% F,,. (difference: 636 = 154.11 ms in Study 1 and 505 =+
85 ms in Study 2). This delay was probably hard to notice and, in
any case, was not different between medication states, which
might not be surprising given that effort level was recalibrated to
F,... in each state. The absence of interaction between reward
level and medication status in squeezing time suggests that dopa-
mine might not be involved in any reward-related process, but
more specifically in instrumental behavior.

BMS

To investigate which of the Q-learning model parameters was
primarily affected by dopaminergic treatment, we performed a
factorial BMS. For each parameter of interest, we compared fam-
ilies with and without modulation by dopaminergic medication
(meaning with same or different parameters in the ON and OFF
states). In total, we performed six comparisons (Fig. 3, top) to test
the effects of dopaminergic medication on: reward sensitivity kR,
effort sensitivity kE, reward learning rate aR, effort learning rate
«E, discount factor vy, and choice temperature 3. In both studies,
the highest exceedance probability for treatment effect was ob-
tained for parameter kR (XP = 0.88 for studyl and XP = 0.95 for
Study 2). Therefore, selective modulation kR is the best model under
the parsimonious hypothesis that medication only affected one pa-
rameter. We also compared the “kR-only” model with the five mod-
els in which one other parameter is modulated (kR/KE, kR/aR, kR/
aF, kR/7y, and kR/pB). The kR only was the most plausible in both
Study 1 (XP = 0.96) and Study 2 (XP = 0.81).

In the winning model family, kR was set to 1 in the OFF state
and allowed a different (fitted) value in the ON state. In both
studies, the posterior mean of kR was significantly different from
1 at the group level (Study 1: 1.25 * 0.08, 1, = 2.58, p = 0.02;
Study 2: 1.41 = 0.06,, t(;9) = 3.94, p = 0.001, two-tailed paired ¢
test). This means that reward outcomes were systematically am-
plified under dopaminergic modulation (see insets in Fig. 3, top).
We verified that no other parameter showed a similar systematic
shift from the “OFF” to the “ON” states (all 5 p-values >0.26).
We have also tested two-way interactions between kR and medi-
cation effects on the 5 other parameters estimated in the full
model (in which all parameters are allowed to vary with medica-
tion status). The 5 interactions were significant in both Study 1
(all p < 0.01) and Study 2 (all p < 0.006), showing that medica-
tion effect on kR was higher than any other possible effect, even
after Bonferroni correction for multiple comparisons. This is
consistent with the fact that the kR-only model was far more
plausible than the full model (XP = 1).

To assess the fit of the winning model to the data, we com-
puted Pearson’s correlations between observed and predicted
choice rates separately for reward and effort learning contexts
and for ON and OFF medications states (Fig. 3, bottom). In Study
1, correlation was highly significant when subjects were perform-
ing above chance level (reward learning, ON state): R* = 0.86,
p < 0.0001. Correlation failed to survive Bonferroni-corrected
threshold in the other conditions ( p = 0.05/4 = 0.0125). In Study
2, all correlations were significant (p < 0.006) with at least R* =
0.6 of the variance explained.

Finally, we performed simulations of the winning kR-only
model using the posterior estimates of parameters fitted at the
individual level and the outcome sequences generated for actual
participants. We performed 15 simulations using the parameters
from Study 1 and 20 simulations using the parameters from
Study 2. We then plotted the cumulative learning curves and
analyzed the percentage of correct choices averaged across trials



Skvortsova et al. @ Dopamine and Reward versus Effort Learning

J. Neurosci., June 21, 2017 - 37(25):6087— 6097 * 6093

1r 1r
2 2
0.75p 0.75k
18 1
16 1, *
o L
x 05 14l * g 0.5r 1.
12) 1.
0.25} ! !
R 0.29 R
0 0
kR KE aR aE Y B kR KE aR aE Y B
Model families Model families
Reward learning Effort learning Reward learning Effort learning
2 2 b *
: off R'-008 | off  R'-057 : off R'=068" | off R"=0.60"
1 1 1 1
1 1 1 1
1 1 1 1
08 08 0.8
3 1 1 ® 1 gos I e
g ! ! - ! g | o
° 5 1 Y
% 06 06 9 0.6 @ 0.6 =
a B mn ae M - ————— a - S Q [-—-efp-—-—-—————--
1 1 1 1
04 1 04 | 0.4 | 04 |
1 1 1 1
02 1 02 1 02 1 02 1
0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 04 0.6 0.8 1 0.2 0.4 0.6 0.8 1
2
On R"= 037 On R’= 0.90"** On R’= 0.82°**
[ ! i i
o : o ' kel I
3 " 308 : £08 :
S I o k] " rd Y] I s
° kel | el |
g v Q06 o 85 206 -
Q ' == ; e o Lo___ Tem———————- Q - - —————
1 1
04 H 04 | 0.4 i 04 i
1 | 1 1
0.2 1 0.2 1 0.2 1 0.2 1
02 04 06 08 1 02 04 06 08 1 0.2 04 06 08 ] 0.2 0.4 06 08 1
observed observed observed observed
Figure3.  Model comparison based on data from Study 1 (A) and Study 2 (B). Top, Bayesian comparisons of model families. For each parameter, two families corresponding to two halves of the

model space were compared: all models including versus all models excluding the possibility of medication effect on the considered parameter. Bars show XP) obtained for the presence of medication
effect on six model parameters: kR, kE, R, ak, vy, and 3. Note that the XP for the null hypothesis (absence of medication effect) is simply one minus that shown on the graph. Red dotted line
corresponds to significance threshold (exceedance probability of 0.95). Insert, Mean posterior estimate for reward sensitivity parameter kR = intersubject SEM. Star indicates significant difference
from one (p << 0.05). Bottom, Scatter plots of interpatient correlations between observed correct choices and correct choices predicted from the kR-only model for the two learning conditions and
medication states. Each dot represents one subject. Shaded areas indicate 95% confidence intervals on linear regression estimates.

to compare the simulated data with observed data (Fig. 4 vs Fig.
2). Two-way repeated-measures ANOVA on the correct choice
rate revealed a borderline or significant interaction (Study 1:
Fiy = 352, p = 0.082; Study 2: F, ) = 5.86, p = 0.026)
between medication status (ON vs OFF) and learning type (re-
ward vs effort). Specifically, two-tailed paired ¢ tests showed that
patients learned better from rewards while on compared with the
off medication in both Study 1 (Roy: 58.69 * 1.59%, Ropg:
54.94 + 2.29%, t,, = 2.01, p = 0.064) and Study 2 (Rog:
60.19 = 2.16%, Roy: 64.56 * 2.44%, t,o) = 2.37, p = 0.029). In
contrast, there was no medication effect on effort learning in
either Study 1 (Egpg: 55.35 = 1.42%, Eqy: 56.01 *+ 1.45%, 1,4 =
0.86, p = 0.41) or Study 2 (Egpg 59.31 = 1.52%, Eqy: 57.19 *
2.01%, t(,) = 1.01, p = 0.33). Therefore, the model was able to
recapitulate the pattern of results observed in patients’ choices.

Discussion
We compared learning to maximize rewards and learning to min-
imize efforts in two groups of PD patients with and without do-

paminergic medication. A priori, these two learning processes
could follow the same algorithmic principles and therefore be
implemented in the same neural circuits. However, dopaminer-
gic treatment improved reward-based but not effort-based learn-
ing in both groups of patients. To our knowledge, this is the first
demonstration that dopamine is implicated selectively in reward
learning by opposition to effort learning.

In healthy controls, as well as in PD patients, when averaging
across medication states, performance was similar in reward and
effort learning. Therefore, the dissociation does not seem to be
driven by one dimension being more difficult to discriminate
than the other. This dissociation suggests that subjects treated
reward and effort learning as different dimensions, which was not
trivial in our context. Indeed, patients could have recoded each
outcome in terms of correct versus incorrect response. Therefore,
the dissociation indicates that our task was efficient in triggering
at least partially separate processes, in keeping with our previous
fMRI study showing partial dissociation between brain networks
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Figure4. Model simulations for Study 1(4) and Study 2 (B). Left, Simulated learning curves show cumulative scores, that is, money won (big minus small reward) in the reward context (empty
and filled red circles for OFF and ON medication states, respectively) and effort avoided (low minus high effort outcomes) in the effort context (empty and filled blue circles for OFF and ON states,
respectively). Shaded areas represent trial-by-trial intersubject SEM. Lines indicate linear regression fit. Right, Bar graphs show mean correct response rates (same color coding as for the learning
curves, with gray bars for the control group in Study 2). Dotted lines correspond to chance-level performance. Error bars indicate = intersubject SEM. Stars indicate significant main effects of
treatment and interaction with learning condition (p << 0.05). EL, Effort learning; RL, reward learning.

involved in reward and effort learning (Skvortsova et al., 2014).
The valence-specific effect of medication also speaks against the
hypothesis that dopamine might signal motivational salience,
which would apply equally to appetitive and aversive stimuli
(Kapur et al., 2005; Bromberg-Martin et al., 2010).

The dissociation might also help disambiguate previous find-
ings in decision-making tasks that manipulating dopamine can
shift effort/reward trade-off in both rodents (Denk et al., 2005;
Salamone et al., 2007; Floresco et al., 2008; Bardgett et al., 2009;
Mai et al., 2012) and humans (Wardle et al., 2011; Chong et al.,
2015). In cost/benefit decision-making tasks, reward and effort
levels are confounded: higher efforts are always paired with
higher rewards. This creates an ambiguity in the interpretation of
drug effects because both increased sensitivity to reward and de-
creased sensitivity to effort could result in the same shift of pref-
erence. Our results clearly suggest an interpretation in terms of
reward sensitivity. We characterized the effects of dopaminergic
medication on effort/reward decision making (without learning)
in a recent study using computational modeling (Le Bouc et al.,
2016). Bayesian model comparison showed that the bias toward
big reward, high effort options under dopamine enhancers is best
captured by increasing sensitivity to reward prospect and not by
decreasing sensitivity to effort cost. This analysis aligns well with
the present result, which was also best captured by enhancing

reward sensitivity. Combining these two findings, one may con-
clude that dopamine amplifies the effects of reward on behavioral
output.

Bayesian model comparison in the present study showed that
only reward sensitivity is affected by dopaminergic medication,
not effort sensitivity, learning rates, discount factors, or choice
temperature. This means that the reward value of the best cue was
amplified such that both the slope and plateau of learning curves
were enhanced. This effect is subtly different from that postulated
in the OpAL model (Collins and Frank, 2014), which also in-
tended to integrate the incentive and learning functions of dopa-
mine. There are two levels where reward and effort would be
processed differently in the OpAL model, first during update with
two different learning rates and second during choice with two
different temperature parameters in the softmax function. The
reward learning rate only controls the performance slope (not
the plateau), in contrast to our reward sensitivity parameter. The
reward learning plateau could be controlled by a specific temper-
ature parameter, but this mechanism would still be slightly
different from what was observed here. This is because the mod-
ulation by dopaminergic treatment was multiplicative and re-
ward outcome coded 0 or 1. Therefore, it only affected the chosen
cue value when the outcome was a big reward. Note that we
included both a relative weight (discount factor) and a generic
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temperature parameter in our model, which is equivalent to hav-
ing separate temperature parameters for reward and effort learn-
ing. However, parameter recovery simulation and BMS showed
that specific medication effect on reward sensitivity could be
identified. This effect is closer to a selective modulation of posi-
tive prediction error, which generally follows big reward out-
comes, as was implemented in some previous model-based
analyses (Cools et al., 2006; Frank et al., 2007b; Rutledge et al.,
2009). Modulation of reward sensitivity suggests that dopami-
nergic medication affected the update process, although this re-
mains hard to disentangle from the choice process using only
behavioral data. However, it is consistent with a previous fMRI
study showing that enhancement of reward sensitivity by levodopa
treatment was underpinned by amplified representation of RPE in
the striatum (Pessiglione et al., 2006). This striatal prediction error
signal was generated at the time when choice outcome was delivered;
that is, when the update process, not the choice process, should
occur.

The dissociation of dopamine implication in reward versus
effort learning is reminiscent of that repeatedly observed between
reward and punishment learning and explained by the opposite
effect of dopamine release on the D1 (GO) and D2 (NO-GO)
pathways of the basal ganglia (Collins and Frank, 2014). Al-
though pharmacological studies in humans converge on the con-
clusion that dopamine helps with reward learning, there was
some discrepancy regarding punishment learning: a detrimental
effect was observed in some cases (Frank et al., 2004; Bodi et al.,
2009; Palminteri et al., 2009), but just an absence of effect in
others (Pessiglione et al., 2006; Rutledge et al., 2009; Schmidt et
al., 2014). Here, the trend was toward a detrimental effect of
dopaminergic medication on effort learning, but this did not
reach significance. We cannot rule out that a more sensitive task,
or higher number of patients, could have yielded significant ef-
fects. However, our results show that medication effects on effort
learning are weaker and opposite (detrimental and not benefi-
cial) relative to effects on reward learning. The parallel with pun-
ishment learning raises the question of how these two dimensions
(effort and punishment) differ from each other. Theoretically,
effort belongs to the action space, whereas punishment belongs to
the outcome space. However, producing an effort such as squeez-
ing the handgrip might trigger, not only effort sensation, but also
joint or muscular pain, which might be closer to the notion of
punishment although still different from the financial losses or
negative (“incorrect”) feedback used in previous studies. That
effort and punishment belong to the same domain is also sup-
ported by the observation that brain regions involved in effort
processing, such as the dorsal anterior cingulate cortex and the
anterior insula (Rudebeck et al., 2006; Croxson et al., 2009; Ho-
sokawa et al., 2013; Kurniawan et al., 2013; Skvortsova et al.,
2014), have also been implicated in punishment processing
(Btichel et al., 1998; Seymour et al., 2005; Nitschke et al., 2006;
Samanez-Larkin et al., 2008; Palminteri et al., 2015).

As was suggested for punishment, it could be postulated that
avoidance of effort cost is learned through the impact of dopami-
nergic dips on the D2 pathway in the basal ganglia (Collins and
Frank, 2014). However, this hypothesis would predict a detri-
mental effect of prodopaminergic medication on effort learning,
which was not significant in our data. This may call for the exis-
tence of other opponent systems that would operate aversive
learning. In addition to the cortical regions already mentioned
(anterior cingulate and insula), other neuromodulators might
play a role in effort learning. Notably, serotonin was suggested to
regulate the weight of both punishment (Daw et al., 2002; Niv et
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al., 2007; Boureau and Dayan, 2011; Cohen et al., 2015) and delay
(Doya, 2002; Miyazaki et al., 2014; Fonseca et al., 2015). There-
fore, serotonin seems to be involved in processing different kinds
of costs, which could be generalized to effort (Meyniel et al.,
2016). Alternatively, effort processing might be controlled by
noradrenaline because locus ceruleus activity was related to both
the mental and physical effort required by upcoming action and
reflected in pupil dilation (Alnzs et al., 2014; Joshi et al., 20165
Varazzani et al., 2015).

We acknowledge that our demonstration has limitations, in
particular regarding the exact mechanisms underlying the effects
of dopaminergic medication at the cellular and molecular level.
Superficially, our results agree well with a wealth of physiological
recordings linking dopamine to reward prediction or RPE
(Schultz et al., 1997; Waelti et al., 2001; Satoh et al., 2003; Bayer
and Glimcher, 2005; Tobler et al., 2005) and showed that dopa-
minergic signals are more sensitive to reward than effort (Gan et
al., 2010; Pasquereau and Turner, 2013; Varazzani et al., 2015).
However, how systemic medications affect dopaminergic signals
remains unclear; in particular, whether they only enhance tonic
dopaminergic activity or also boost phasic responses is still a
matter of debate. The issue is complicated by the fact that we
pooled patients who were taking medications with different
modes of action, such as metabolic precursors (levodopa) and
receptor agonists (notably pramipexole and bromocriptine). In
addition, the polymorphism of dopamine-related genes is known
to induce some variability in medication effects (Frank et al.,
2007a; Klein et al., 2007; den Ouden et al., 2013), which was not
assessed here because we did not genotype the patients.

Finally, we could not establish any link between medication
effect (improved reward learning) and clinical variables, which
might question the clinical interest of our finding. The absence of
correlation with anti-parkinsonian effect (i.e., change in UPDRS
score) suggests that the experimental result is not due to the
alleviation of motor symptoms. Unfortunately, we did not mea-
sure the anti-apathetic effect (i.e., change in Starkstein score),
which correlated with enhanced reward sensitivity in our previ-
ous study (Le Bouc et al., 2016). The amplification of reward
sensitivity by dopaminergic medication, which we replicated
here, might not only enhance incentive motivation (when poten-
tial reward is presented before action initiation), but also positive
reinforcement (when actual reward is presented after action
completion). A better sensitivity to positive feedback might have
pervasive effects, not only on mood, but also on behavioral ad-
aptation to motor, cognitive, or social challenges. These putative
consequences still need to be evaluated properly.
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