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Viewpoints

On Myelinated Axon Plasticity and Neuronal Circuit
Formation and Function
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Studies of activity-driven nervous system plasticity have primarily focused on the gray matter. However, MRI-based imaging studies have
shown that white matter, primarily composed of myelinated axons, can also be dynamically regulated by activity of the healthy brain.
Myelination in the CNS is an ongoing process that starts around birth and continues throughout life. Myelin in the CNS is generated by
oligodendrocytes and recent evidence has shown that many aspects of oligodendrocyte development and myelination can be modulated
by extrinsic signals including neuronal activity. Because modulation of myelin can, in turn, affect several aspects of conduction, the
concept has emerged that activity-regulated myelination represents an important form of nervous system plasticity. Here we review our
increasing understanding of how neuronal activity regulates oligodendrocytes and myelinated axons in vivo, with a focus on the timing
of relevant processes. We highlight the observations that neuronal activity can rapidly tune axonal diameter, promote re-entry of
oligodendrocyte progenitor cells into the cell cycle, or drive their direct differentiation into oligodendrocytes. We suggest that activity-
regulated myelin formation and remodeling that significantly change axonal conduction properties are most likely to occur over time-
scales of days to weeks. Finally, we propose that precise fine-tuning of conduction along already-myelinated axons may also be mediated
by alterations to the axon itself. We conclude that future studies need to analyze activity-driven adaptations to both axons and their

myelin sheaths to fully understand how myelinated axon plasticity contributes to neuronal circuit formation and function.
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Introduction

Approximately half of the volume of the human CNS is white
matter (WM), which is largely composed of myelinated axons.
The presence of concentric wraps of myelin membrane around
axons in our nervous system can greatly increase their conduc-
tion velocity (CV) compared with unmyelinated axons of the
same size (Waxman and Bennett, 1972). Furthermore, variation
in myelin sheath length and thickness has predictable effects on
CV (Hursh, 1939; Smith and Koles, 1970; Waxman, 1980; Seidl,
2014; Arancibia-Cércamo et al., 2017). Additionally, myelin en-
ables energetically efficient impulse propagation by restricting
the regeneration of action potentials to the unmyelinated gaps
between consecutive sheaths called nodes of Ranvier (Sherman
and Brophy, 2005; Hartline and Colman, 2007; Chiu, 2011).
However, the generation of myelin itself is costly, and it is thought
that it takes months to recoup the initial energy invested in mak-
ing a myelin sheath from savings in conduction efficiency (Harris
and Attwell, 2012). Indeed, not all axons in our CNS are myelin-
ated, and those that are, can be myelinated at different times in
life. For example, histological studies have indicated that spinal
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cord axons, essential for basic motor functions, are myelinated
around birth in humans; whereas cortical axons, involved in ex-
ecutive functions, may be myelinated decades later (Flechsig,
1896; Yakovlev and Lecours, 1967; Benes et al., 1994; Miller et al.,
2012). This is supported by magnetic resonance imaging (MRI)
analyses, which show ongoing growth and development of WM
tracts well into adulthood (Giedd et al., 1999; Sowell et al., 2003;
Lebel et al., 2008; Glasser and Van Essen, 2011; Krogsrud et al.,
2016). The life-long importance of myelin for circuit formation
and function is underscored by the severity of neurodevelopmen-
tal, neurodegenerative, and neuropsychiatric diseases associated
with its disruption, such as leukodystrophies, schizophrenia,
multiple sclerosis, and amyotrophic lateral sclerosis, among an
increasing number of others (Compston and Coles, 2008; Fields,
2008; Y. Lee et al., 2012; Philips and Rothstein, 2014; Pouwels et
al., 2014; Zeidan-Chulia et al., 2014; Huang et al., 2015; Mighdoll
et al., 2015; Miyata et al., 2015; Olmos-Serrano et al., 2016).

In the CNS, myelin is made by oligodendrocytes, which can
make numerous myelin sheaths on multiple axons (Sherman and
Brophy, 2005). Oligodendrocytes derive from oligodendrocyte
progenitor cells (OPCs), also known as NG2 cells, which are pres-
ent throughout our CNS from birth through death (Bergles and
Richardson, 2015; Nishiyama et al., 2016). This persistence of
OPCs allows not only the generation of new myelinating oligo-
dendrocytes in the healthy adult brain, but also the regeneration
of myelin following damage or disease (Zawadzka et al., 2010;
Dimou and Gétz, 2014). Recent evidence has indicated that my-
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elin made in adulthood in humans arises from a combination of
the production of new oligodendrocytes and the remodeling of
existing myelin (Yeung et al., 2014). Supporting the possibility
that myelin sheath remodeling may take place is evidence that
mature myelin sheaths can be stimulated to renew growth in
the adult, long after their initial formation (Flores et al., 2008;
Snaidero et al., 2014; Jeffries et al., 2016). It is now clear that
neuronal activity regulates many aspects of CNS myelination
(Demerens et al., 1996; Makinodan et al., 2012; Gibson et al.,
2014; Mensch et al., 2015). Indeed, the concept has recently
emerged that activity-regulated myelination might play an im-
portant role in dynamically modulating neuronal circuit func-
tion. Supporting evidence has derived from two principal lines of
investigation: MRI-based studies of how physiological brain ac-
tivity relates to WM structure, and mechanistic investigations of
myelination in vitro and in vivo. Here we review recent insights
into how neuronal activity regulates WM, the oligodendrocyte
lineage, and myelinated axons in the healthy nervous system
from development through adulthood. We then focus on how
such interactions might affect the formation and function of neu-
ronal circuits in vivo.

The healthy WM is more dynamic than previously thought
Many MRI-based studies of neural plasticity in humans have
focused on gray matter (GM) and revealed significant structural
and functional plasticity in response to neuronal activity, now
thought to underlie cognitive functions such as learning and
memory (Zatorre et al., 2012). Attention to WM has been more
recent, and to date has focused on structural MRI-based analysis.
Over the past decade or so, we have begun to understand that
WM structure is significantly dynamic and responsive to physio-
logical experience, and that WM adaptations in the healthy brain
may represent a hitherto unappreciated form of neural plasticity
(Fields, 2005, 2015; Wang and Young, 2014).

Most MRI studies on WM to date have used diffusion tensor
imaging (DTI), a method that provides quantitative measures of
the directionality of water diffusion. In WM, water does not
diffuse unconstrained in all directions; instead it occurs pref-
erentially along myelinated axons (anisotropically). Myelin
contributes to anisotropy because it prevents water diffusion
transversally to the axon. Thus, an increase in anisotropy can be
inferred to reflect an increase in myelination (Zatorre et al., 2012;
Roberts et al., 2013); although modulation of numerous compo-
nents of WM can influence anisotropy, as will be discussed below.
A seminal cross-sectional WM diffusion MRI study found that
expert pianists had significantly increased anisotropy in impor-
tant tracts mediating bimanual motor coordination and connect-
ing auditory regions (Bengtsson et al., 2005). Long-term practice
in other cognitive modalities, such as attention and working
memory, has also been associated with anisotropy changes in
relevant WM tracts (B. Lee et al., 2010; Hu et al., 2011).

Given the years-long duration of repetitive training-induced
neuronal activity, such cross-sectional studies are not informa-
tive about physiological alterations occurring on shorter time-
scales. Furthermore, these analyses cannot disentangle whether
physiological activity actually causes structural WM changes or
whether prior WM structural differences facilitate learning and
performance. In contrast, longitudinal studies examine brain
structure before and after learning a task to study shorter-term
activity-induced structural changes. Seminal longitudinal studies
used juggling, a complex visuomotor skill that requires bimanual
coordination, grasping, and visual tracking, and showed that a
week of training induces an increase in volume in cortical GM
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(Draganski et al., 2004; Boyke et al., 2008; Driemeyer et al., 2008).
Interestingly 6 weeks of training increased anisotropy in the
underlying WM, which lasted for at least 4 weeks after training
stopped (Scholz et al., 2009). Learning a computer-based task
that required similar skills also increased anisotropy in the same
region (Lakhani et al., 2016). Training in other cognitive modal-
ities, such as working memory (Takeuchi et al., 2010), spatial
learning (Hofstetter et al., 2013), reading ability (Keller and Just,
2009), or language acquisition (Schlegel et al., 2012), also elicited
WM changes after days to weeks of training.

A remarkable finding of some longitudinal studies is that
structural WM plasticity can also occur in response to brief stim-
uli and over short timescales. For instance, two 45 min sessions of
training in a whole-body balancing task, spaced a week apart,
induced changes in volume in frontal and parietal brain areas and
in the adjacent WM regions after the second session (Taubert et
al., 2010). In other studies, subjects scanned just before and just
after 2 h of training in a computer game that stimulates spatial
learning showed changes in the hippocampus (Sagi et al., 2012),
and in its main WM projection, the fornix (Hofstetter et al.,
2013). Similar changes occurred in rats trained for 1 d in the
Morris water maze (Hofstetter et al., 2013). In both humans and
rats, the extent of WM changes correlated with GM changes
in associated regions (Hofstetter et al., 2013), suggesting that
activity-regulated adaptations take place in connected regions,
potentially along specific circuits, which span GM and WM.

Collectively, these studies highlight how dynamic the healthy
WM can be: responsive within hours, following even moderate
stimuli. If WM changes were due solely to myelin dynamics, this
would imply a very high rate of myelin synthesis and/or turnover,
which is not easy to reconcile with the high energetic demand of
myelin biosynthesis and with the timing of myelination (dis-
cussed below). This begs the question: what are the cellular cor-
relates of WM structural changes?

From WM to cells

In addition to allowing inference on the myelination status of
WM tracts, changes in anisotropy can also, in principle, be caused
by alterations to axonal diameter, axon density, and to WM com-
ponents beyond myelinated axons, such as astrocytes, OPCs, mi-
croglia, and the vasculature (Zatorre et al., 2012; Walhovd et al.,
2014). MRI analyses provide only a low resolution signature that
includes all of these components: for instance, a WM volume of a
typical human DTT voxel size (2 mm?) has been approximately
estimated to contain up to 5 million axons (which can be quite
diverse in morphological and functional properties); 700,000 oli-
godendrocytes; 180,000 astrocytes (whose processes may occupy
as much volume as myelin); 52,000 OPCs; and 76,000 microglia
(Walhovd et al., 2014). Furthermore, essentially all of these re-
spond to changes in neuronal activity (Hawrylak and Greenough,
1995; Ishibashi et al., 2006; Braun et al., 2009; Schafer et al., 2012;
Yuen et al., 2014; Sun et al., 2016; Hasel et al., 2017). Thus, it
remains challenging to define what the precise underlying cellu-
lar correlates of these MRI changes occurring in response to brain
activity are. Nevertheless, studies in animal models, which enable
histological analyses to follow-up on specific MRI changes, have
supported the premise that alteration to myelin does indeed oc-
cur following stimulus-induced neuronal activity. Rats scanned
the day before and the day after a 5-d-long spatial learning task
show increased anisotropy in the corpus callosum (Blumenfeld-
Katzir etal., 2011). Similarly, rats trained in a skilled reaching task
over the course of 11 d also show increased anisotropy in the
relevant subcortical WM region (Sampaio-Baptista et al., 2013).
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In both cases, histological follow-up show increased myelin basic
protein staining in the relevant areas. These studies suggest that
broad changes in myelination are indeed likely to represent one
component of WM plasticity, at least over days-long timescales.
How might activity-regulated myelination be mediated at a cel-
lular level to regulate nervous system function?

Neuronal activity regulates multiple stages of
oligodendrocyte development and myelination

In parallel to MRI-based approaches, mechanistic studies have
now revealed that neuronal activity can regulate many aspects of
oligodendrocyte lineage behavior and myelination (Baraban et
al., 2016; Mount and Monje, 2017). These studies encompass
those performed in vitro and in vivo, in developing systems and in
adulthood, and with both physiological and nonphysiological
manipulations of activity. Together these analyses reveal many
cellular interactions between axons and the oligodendrocyte
lineage that could contribute to WM plasticity in the human
brain.

OPCS

OPCs are specified during embryogenesis in discrete neural tube
domains from where they migrate and proliferate to colonize the
CNS (Rowitch, 2004; Richardson et al., 2006). OPCs remain pres-
ent throughout life, representing 3—10% of total cells in the CNS
(Dawson et al., 2003; Nishiyama et al., 2009; Richardson et al.,
2011; Dimou and Gotz, 2014). Interestingly, in vivo imaging
based studies have indicated that the dynamic activity of OPCs
appears conserved from the embryonic zebrafish spinal cord to
the adult mammalian cortex (Kirby et al., 2006; Hughes et al.,
2013), suggesting that developmental mechanisms regulating
their lineage progression may be similar not only between spe-
cies, but also at distinct times of life. Extrinsic factors, including
neuronal activity, regulate OPC development (Barres and Raff,
1999; Bergles and Richardson, 2015). The ability of OPCs to sense
and respond to neuronal activity is mediated by their expression
of a variety of neurotransmitter receptors (Karadottir and At-
twell, 2007) and the formation of functional synapses between
their processes and axons, observed from early stages of develop-
ment through to adulthood (for review, see Paukert and Bergles,
2006; Sakry et al., 2011; Almeida and Lyons, 2014; Dimou and
Gallo, 2015). OPCs appear to remain responsive to activity not
only in development, but also in the mature CNS. For example,
high-frequency electrical stimulation of corticospinal neurons in
adult rats induced OPC proliferation and differentiation in the
spinal cord (Lietal., 2010). More recently, optogenetic activation
of motor cortex projection neurons both in juvenile and in adult
mice promoted proliferation of OPCs and neural precursors in
the premotor cortex and associated subcortical WM in the corpus
callosum (Gibson etal., 2014). Remarkably, a 30 min stimulation
paradigm was sufficient to cause a significant number of OPCs to
re-enter the cell cycle, fourfold over unstimulated controls, de-
tectable just 3 h later. Given estimates of cell cycle time for OPCs
at a similar stage (Young et al., 2013), this response would be
predicted to lead to a significant increase in OPC number over the
course of the following days. A more protracted period of stimu-
lation additionally drove oligodendrocyte differentiation over a
period of weeks, which was accompanied by increased myelin
protein expression and myelin sheath thickness in the corpus
callosum (Gibson et al., 2014). This suggests that distinct re-
sponses of oligodendrocyte-lineage cells to neuronal activity may
occur with different timelines: a rapid re-entry of OPCs into the
cell cycle within hours, and a more protracted oligodendrocyte
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differentiation-myelination response occurring over days to
weeks (Fig. 1).

Additional roles of OPCs

Emerging evidence suggests that at least some OPCs perform
additional functions that are independent of generating differen-
tiated oligodendrocytes. For instance, OPCs can contact nodes of
Ranvier (Butt et al., 1999; Serwanski et al., 2017), as well as axon-
dendritic synapses, where they may help maintain potassium
homeostasis in the extracellular space during periods of high-
frequency firing (Maldonado et al., 2013), and indirectly regulate
glutamate homeostasis at synapses by modulating astrocytic
glutamate uptake (Birey et al., 2015). OPCs have also been impli-
cated in regulating neuronal long-term potentiation and post-
synaptic neuron AMPA receptor (AMPAR) composition via
activity-driven cleavage of the NG2 proteoglycan (Sakry et al.,
2014), or secretion of neuromodulatory factors (Sakry et al.,
2015). Axon-OPC synapses may allow OPCs to perform their
additional functions with high temporal and spatial precision,
independent of or before differentiation and myelination itself.
For instance, in the corpus callosum, additional OPCs generated
by stimulus-induced proliferation may take days to start differ-
entiating, but could in the meantime help buffer ion or neu-
rotransmitter homeostasis near more actively firing axons (Fig.
1). Alternatively, it is possible that a subset of OPCs contribute to
generating myelinating oligodendrocytes and other(s) to medi-
ating these additional roles.

Oligodendrocyte differentiation

The differentiation of OPCs into oligodendrocytes is regulated by
intrinsic and extrinsic factors (Zuchero and Barres, 2013). Be-
cause oligodendrocytes have a default intrinsic propensity to dif-
ferentiate, both in vitro (Zeller et al., 1985; Dubois-Dalcq et al.,
1986; Kachar et al., 1986; Knapp et al., 1987; Tang et al., 2000) and
in vivo (Ueda et al., 1999; Almeida and Lyons, 2016), extrinsic
signals are generally considered as regulators of differentiation,
rather than being completely required for differentiation. A lineage-
tracing study in the young and juvenile rodent CNS identified a
window of 3-8 d after OPC division in which each cell initiates
differentiation (Hill et al., 2014), in line with the protracted pe-
riod of differentiation following optogenetic stimulation of OPC
proliferation. During this window, newly differentiating oligo-
dendrocytes appear particularly sensitive to extrinsic regulation,
including by neuronal activity: sensory-deprivation, for instance,
reduced the survival of newly differentiating oligodendrocytes
(Hilletal.,2014). A role for activity in regulating survival of newly
differentiating oligodendrocytes has recently been supported
by analysis of animals in which glutamate-mediated signaling
through AMPARs was ablated in the oligodendrocyte lineage.
This led to a transient 20—-25% reduction in differentiated oligo-
dendrocyte and myelinated axon number in the corpus callosum
at postnatal days (P)14—P21, following increased apoptosis of
newly differentiating oligodendrocytes (Kougioumtzidou et al.,
2017). Interestingly, the converse manipulation of increasing
neuronal activity in the corpus callosum by electrical stimulation
in young adults elicited distinct responses by oligodendrocytes
according to firing frequency-promoting differentiation at lower
frequencies and promoting OPC proliferation at higher frequen-
cies (Nagy et al., 2017). Given that myelination can take place
throughout life, it will be important to determine how cells of the
oligodendrocyte lineage respond to different patterns of activity
in yet other circuits at distinct stages.
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Potential timeline of activity-related changes to GM and WM. Minutes: functional synaptic adaptations (e.g., potentiation and depression) as well as structural adaptations can occur
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within milliseconds to minutes of stimulus onset in GM (7). Axons can grow in diameter within tens of minutes, potentially both in GM and WM (2). Hours: new oligodendrocytes can differentiate
rapidly in the WM (3), and OPCs can also re-enter the cell cycle within several hours (4 ). MRI-detected WM changes likely reflect changes in non-myelin components, e.g., axon diameter and OPCs.
Days: dividing OPCs differentiate over days, and together with rapidly differentiated oligodendrocytes may provide important metabolic support to axons (5). In parallel, OPCs can contribute to
functional homeostasis at synapses (6 ). MRI-detected WM changes may reflect an increase in cell number following OPC proliferation, and/ or myelination. To be determined: it remains unclear over
what timescales dynamic changes to nodes of Ranvier (7), axon diameter and myelin remodeling (8) take place along myelinated axons or how such changes affect one another or corresponding

MRI signatures.

In complement to studies that directly manipulate neuronal
activity by genetic, optogenetic or electrophysiological approaches,
behavior-driven manipulations provide the most physiologically
relevant way to assess the effect of activity on myelinated axons. Two
recent behavior-driven studies examined how motor learning
affects oligodendrocyte lineage behavior in vivo. McKenzie et al.
(2014) studied adult mice learning how to run in a complex wheel
with irregularly spaced rungs. Initially, mice have great difficulty
running in a complex wheel, but become proficient over a week
with voluntary training. Remarkably, mice that are genetically
prevented from differentiating new myelinating oligodendrocytes in
adulthood, with no disruption of developmental myelination or
locomotor abilities, were impaired in their performance on the
complex wheel (McKenzie et al., 2014). Thus, oligodendrocyte
differentiation may underlie some aspects of the motor learning
process. In an important follow-up study, Xiao et al. (2016)
showed that these mice had impaired performance on the com-
plex wheel within a matter of hours. Using a novel marker of
newly differentiating oligodendrocytes, Xiao et al. (2016) showed
that when control mice learn to run in a complex wheel, G1-
paused OPCs rapidly transition into newly differentiating oligo-
dendrocytes without proliferation, specifically in task-relevant
regions, e.g., within 2.5 h in the subcortical WM. Over the course
of the training week, the OPC population did exhibit an increase
in proliferation, which generated a later secondary wave of oligo-
dendrocyte differentiation, in line with the previously noted

days-long timeline of differentiation following OPC division. Im-
portantly, myelination remains to be assessed in the context of
such motor training, both in the hours-long response mediated
by G1-paused OPCs that undergo rapid differentiation (Fig. 1),
and in the more protracted days-long proliferation—differentia-
tion response. It will be interesting to determine what proportion
of OPCs exists in a G1-paused state (potentially poised to differ-
entiate), in different WM tracts, and over the life-course.

Additional roles for differentiated oligodendrocytes

Although differentiated oligodendrocytes produce myelin sheaths
that regulate conduction, recent evidence suggests that they may
also perform additional roles. In the mouse GM, for instance, a
significant proportion of myelin is deposited on inhibitory in-
terneurons in small discontinuous patches (Micheva et al., 2016;
Stedehouder et al., 2017), and it remains to be determined
whether or how such myelin would impact conduction. A funda-
mental emerging concept is that oligodendrocytes also provide
significant metabolic support to the axons they myelinate. Oligo-
dendrocytes are thought to shuttle the glycolytic byproducts lac-
tate and pyruvate to the associated axon, via oligodendroglial
monocarboxylate transporters MCT1 and axonal MCT?2, where
they serve as substrates for aerobic ATP production (Fiinfschil-
ling et al., 2012). Indeed, MCT'1 loss-of-function causes axonal
pathology while sparing oligodendrocytes (Y. Lee et al., 2012).
Remarkably, a recent study uncovered a link between axonal ac-
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tivity and metabolic support, whereby NMDA receptor (NMDAR)
activation in oligodendrocytes stimulates glucose uptake by pro-
moting surface localization of the glucose transporter Glutl, in-
creasing glycolysis (Saab et al., 2016). The authors propose that
the resulting lactate and pyruvate are then shuttled to axons via
MCT1/2 to maintain energy supplies. Interestingly, axonal tracts
with NMDAR-deficient oligodendrocytes have essentially nor-
mal myelination (De Biase et al., 2011), but they recover poorly
from energy deprivation or increased energy demand (e.g., in
response to high-frequency firing) and also develop age-related
axonopathy (Saab et al., 2016). These results suggested the hy-
pothesis that NMDARs in oligodendrocytes serve to sense gluta-
mate to regulate the transfer of metabolic substrates to the axon.
Further additional functions for oligodendrocytes have been sug-
gested by two recent studies, namely regulating potassium ho-
meostasis near the somas of pyramidal neurons (Battefeld et al.,
2016), and inducing clustering of sodium channels along axons
into “pre-nodes”, which can speed up conduction independently
of myelination (Freeman et al., 2015). It will be important in
future studies to consider all of these additional roles. For in-
stance, in the corpus callosum, oligodendrocytes that differenti-
ate rapidly following motor learning may not fully myelinate
entire axons within hours, but their initial interactions with ax-
ons may provide important metabolic support (Fig. 1) to help
facilitate a higher firing rate (Krasnow and Attwell, 2016; Saab et
al., 2016; Trevisiol et al., 2017), or begin clustering ion channels
to accelerate conduction.

Myelin sheath formation, growth, and remodeling

Oligodendrocytes exhibit a default propensity to make myelin:
in vitro, they can extend flat sheets with extensive myelin protein
expression (Bradel and Prince, 1983; Rome et al., 1986; Knapp et
al., 1987), or even actual myelin sheaths around inert axon-
shaped plastic fibers in the absence of specific molecular cues (S.
Lee et al., 2012; Bechler et al., 2015). In vivo, the environment is
more complex: only some axons are myelinated, and axons of
distinct neuronal subtypes can be myelinated by different mech-
anisms (Koudelka et al., 2016) and at very different times. The
fact that axons are myelinated in a stereotyped manner over time,
and that WM structure appears responsive to neuronal activity
suggests that extrinsic axonal cues are likely to coordinate if,
when, and to what extent specific axons should be myelinated,
both during early development and in the adult. Newly differen-
tiated oligodendrocytes extend numerous highly dynamic pro-
cesses that interact with multiple prospective axons in their
environment. Live imaging studies in the developing zebrafish
spinal cord have shown that individual oligodendrocytes initially
overproduce short (~5 um long) myelin sheaths, some of which
become stabilized and others retracted during a critical dynamic
window of ~5 h (Czopka et al., 2013), a similar timescale to
initial sheath generation by individual mammalian oligodendro-
cytes in vitro (Watkins et al., 2008). After this period of axonal
selection, no new sheaths are made by individual oligodendro-
cytes and very few are retracted. There is now good evidence that
vesicular release of neurotransmitters (and possibly other sig-
nals) can bias myelin sheath formation and axon selection by
oligodendrocytes. For example, preventing vesicular release from
individual neurons can reduce the number of sheaths made on
their axons in zebrafish (Hines et al., 2015; Koudelka et al., 2016),
which was also observed in mammalian neurons in vitro (Wake et
al., 2015). Interestingly, this functional regulation of myelination
by activity appears specific to only some neuronal subtypes in
vivo (Koudelka et al., 2016). In addition to biasing myelination to
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certain axons, activity-driven vesicular release may also regulate
the total amount of myelin made by individual oligodendrocytes,
at least during the initial period of myelin sheath formation. For
example, global abrogation of vesicular release in zebrafish
embryos reduces the number of sheaths made by individual oli-
godendrocytes during this period, whereas promoting neuronal
activity increases myelin sheath number per cell (Mensch et al.,
2015). However, it remains unclear whether these observations
simply reflect a role of activity in regulating the local dynamics of
myelinating processes, or whether activity can also influence a
central program in the oligodendrocyte that sets the overall gain
of myelin production. Future studies that can accurately assess
myelin sheath number, length, and thickness and thus total my-
elin production of individual cells over time will be required to
investigate these possible roles of activity. Although the studies
noted here focus on developmental myelination, we suggest that
the basic principles of activity-regulated myelination may apply
throughout life, regardless of an individual oligodendrocyte’s
date of birth (Fig. 1); although further studies in adults will be
required to test this prediction.

Once formed, stabilized myelin sheaths grow around and
along axons, with sheath growth occurring at the direct interface
with the axon (Snaidero et al., 2014). In zebrafish, the formation
and growth of myelin sheaths along the length of individual ax-
ons can now be followed over time using a novel reporter that
indicates the position and length of myelin sheaths on axons
(Koudelka et al., 2016). The analyses of the first axons myelinated
in the zebrafish CNS have revealed myelination along the entire
length of axons just 2-3 mm long took several days (Koudelka et
al., 2016). Although these are developmental timelines, de novo
myelination of entire axons in adult is likely to take as long, or
even longer, given that cellular processes tend to slow with age, as
evidenced by the greatly increased cell cycle times of OPCs in
adulthood (Young et al., 2013). Faster myelination of entire ax-
ons would require synchronous oligodendrocyte differentiation
and myelination along the length of the axons, e.g., if G1-paused
OPCs were poised to differentiate along a specific tract, but such
a scenario has not been observed in vivo.

In addition to de novo myelination, changes to already myelin-
ated axons, e.g., in myelin sheath length or thickness, may also
affect circuit function. High-resolution 3D reconstruction of
growing myelin sheaths revealed the presence of a network of
cytoplasmic channels during myelination, which may be the
transport routes for myelin components from the cell to the
myelin sheath. These channels are not detected in mature sheaths,
suggesting that they close as sheaths stop growing (Snaidero et al.,
2014). Interestingly, forced activation of the Akt signaling path-
way in adult myelinating oligodendrocytes in mice resulted in the
reopening of cytoplasmic channels and the subsequent renewed
growth of mature myelin sheaths (Snaidero et al., 2014). This
occurred over days to weeks, and may very well be a mechanism
co-opted by neuronal activity to induce sheath regrowth and
remodeling. Myelin sheaths retain neurotransmitter receptors in
the innermost layer at the site of interaction with the axon, where
they have been proposed to enable mature oligodendrocytes to
sense neurotransmitter release (Micu et al., 2016). Indeed, abro-
gation of vesicular release from individual axons results in shorter
myelin sheaths both in developing zebrafish (Hines et al., 2015;
Koudelka et al., 2016) and rodents (Wake et al., 2015; Etxeberria
et al., 2016), suggesting a second independent role of activity in
regulating myelin growth, after formation. However, the dynam-
ics of myelin remodeling in vivo are unclear, and it remains to be
demonstrated whether mature sheaths are indeed responsive to
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neuronal activity and how any such changes would actually affect
conduction properties or WM signatures.

Two recent behavior-driven studies have indicated that phys-
iological activity can also regulate myelin sheath formation and
growth, and importantly that such changes in myelination im-
pact circuit function. Makinodan et al. (2012) studied how social
isolation affects CNS structure and function in juvenile mice.
They identified a period from P21 to P35 during which social
isolation led to pronounced behavioral defects and disruption to
oligodendrocyte morphology in the prefrontal cortex (PFC). Al-
though their number was normal, oligodendrocytes in the PFC of
socially isolated mice had simpler morphologies, with fewer,
shorter, and thinner myelin sheaths, and a corresponding de-
creased expression of myelin genes (Makinodan et al., 2012).
These socially isolated mice had impairments in sociability and
working memory, two PFC-dependent behaviors. Interestingly,
the myelin alterations preceded the behavioral impairments, sug-
gesting that patterns of myelination can affect neural circuit func-
tion. This suggestion was supported by a phenocopy experiment
wherein conditional ablation of the receptor tyrosine kinase gene
erbb3 specifically in oligodendrocytes from P19 phenocopied
both the PFC myelination defects and behavioral impairments of
socially isolated animals (Makinodan et al., 2012). Interestingly,
the ligand for the erbb3 receptor, neuregulinl, is known to be
regulated by neuronal activity and is downregulated following
social isolation (Liu et al., 2011; Makinodan et al., 2012). Further-
more, neuregulin is capable of switching the myelination of oli-
godendrocytes to being responsive to neuronal activity in vitro
(Lundgaard etal., 2013), suggesting a possible molecular basis for
these observations.

A parallel study of how social isolation affects myelination
showed that in adult animals, protracted isolation for 8 weeks
also leads to alterations of myelin gene expression and myelina-
tion in the PFC (Liu et al., 2012). Remarkably, these phenotypes
could be rescued by rehousing in a social environment, or, as
shown in a follow-up study, by treating animals with the promy-
elinating drug clemastine (Liu et al., 2016). These studies indicate
that activity regulates myelination in juveniles and adults in a
similar manner, but over different timescales. Future studies that
monitor the myelination status of specific axons and circuits over
time will be required to determine to what extent social isolation,
or indeed any form of neuronal activity, affects de novo myelina-
tion or remodeling of already-myelinated axons. Nonetheless,
these studies of social isolation and myelination lend further sup-
port to the idea that neuronal activity dynamically modulates
myelination; that this, in turn, affects neuronal circuit function,
and thus that activity-regulated myelination represents a form of
functional plasticity.

Neuronal activity also regulates axon structure

In addition to the fact that neuronal activity can regulate oligo-
dendrocytes and myelination, there is now emerging evidence
that the structure and molecular composition of the axon itself is
responsive to experience. For example, unmyelinated axons were
recently observed to be dynamically regulated by both high-
frequency and physiological firing ex vivo, wherein increased ac-
tivity led to a progressive enlargement of axons in diameter over
tens of minutes (Chéreau et al., 2017; Fig. 1). Interestingly, axon
diameter is now known to be a core determinant of myelination
in the CNS (Almeida et al., 2011; S. Lee et al., 2012; Goebbels et
al., 2017), as has long been known in the peripheral nervous
system (Voyvodic, 1989). Thus, primary and rapid regulation of
axon diameter in response to neuronal activity may in fact trigger
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later de novo myelination (Fig. 1), which will be important to
investigate in the future.

In addition to the observation that neuronal activity can reg-
ulate the diameter of unmyelinated axons, an increase in axonal
diameter has also been observed along myelinated axons of the
auditory brainstem, coincident with the onset of hearing. Indeed,
when the onset of auditory stimuli is experimentally delayed, the
growth in diameter of the same myelinated axons is prevented,
until later restoration of sensory input (Sinclair et al., 2017),
demonstrating a role for activity in regulating the diameter of
myelinated axons as well. Thus, activity may contribute to the
dynamic regulation of both de novo myelination and myelinated
axon remodeling via modulation of axon diameter (Fig. 1).

Indeed, alterations to axonal diameter may also contribute to
the WM signatures observed by MRI following physiological
brain activity in humans. For example, in a longitudinal study of
WM plasticity following meditation, anisotropy-based measures
thought to reflect an increase in axon diameter were observed
before those reflecting an increase in myelination (Tang et al.,
2012). However, how changes in axonal organization and diam-
eter affect various aspects of MRI-based signatures is complex
and context dependent (Beaulieu, 2002). Furthermore, if changes
in axon diameter lead to subsequent changes in myelination
along WM tracts, the anisotropy-based signatures reflecting such
changes are likely to dynamically change over time. Given the
importance of dynamic changes in WM structure in both the
healthy nervous system and in disease (Beaulieu, 2002), there is
an important drive in the community to develop increasingly
refined structural MRI analyses (Stikov et al., 2015; Lerch et al.,
2017; Wu and Miller, 2017) and to better correlate MRI signa-
tures with actual cellular alterations. Furthermore, the emer-
gence of functional MRI analysis of WM tracts (Gawryluk et al.,
2014; Peer et al., 2017; Warbrick et al., 2017) will further reveal
the full extent of WM dynamics and the relative contribution of
myelin and non-myelin adaptations.

How does regulation of myelination and axonal structure and
composition affect neuronal circuit function?

In principle, myelinated axon structure and composition can reg-
ulate neuronal circuit function in several ways. Myelination is
primarily thought to regulate CV. For instance, de novo myelination
of previously unmyelinated axons accelerates CV. In addition, regu-
lation of the number, distribution, length, and thickness of myelin
sheaths along myelinated axons could be used to fine-tune CV.
This is because regulation of the geometric properties of myelin
sheaths also regulate CV (Hursh, 1939; Smith and Koles, 1970;
Waxman, 1980; Wu et al., 2012; Seidl, 2014; Arancibia-Carcamo
etal.,, 2017). Recent studies have indicated surprising diversity in
the pattern of myelination along the length of at least some axons,
whereby myelin sheaths are irregularly spaced and often interspersed
by very large unmyelinated stretches (Tomassy et al., 2014). How
such a pattern of myelination relates to the axons’ function re-
mains to be determined. However, there is evidence that precise
regulation of myelination occurs in at least some other specific
circuits in vivo to meet specific conduction requirements (Lang
and Rosenbluth, 2003; Salami et al., 2003; Ford et al., 2015; Seidl
and Rubel, 2016). For instance, encoding the spatial location of
an auditory stimulus requires uniform conduction times along
the two main branches of individual cochlear neuron axons to
coincidentally deliver action potentials to distinct target neurons
in opposite hemispheres. To compensate for the different lengths
of the collateral branches projecting to each hemisphere, longer
myelin sheaths are found along the longer collateral, which is
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thought to help increase its CV, equalize conduction times along
each collateral, and thus facilitate coincident impulse arrival
(Seidl et al., 2010; Seidl and Rubel, 2016). Thus, dynamically
changing CV along specific axons by refining myelination may
alter the coincident arrival of action potentials in postsynaptic
neurons. Changing the arrival of impulses at postsynaptic neu-
rons may also change the balance between excitation and inhibi-
tion, in essence, regulating the firing probability of a neuron. In
some circuits, the order and precise timing of presynaptic and
postsynaptic potentials determine whether potentiation or de-
pression is induced (Feldman, 2012; Markram et al., 2012). In
addition to regulating the speed and timing of conduction, my-
elinated axons may also better sustain high-frequency firing com-
pared with unmyelinated axons (Perge et al., 2012). This could be
due to the possibility that myelin may help support metabolically
demanding high-frequency firing of action potentials (Saab et al.,
2016). Additionally, myelin restricts the regeneration of action
potentials to the very small nodes of Ranvier, which enables rapid
repetitive cycles of axolemma depolarization and repolarization
(Fields, 2008). At the network level, precise regulation of both
conduction timing and firing frequency may be necessary
between neuron populations to generate synchronous or time-
locked firing patterns and oscillations, which have been associ-
ated with numerous higher cognitive functions such as attention,
sleep, or memory (Pajevic et al., 2014). Future studies that com-
bine high-resolution 3D analyses of anatomy with functional as-
sessment of neurophysiology will provide important information
to allow informed modeling of the role of myelin in regulating
emergent properties of neural circuits.

In addition to myelin-driven changes in conduction, activity-
driven regulation of the axon itself can also affect function. In
fact, to modulate conduction and circuit function, it is arguably
simpler, faster, and energetically cheaper to regulate the structure
or composition of the axon, than to remodel myelin made by
numerous independent cells along its length. For example, CV
increases with axon diameter (Hursh, 1939; Matsumoto and Ta-
saki, 1977; Waxman, 1980). Furthermore, fine-tuning CV could
be achieved by changing axonal domains. For example, in axons
of the auditory brainstem, the diameter of nodes of Ranvier in-
creases along the axon, which has been predicted to contribute to
regulation of precise conduction times (Ford et al., 2015). Indeed,
further anatomically-informed modeling studies have indicated
that nodal size and composition can be regulated along myelin-
ated axons to achieve comparable CV alterations to those of
myelin changes, but at a fraction of the energetic cost (Arancibia-
Cércamo et al., 2017). Dynamic alteration of node of Ranvier
structure remains to be visualized in vivo, but nodal length actu-
ally can be fine-tuned by the axon via its own cytoskeleton during
development, and not necessarily by the flanking myelin sheaths
(Brivio et al., 2017). The axon initial segment, where the action
potential is initiated, and which is similar in composition to
nodes, can, in fact, be structurally remodeled in response to ac-
tivity (Grubb and Burrone, 2010; Kuba et al., 2010; Yamada and
Kuba, 2016), to control action potential firing. Thus, modulation
of many aspects of myelinated axons are well poised to have
profound effects on nervous system function (Fig. 1).

To understand how dynamic alterations to myelin and
myelinated axons regulate neuronal circuit function it will be
necessary to concomitantly interrogate the morphological and
functional development of entire individual axons over time in
the context of de novo myelination and remodeling. Ongoing
technical developments will allow detailed reconstruction of the
morphology and ultrastructure of individual myelinated axons
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over time (Wang et al., 2005; Schain et al., 2014; Tomassy et al.,
2014; de Vito et al., 2014), which will help bridge this gap, when
integrated with detailed functional studies.

Final remarks and perspectives
In summary, mechanistic studies have provided numerous in-
sights into the dynamic and adaptive nature of the oligodendro-
cyte lineage and myelination, particularly in response to neuronal
activity. In parallel, MRI studies have provided compelling evi-
dence that brain activity can regulate WM structure in a circuit-
specific manner that implies a role in functional plasticity. In
Figure 1 we provide an overview of the timelines of prospective
activity-driven changes to axonal morphology, the oligodendro-
cyte lineage, and myelinated axon subdomains. We propose that
the effects that occur acutely on the order of minutes to hours are
most likely to represent initial changes to the axon and non-
myelin related changes to OPCs and differentiating oligodendro-
cytes, and those that occur over longer timescales will represent
de novo myelination of axons, myelin remodeling, and further
dynamic alteration to the myelinated axon (Fig. 1). It is essential
to note that myelination is not restricted to WM. Many axons in
the GM are myelinated (Tomassy et al., 2014; Micheva et al.,
2016; Stedehouder et al., 2017). Neurons with myelinated axons
that project through WM tracts will typically have their cell body,
some of their axon and also their distal synaptic terminals in GM
regions. Therefore, future analyses will need to focus on entire
myelinated axons that traverse both GM and WM. Furthermore,
a complete understanding of myelinated axon function will re-
quire study of the structure and composition of the domains of
the axon itself. Therefore, we suggest that the term myelinated
axon plasticity more completely conveys the range of potential
adaptations within these functional units. Given that neuronal
activity can regulate multiple stages of oligodendrocyte lineage
behavior through myelination as well as axonal structure, it is
likely that myelinated axon plasticity plays a central role in many
aspects of the formation and function of neuronal circuits that
remain to be discovered.

Numerous fundamental questions remain to be addressed, for
example:

1. How does myelinated axon plasticity affect axonal conduction
and function?

Changes to axonal diameter, myelination, and the formation of
associated axonal domains changes conduction from graded to
saltatory, but we know little about how the functional properties
of individual axons change throughout these processes. For ex-
ample, does partial myelination already affect conduction or the
ability to sustain high-frequency firing? Similarly, our knowledge
of the functional impact of subsequent myelin remodeling and
refinement of axonal domains along single axons remains un-
clear. Emerging technologies to map and manipulate individual
neurons and their connections coupled with the ability to inter-
rogate function in vivo will be essential to bridge this gap (Fosque
et al., 2015; Joesch et al., 2016; Wanner et al., 2016; Forster et al.,
2017; Hildebrand et al., 2017).

2. Which neuronal subtypes and circuits exhibit myelinated

axon plasticity?

In developing zebrafish, activity-regulated myelination has been
shown to be a property of only specific neuronal subtypes (Koud-
elkaetal., 2016). It will be important to define which neurons and
circuits exhibit myelinated axon plasticity throughout life, and in
response to experience. In addition to neuronal diversity, there is
increasing evidence of diversity in the oligodendrocyte lineage,
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which will be important to consider from the point of view of
circuit formation and function in future studies (Butt et al., 2005;
Kéradottir et al., 2008; Nishiyama et al., 2009; Vigano et al., 2013;
Bechler et al., 2015; Marques et al., 2016).

3. How does myelinated axon plasticity relate to nervous

system growth?

Myelination of certain axons occurs very early in life, long before
the nervous system has grown to its mature adult size. This begs
the question: how is function maintained along individual axons
over time? Do axons grow in both length and diameter in-step
with animal growth, and if so, do individual myelin sheaths fol-
low suit? Or, do individual axons need to be actively remodeled
over time to sustain function, e.g., by addition of new myelin
sheaths as the animal grows? Again, longitudinal live imaging will
address these questions.

4. How flexible is myelinated axon plasticity?

Could adaptations to the structure and function of specific my-
elinated axons during development or following training in a
specific task facilitate the subsequent learning or execution of a
related task? For instance, could fine-motor skills acquired when
learning to play piano also benefit subsequent learning of another
musical instrument? Also, how stable are activity-regulated struc-
tural modifications to myelinated axons? Once made, are they stable
for an indefinite period, or do they require continuous activity to be
maintained, such that myelin sheaths may shrink or be retracted
from axons in disuse (e.g., following social isolation)?

5. How relevant is myelinated axon plasticity to disease?

It is now clear that disruption to myelinated axons is a feature of
many CNS diseases. To what extent could myelinated axon plas-
ticity be used to maintain function during the disease course? For
instance, if axons become demyelinated (e.g., in multiple sclero-
sis), could adaptations to that axon or to other axons in the circuit
compensate to help maintain function? Furthermore, could dis-
ruption to the mechanisms underlying the plasticity of myelin-
ated axons underlie defects in circuit-level communication that
characterize neuropsychiatric conditions?

Future studies that bridge scales of analyses from ultrastruc-
ture to circuit, from molecule to behavior, and from fish to man
will illuminate how myelinated axon plasticity affects neuronal
circuit formation and higher-order function.
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