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Sensory Flow as a Basis for a Novel Distance Cue in Freely
Behaving Electric Fish
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The sensory input that an animal receives is directly linked to its motor activity. Behavior thus enables animals to influence their sensory
input, a concept referred to as active sensing. How such behavior can serve as a scaffold for generating sensory information is of general
scientific interest. In this article, we investigate how behavior can shape sensory information by using some unique features of the
sensorimotor system of the weakly electric fish. Based on quantitative behavioral characterizations and computational reconstruction of
sensory input, we show how electrosensory flow is actively created during highly patterned, spontaneous behavior in Gnathonemus
petersii. The spatiotemporal structure of the sensory input provides information for the computation of a novel distance cue, which
allows for a continuous estimation of distance. This has significant advantages over previously known nondynamic distance estimators
as determined from electric image blur. Our investigation of the sensorimotor interactions in pulsatile electrolocation shows, for the first
time, that the electrosensory flow contains behaviorally relevant information accessible only through active behavior. As patterned
sensory behaviors are a shared feature of (active) sensory systems, our results have general implications for the understanding of (active)
sensing, with the proposed sensory flow-based measure being potentially pertinent to a broad range of sensory modalities.
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Introduction
In the great majority of cases, sensing is an active process during
which some form of sensor or body movement is used to shape

sensory input (Poincaré, 1902; Bajcsy, 1988). The use of internal
models enables animals to predict the sensory consequences of
their motor action (Sperry, 1950; von Holst and Mittelstaedt,
1950; Blakemore et al., 1998; Körding and Wolpert, 2004); mo-
tion thus serves as a tool to actively shape sensory input. Shaping
the sensory input through motion either allows the extraction of
specific features of sensory input or changing the statistics of the
sensory input to align it with the tuning properties of neurons
(Kern et al., 2005; Rucci et al., 2007; Ahissar, 2008; Gordon et al.,
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Significance Statement

Acquisition of sensory information depends on motion, as either an animal or its sensors move. Behavior can thus actively
influence the sensory flow; and in this way, behavior can be seen as a manifestation of the brain’s integrative functions. The
properties of the active pulsatile electrolocation system in Gnathonemus petersii allow for the sensory input to be computationally
reconstructed, enabling us to link the informational content of spatiotemporal sensory dynamics to behavior. Our study reveals a
novel sensory cue for estimating depth that is actively generated by the fishes’ behavior. The physical and behavioral similarities
between electrolocation and other active sensory systems suggest that this may be a mechanism shared by (active) sensory
systems.
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2011; Jung et al., 2011; Clarke et al., 2015). The former reveals
specific features that cannot be sensed if an animal behaves dif-
ferently, and the latter matches input properties to the sensitivity
of the neuronal substrate. This motor aspect of sensing is crucial
for the flexibility and adaptability of sensing (Schnitzler, 1973;
Metzner et al., 2002; Towal and Hartmann, 2006; Diamond et al.,
2008; Schroeder et al., 2010; Wachowiak, 2011; Braun et al., 2012;
Arkley et al., 2014), and is often performed by highly specialized
patterns of movement (i.e., “active sensing strategies”) (Hof-
mann et al., 2013b; Anderson and Perona, 2014) that can be
interpreted as an externalization of the brain’s integrative func-
tions. Here we investigate the spatiotemporal dynamics of behav-
iorally generated sensory input and how this sensorimotor
interaction allows for the extraction of behaviorally relevant in-
formation in the weakly electric fish Gnathonemus petersii.

These fish sense their surroundings by emitting brief (�500
�s) biphasic electric signals (electric organ discharge [EOD])
(Machin and Lissmann, 1958; Harder et al., 1964) that build up a
3D electric field around the animals’ body. Perturbations to this
field caused by nearby objects lead to alterations in the pattern of
transcutaneous currents, termed the “electric image” (EI) (Ras-
now, 1996; Caputi and Budelli, 1998; Rother et al., 2003). This
pattern is sensed with an array of electroreceptors distributed in
the animals’ skin (Harder, 1968; Bacelo et al., 2008). EOD emis-
sion is volitionally controlled in a task-dependent manner (Post
and von der Emde, 1999; Caputi et al., 2003; Jun et al., 2016),
which highlights the importance of timing during electrosensory
acquisition and allows for the “when” in sampling experimentally
to be precisely determined. At the same time, the near-range
nature of active electrolocation (Knudsen, 1975; Snyder et al.,
2007) provides access to the specifics of the sensory environment
that are being sampled (i.e., the “what”). Even though it is possi-
ble to precisely determine these key features of sensing in electro-
location, the spatiotemporal features or the behavioral context of
electrosensory input has yet only rarely been addressed (Nelson
and MacIver, 1999; MacIver et al., 2001; Babineau et al., 2007;
Fotowat et al., 2013).

Here we study motor behavior and its sensory corollaries by
computationally reconstructing the sensory input for a large da-
taset of quantitatively characterized sequences of sensory behav-
ior. In our analysis, we consider both spatial and temporal aspects
of the sensory input and investigate the following: (1) how the
sensory flow is shaped by the animal’s behavior; and (2) how
coherent motor and electromotor behavior aids in sensing
through the generation of dynamic sensory input that contains
information not available through less-structured behavior. Our
study thus begins to uncover the role of sensory flow in active
electroreception in G. petersii and provides evidence for the im-
portance of timing and structured motor patterns in (active)
sensing in general.

Materials and Methods
In this study, we combined a quantitative behavioral characterization of
spontaneous electrolocation behavior with a biophysical model for the
calculation of EIs with the aim of reconstructing the spatial and temporal
dynamics of the electrosensory input.

For statistical tests, the data were tested for normality (Lillifors test),
after which appropriate parametric or nonparametric tests were con-
ducted. Data collection, analysis, and visualization were performed with
MATLAB (version R2011b; RRID: SCR_001622) routines.

Behavior: animals. G. petersii (N � 11; 11 � 2 cm, fish of unspecified
sex) were obtained from a commercial fish dealer and housed sepa-
rately in individual tanks prior data acquisition with a water conduc-
tivity of 100 � 10 �S/cm. At 24 h before beginning the experiment,

the fish were transferred to the experimental tank for acclimatization.
All experimental procedures were performed at a water conductivity
of 100 � 10 �S/cm.

Video recordings. The results presented in this study are based on the
quantitative characterizations of electrolocation behavior published in
an earlier study (Hofmann et al., 2014). In brief, we videotaped (AVT
Marlin F-033B, Stemmer Imaging, 656 � 494 pixels, 12 bit, maximal
frame rate 78 Hz) the spontaneous behavior of solitary fish in a shallow
water (6 � 0.5 cm) tank (80 � 80 cm), with different metal cubes (1, 8, or
27 cm3) being temporarily introduced in the center of the tank. Record-
ings were performed under IR illumination (880 nm) to rule out the
possibility of visually guided behaviors (Ciali et al., 1997). Image acqui-
sition was frame-locked to the EOD (recorded with a custom-built elec-
trode array and amplifier) so that one video image was acquired for
each EOD.

Video tracking. Position, orientation, and posture of the animal were
then determined from the video data collected during the experiment.
The animals’ center of mass was ascertained by using a background sub-
traction approach with subsequent thresholding. The animal’s posture
was obtained by applying a third-order polynomial fit through the mid-
line of the body (see Fig. 1E, inset, red dotted line). This fit was restricted
in length according to the size of each individual. Head and tail points
were determined based on the spindle-like shape of the fish’s body, with
the head being closer to the body’s center of mass. The cubes were tracked
similarly to the animal in each single frame of the videos. For all behav-
ioral data, the term “distance” always refers to the relationship between
the animal’s head and the object’s center of mass. From the tracked
positions of the animals, we determined the kinematics (i.e., thrust, slip,
and yaw), which we used for classifying the behavior.

Behavioral classification. We classified the behavior based on clustering
algorithms (Braun et al., 2010; Geurten et al., 2010). Kinematics were
separated with a hierarchical clustering followed by a k-means based
classification. These clusters are referred to as “kinematic prototypes.”
The transition probabilities between kinematic prototypes were analyzed
to find recurring patterns (for details, see Hofmann et al., 2014). We
focused on one specific pattern, the “object approach behavior.” The
frequency of this pattern was increased in presence of an object in the
tank, indicating that it was clearly related to electric sensing.

Model. The electrosensory input was calculated for each emitted EOD
(i.e., each recorded image) with a computational model developed by
Rother and Budelli (Rother et al., 2003) using the boundary element
method (Bacher, 1983; Hunter and Pullan, 1997; Assad et al., 1999). This
procedure first sets up the geometric relationship between the fish’s body
and a given object (the electric scene), which then is used to calculate the
transdermal current on the surface of the body. The model output was
experimentally corroborated by physiological recordings in previous
studies (Sanguinetti-Scheck et al., 2011; Hofmann et al., 2013a). A more
thorough description of the model was given by Pedraja et al. (2014).

Electric scene reconstruction. Electric scenes are defined by the geomet-
ric relationship between the animal and the cube. The animal was recon-
structed in 3D using 50 ellipses to form a cross section of the fish along
defined points of its body axis. The connections between 835 nodes lo-
cated on the ellipses were used to generate the tessellation that represents
the surface of the animal. Size and location of the ellipses were scaled to
match the length of each individual fish and were subsequently fitted
frame by frame to the posture extracted from the videos. Whereas the
modeling was calculated in three dimensions, the information used to set
up the scene was 2D only. For modeling purposes, pitch, roll, and eleva-
tion were not included. The variability of electric images is therefore
likely underestimated in our study.

Boundary element method model. The electric organ was simulated by a
local dipole in the tail of the body model. With this, the electric field was
simulated and geometric reconstruction was used to calculate the trans-
cutaneous distribution of the current. This procedure was performed
twice: once without any object present (basal condition) and once with
presence of an object (object-perturbed condition). This enabled us to
estimate the perturbing effect of the object and calculate the EI over the
whole surface of the body (see Analysis). The simulation results were assessed
along a linear transect (sampling equator), which ran along the frontal 70%
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of both sides of the body model, crossing the head in the nasal region (see also
scheme in Fig. 2B). This reduced the data dimensionality while enabling us to
reliably estimate the sensory input, particularly for the foveal head region of
the fish. The absolute spatial resolution of the sampling equator differed
depending on body position and animal size (the number of nodes used in
the body model was constant regardless of fish size). For a fish of 10 cm in
length, the average resolution along the sampling equator was 8.6 nodes/cm,
with an increased resolution in the head region (17 nodes/cm for the re-
gion � 1.5 cm from the tip or the head).

The procedures described above were performed for all trajectories of
“object approach behavior” (N � 235, 5079 frames). Our modifications
to the EI modeling advanced the model to a level in which the calculation
of sensory input for experimentally observed behavior can be performed
on a large scale.

Analysis: behavior. To quantify the straightness of the fish body, the
ratio of the Euclidian distance between the head and tail (see Fig. 1E,
inset, green dotted line) to the length of the animal was used. The latter
was taken from a polynomial fit to the animals’ midline (red dotted line).
The ratio of straightness is limited to the range between 0 and 1, with
smaller values representing stronger curvature of the animal’s body.

The animal’s alignment to the object was determined as the angle
between the vector connecting head and tail position and the vector
connecting tail position with the object’s center (see Fig. 1E, inset, green
and black dotted line).

The EOD frequency was calculated as the inverse of the interframe
interval. The EOD frequency was z-scored for each experimental session
(i.e., per experimental session) to account for individual changes in basal
EOD frequency as follows:

z-score �
F � �

�
(1)

with EOD frequency F, its arithmetic mean (�), and standard deviation
(�) computed anew for each recording session.

The sampling density (SD) was determined as the number of EODs
emitted per distance traveled. Object independent SD (baseline) was
determined by averaging all data at distances �7.5 cm from the object.
SD values exceeding a threshold (arithmetic mean of object-independent
SD plus one standard deviation) were considered to be significantly ele-
vated from baseline (see Fig. 1D, horizontal dashed line). The SD tended
to increase at higher distances for larger objects. However, when fitting
the data of individual-approach sequences with power-law fits, the pa-
rameters were not significantly different between object sizes (Kruskal–
Wallis test; scaling: � 2 � 0.43, F � 0.31, df � 2, p � 0.73; exponents:
� 2 � 5.83, F � 3.12, df � 2, p � 0.052; shift: � 2 � 1.79, F � 0.89, df � 2,
p � 0.41). Consequently, the behavioral data are shown pooled across
differently sized objects. We obtained the coefficient of determination by
linearly correlating the EOD frequency and the thrust with the SD. This
was used as a measure to quantify how much variance in the SD is
explained by the EOD frequency or thrust (variance-accounted-for
[VAF]). The variability of this measurement was estimated via bootstrap-
ping (200 repetitions, based on randomly discarding 25% of the full
dataset).

EI analysis. The EI at a given spatial position (x) along the sampling
equator was calculated as the object-perturbed potential relative to the
unperturbed condition as follows:

EI�x� �
Vpert�x�

Vbasal�x�
� 1 (2)

where, Vpert(x) is the voltage measured in the perturbed condition, and
Vbasal(x) is the voltage measured in the unperturbed condition at a given
skin position x. Unmodulated EIs thus have a value of zero.

EI amplitude was characterized as the root mean square (RMS) of the
EI as follows:

RMS � �1

N �
x�1

N

EI�x�
2

(3)

with N being the number of nodes along the sampling equator. This
operation integrates the spatial amplitude pattern of the EI into a single
mean perturbation, thereby removing spatial information from the EI.

The slope-to-amplitude ratio (SAR) (von der Emde et al., 1998) was
calculated by dividing the peak amplitude in the EI by the maximum
slope in the EI. In the original study, this was done for EIs measured at the
trunk of the animal’s body. In our study, the EIs span bilaterally across
the head of the animal. This enables two “maximum slopes” in the image
to be determined, one on each side of the body. We found that always
using the smaller of the two maximum slopes for the SAR calculation
resulted in less variability (note that the larger slope yielded qualitatively
comparable results). In earlier characterizations of the relation between
SAR and distance, the SAR was fitted with exponential functions over a
limited range of object distances. For our data, evaluating the r 2 values of
a linear fit in log/log space indicated that a power-law relation was closer
to the data, which we consequently used in our analysis.

The temporal resolution of the discontinuous sampling of G. petersii is
directly linked to the sampling interval. Electrosensory information thus
is only available to the fish when EODs are emitted. Accordingly, we
calculated all dynamic measures based on the change of given parameters
between successive EODs. For example, the electrosensory flow between
two consecutive EIs was calculated as follows:

electrosensory flow � 	RMSi � RMSi � RMSi
1 (4)

where the index i represents the index of the EI analyzed. 	RMSi is the
difference between two EODs, as defined in Equation 3. As this finite
spatial difference depends on the animal’s sampling behavior (probing
its surroundings at an irregular pace), the electrosensory flow during a
given trajectory can thus be regarded as a variable spatial derivative of
the electric field, and we will use this term in the following analysis. The
relative gradient (RG) was calculated by normalizing the 	RMSi by the
product of the change in position (	Posi) and the EI amplitude (RMSi):

RG �
electrosensory flow

change in position � EI amplitude
�

	RMS

	Posi RMSi
(5)

Receiver operating characteristic (ROC) analysis. Object detection and
distance-discrimination performance, based on either the SAR or the
RG, were compared using an ROC analysis. This was independently
conducted for both SAR and RG using histograms (bin width 1 cm) of the
SAR or RG values at distance intervals (step size 0.2 cm) relative to the
object. The histograms at 10.5 cm distance served as the reference point
to which all data at closer distances were compared. Sensitivity was esti-
mated based on the area under the determined ROC curve and was
considered to enable a significant detection of the objects when it ex-
ceeded 70%.

To determine the distance discrimination capability of either the SAR
or the RG, the procedure described above was repeated using each histo-
gram once as a reference. The relative distances where the sensitivity
reached 70% served to indicate distance-discrimination performance:
the just-noticeable-difference distance (JND). The variability of these
data were estimated by bootstrapping (200 repetitions, based on ran-
domly discarding 50% of the full dataset).

Results
Object-approach behavior
The object-approach behavior of G. petersii is kinematically de-
fined by a pattern of prototypical movements (Hofmann et al.,
2014). This spontaneous behavior is observed when animals ad-
vance to novel objects (i.e., the behavior is goal directed and
involves changes of the sampling behavior that depend on the
distance to an object). We analyze the sensorimotor conse-
quences of this patterned behavior (see randomly chosen exam-
ples in Fig. 1A). Characteristic for this approach is a reduction in
the average thrust (Fig. 1B), which is accompanied by an increase
in the EOD frequency (Fig. 1C). We calculated the resolution of
sensory sampling as the number of EODs emitted per distance
traveled. This SD increased nonlinearly toward the object (Fig.
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1D), significantly exceeding the baseline SD once fish were within
3.3 cm of the cube (Fig. 1D, black dotted line and black arrow). A
comparison of the SD observed for approaches to objects of dif-
ferent size showed that the SD tends to increase earlier for larger
objects. This trend was not significant and we thus pooled the
behavioral data (see Materials and Methods). SD depends on
changes of EOD frequency and thrust; and to address which of
the two behaviors is predominantly used to modulate the SD, the
VAF was calculated. This calculation showed that, on average,
thrust contributed more to the SD than the EOD frequency (VAF
thrust: 0.449 � 0.015, VAF EOD frequency: 0.328 � 0.024;
mean � range; ANOVA; F � 5.4 � 10 4; df � 1; p � 0). This
finding is comparable with data from a pulsatile Gymnotid fish
(Gymnotus sp., Jun, 2014), suggesting that the resolution of sen-
sory sampling is dominated by controlling thrust in both groups
of electric fish.

The gradual changes of the sampling density and thrust dur-
ing the approach-behavior were accompanied by adaptations in
postural behavior: the alignment between the animals’ direction
and the objects’ position gradually increased (i.e., decreasing rel-
ative angle between animal and object, Fig. 1E), and the curvature
of the animals’ body decreased (Fig. 1F).

Sensory flow during object-approach behavior
To quantify the sensory corollaries of the sensory and motor
behavior, simultaneous measurement of the local electric field
amplitude at each of the thousands of electroreceptors would be
required for every instance of sampling. Because this is not tech-
nically possible at present, we refined and adapted a computa-
tional model (Rother et al., 2003; Rother, 2003) to calculate the
spatially distributed sensory input for each EOD (Fig. 2A). These
modeled electric images give us access to both the static and
dynamic information available from the sensory input: while the
spatial aspects of the 2D current distribution over the animals’
skin at each EOD represent the present electrosensory scene, the
change between successive scenes conveys spatiotemporal infor-
mation. This change, subsequently referred to as electrosensory
flow, depends both on the timing of sampling as well as the move-
ment of the animal.

The electrosensory flow encountered during natural behavior
is complex, as it reflects the temporal evolution of the spatially
varying pattern of current densities along the skin of the fish (Fig.
2A). We reduced its dimensionality by evaluating the EIs along a
sampling equator (Fig. 2B; black dotted line on fish schemes; see
also Materials and Methods). During the approach shown in Fig-
ure 2A, B, the electromotor behavior changed analogously to the
change in the pooled data (Fig. 2B, side plots: SD (red) and align-
ment angle (black)). The EI amplitude increased nonlinearly,
associated with a gradual shift of the EI peak toward the head
region of the animal (Fig. 2B, main plot). This centering of the EI
peak on the foveal regions of the head was consistently observed
during the final phase of the approaches (see examples in Fig.
2C–F). In Figure 2C–F, the data are plotted as a function of
distance to the cube to simplify comparability between the indi-
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Letters indicate individual trajectories that are used in Figure 2. B–D, Average sampling behav-
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creased. The sampling density reflects the number of EODs emitted per centimeter traveled.
Sampling density increased with increasing proximity to the object and was significantly ele-
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Materials and Methods). E, F, Average of postural parameters of the approach behavior. Param-
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ment increased (decreasing values) while the overall body curvature was reduced with
increasing proximity to the object (F). E, Inset: Scheme of how the alignment angle (�) and the
straightness were obtained (see Materials and Methods). B–F, Mean (white line) � SEM (dark
shading) and standard deviation (light shading) as calculated from pooled data of all “object
approach” sequences (N � 235, 11 fish).
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vidual sequences. At the same time, the fish increasingly aligned
themselves with the cube (see superimposed white lines, align-
ment angle decreased on average; compare Fig. 1E). In Figure 2G,
all 2388 EIs of approaches to an 8 cm3 cube were normalized and
stacked such that the maximum EI always is shown to the left. As
a consequence of this alignment, the EI peak (i.e., center) was
gradually shifted onto the center of the head (0 cm skin position
of the y-axis, see Fig. 2G), where it became more focused with
increasing proximity (i.e., the contrast increased). This is quan-
titatively depicted by the decreasing half-maximum width (Fig.
2G, black line).

These results suggest that the strategy by which fish localize
and reach targets increases the EI intensity from EOD to EOD
while simultaneously reorienting to gradually move the EI peak
onto the head region.

Does natural behavior influence spatial EI cues?
When approaching an unknown object, estimating one’s relative
distance is crucial in performing distance-dependent actions,
such as collision avoidance or stopping the approach at an appro-
priate stage (e.g., to inspect the object; see Discussion). In active

electroreception, unlike the visual sense, depth must be deter-
mined from image blur (Lewis and Maler, 2002). The SAR is a
measure of this blur and conveys object-size invariant informa-
tion about distance (von der Emde et al., 1998).

An analysis of the suitability of the SAR for distance estima-
tion in naturalistic behavior has not previously been performed
or published. Accordingly, we examined whether the SAR as well
as a related parameter (half-maximum width of EIs; data not
shown) can provide a distance cue under naturalistic and hence
noisy conditions (Fig. 3A). The data of approaches toward cubes
of different sizes did indeed show considerable overlap, and fit-
ting data from individual approaches proved the datasets to be
inseparable (Fig. 3A, insets; Kruskal–Wallis, p � 0.07) and thus
size invariant. The SAR thus provides distance information, even
for the strongly curved head region that appears to be the foveal
region in terms of receptor density (Bacelo et al., 2008).

Under natural conditions, the SAR is highly variable (Fig. 3A).
To a large extent, this is due to the dependency of the EIs on the
animals’ posture. It is further increased because EIs (and hence
the SAR) depend on the part where they occur on the fish’s body
(Fig. 3B) (Pusch et al., 2008; Hofmann et al., 2013a). Finally, the
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indicate positions on the left side of the body, whereas negative values indicate positions on the right side. The discontinuous temporal domain is shown on the y-axis. Sampling density (red line)
increased, whereas the alignment angle between body and object decreased steadily (black line). This was a consistent pattern (Fig. 1D, E). C–F, EI sequences plotted as a function of object distance
for four approaches. y-axis indicates the skin position of the EI along the sampling equator (see B). Individual electric images along this equator were normalized to their peak value and then plotted
as a function of object-distance (x-axes). White lines indicate the body-object alignment for the individual sequences (see right-hand y-axes). White dots indicate where an EOD was emitted.
G, Normalized and stacked EIs from all EODs (n � 2388) emitted during all approaches toward the 8 cm3 cube. Each normalized EI was arranged such that its peak is located on the right side of the
animals’ body, the side being shown here. Following this, EIs were ordered as a function of distance to the cube, leading to a cumulative figure showing how the sensory input changed with nearness
to the cube. The peaks of electric images became more focused on the head (skin position � 0) with nearness to the cube; likewise, the average half-maximum width (black line) decreased. This
illustrates a gradual focusing of the EI on the head region. The trajectories used for visualization in this figure are marked with their respective panel letter in Figure 1A.
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number of electroreceptors (per mm 2) varies considerably for
different body regions (Harder, 1968; Bacelo et al., 2008), which
directly affects the accuracy by with which an animal could re-
solve SAR spatially. For these reasons, spatial metrics provide, at
best, a crude estimation of distance during dynamic behavior. We
hypothesized that the temporal electrosensory input dynamics
might offer alternative, potentially more reliable cues for distance
estimation that could eliminate the need to integrate the sensory
input of the spatially distributed electroreceptors.

Distance estimation based on electrosensory flow
Given the spherical dissipation of the electric field emitted, the
fish should experience an EI amplitude that is inversely propor-
tional to the fourth power of distance (d
4) (Rasnow, 1996; Si-
cardi et al., 2000; Chen et al., 2005; Nelson and MacIver, 2006)
and scale with the size of the object being approached. Indeed, the
EI amplitude in our data were well approximated by power-law
fits with exponents of 
4 and scaling factors that were object
size-dependent (Fig. 4A). The closer the animal gets to the object,
the steeper the increase in the EI amplitude. In the following, we
use the RMS as a measure of amplitude; however similar results
were obtained when using the EI maximum. The electrosensory
flow (i.e., the rate of change of the sensory input from one EOD to
the next) allows for the extraction of a novel distance metric that
we subsequently refer to as the relative gradient. In contrast to
geometric analyses of EIs as required for the SAR, the parameters
that are necessary to obtain this electric flow-based measure are
readily available from the sensory input.

The relative gradient can be obtained by normalizing the
change in the EI amplitude (e.g., 	RMS) by the product of the
distance traveled between two EODs and the current EI ampli-
tude. Dividing the 	RMS by the distance traveled yields the spa-
tial derivative of the electric field. Dividing by the current EI
amplitude implies dividing the power law relation of the field
amplitude by its first derivative, resulting in a quotient that is
proportional to 1/d. Accordingly, the spatial derivative that ini-
tially depends on both the objects’ electrical properties and the
animals’ behavior is turned into an is object-size invariant mea-
surement that only scales with distance (Fig. 4B). The relative
gradient overlaps considerably (Fig. 4B) for the approaches to
differently sized cubes (Fig. 4B), and individual approaches were

indeed indistinguishable across cube sizes (Kruskal–Wallis,
p � 0.49).

In order for this metric to be derived, an animal should con-
tinuously decrease its distance to a target, as this allows the
change in distance to the object from the distance traveled to be
inferred. This is in agreement with the postural adaptions de-
scribed above.

A second aspect of the animals’ behavior that contributes to
the RG is the adaptation of the sampling density, which increases
the closer the proximity to the object (similar to the 	RMS).
Constant sampling during the approach would result in the elec-
trosensory flow being equal to the first derivative of the electric
field (power law to the power of 
5). For natural sampling, how-
ever, we found that the steepness of the flow is decreased (Fig. 4C,
inset, distribution of exponents; dashed line representing ex-
pected value from constant behavior; exponents were indistin-
guishable between cube sizes, Kruskal–Wallis, p � 0.41). This
indicates that the animals dynamically increase their sampling
rate as they approach an object, thereby accounting for the steep
increase in the rate of change in the sensory input.

How the different components of the sampling behavior
influence the resolution of the relative gradient was further
investigated by modeling approaches along simplified linear tra-
jectories to the same object with different SDs (Fig. 4D). As ex-
pected, different sampling densities reduced the electric flow to
different degrees (Fig. 4D, inset), but this did not affect the rela-
tive gradient (Fig. 4D, main panel). Notably, the number of sam-
ples that an animal would obtain at close distance was effectively
doubled for natural sampling behavior (Fig. 4D, red dots; 12 EI
samples at distances �3.3 cm) as opposed to nonadapted behav-
ior (Fig. 4D, black dots; 6 EI samples). Assuming that fish use this
novel metric, the natural approach behavior would result in self-
generated electrosensory flow, which allows for precise estima-
tion of relative distance to the object using an electrosensory flow
based measure, such as the relative gradient.

As shown by our behavioral data, the RG was found to be
object-size invariant. We additionally tested whether the relative
gradient is invariant to shape and material using simulated
straight approaches toward objects (Fig. 5). These simulations
further confirmed that the relative gradient conveys unequivocal
information of the distance to the target (i.e., it is size, shape, and
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material invariant). Furthermore, the relative gradient is largely in-
dependent of the body position from which it is obtained (Fig. 6).

We further compared the object detection and distance dis-
crimination capability of the relative gradient (Fig. 7A) to that of
the SAR (Fig. 7B). Object detection based on the relative gradient
(6 cm distance) outperformed object detection based on the SAR
(3 cm distance, compare Fig. 7C, red and blue). The relative
gradient-based JND (the capability to discriminate distances)
was consistently better up to distances of �5 cm (Fig. 7D).

In summary, our analysis of the sensory corollaries of ap-
proach behavior revealed that weakly electric fish dynamically
reposition their body with respect to the target. This would en-
able them to obtain a sensory-flow based object-invariant dis-
tance cue. Whereas the specific kinematic adjustments described
here are of high importance for the extraction of this cue, our
findings are also likely applicable to other active and nonactive
sampling sensory modalities in similar behavioral contexts.

Discussion
An animals’ behavior is inherently influenced by the sensory input it
receives, which enables this input to be actively shaped through be-
havior. The characterization of such potentially purposeful-sensing
behaviors with respect to their effect on the sensory input is a pow-

erful step toward better understanding the brains’ sensory-motor
integrative functions.

Recurring patterns of behavior are well suited for researching
how sensory input is shaped. We thus focused on “object approach
behavior” of Gnathonemus, combining a quantitative behavioral
characterization (Hofmann et al., 2014) with a computational re-
construction of electric images (Rother et al., 2003). This enabled us
to analyze the sensory flow linked to this specific behavior, thereby
extending previous studies on the topic (Nelson and MacIver, 1999;
MacIver et al., 2001; Hofmann et al., 2013a). Using these techniques,
we investigated sensorimotor coupling and its contribution to sens-
ing in a large dataset.

The approach toward novel objects is characterized by a dy-
namic adjustment of the motor and sampling behavior. The gen-
eral challenge in estimating the distance to unknown objects is
comparable to many visually guided behaviors, such as landing,
navigation, and prey-capture behavior in insects (Kirchner and
Srinivasan, 1989; Kral and Poteser, 1997; van Breugel et al., 2014),
or control of locomotion in mammals (Sun et al., 1992; Warren et
al., 2001). A unifying theme in these examples is that the sensory
dynamics (the optic flow) (Lee, 1980; Koenderink, 1986) are actively
shaped by the animals to aid in the acquisition of information.
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In our experiment, the fish had no knowledge of the precise
spatial layout of the sensory scene. The distance-dependent
changes in the electromotor and kinematic behavior must there-
fore be based on the sensory input. Continuous gradual align-
ment to the object can be achieved following two simple heuristic
rules by which the animal aims to (1) move the peak of the EI

toward the head and (2) increase the overall EI amplitude from
one sampling step to the next. Although not necessarily optimal
in a Bayesian sense, such reactive behavior would enable fast and
efficient navigation. Alternatively, or in addition to these heuris-
tics, internal or forward models would also allow the environ-
ment to be predicted by integrating past sensory input. In this
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sense, object-approach behavior may be regarded as a form of
sensory hypothesis testing (Gregory, 1980): the motor activity
follows the sensory input and is chosen to optimally disambigu-
ate the mismatch between the sensory feedback and the previous
prediction of the world (Loeb and Fishel, 2014).

Weakly electric pulsatile fish have control over the sensory
flow in two ways: motor behavior and the timing of EOD emis-
sions. Both modulate the SD as shown by the VAF analysis. SD
increased with proximity to the object, resulting in a reduction of
the electrosensory flow compared with a constant sampling den-
sity (Fig. 4C). It is likely that this reflects the reactive effort of the
animal to accurately sample the electric field, including the pro-
posed distance metrics. Similar context-dependent adjustments
in the spatiotemporal sampling resolution are known from other
discontinuously sampling systems, such as echolocation in bats
or sniffing and whisking in rodents (Ghose and Moss, 2006; Schr-
oeder et al., 2010). Future high-resolution recordings of similar
behavior are necessary to resolve whether the SD increase differs

for different object sizes, as this trend was not significant in our
dataset. Both of these results can be taken as further evidence of
the above-stated claim that the increased sampling density is
based on sensory input, and thus reactive.

To navigate toward an object, information on distance is
needed to mediate changes in electromotor behaviors (e.g., Fig.
1) (Toerring and Belbenoit, 1979; Toerring and Moller, 1984;
Hofmann et al., 2014). Estimating the distance is also essential for
the formation and use of cognitive maps of space, and fish are
known to rely on such representations of space (Braithwaite and
de Perera, 2006; Jun et al., 2016). Several metrics have been pro-
posed to extract distance, including the SAR (von der Emde et al.,
1998) and the half-maximum width of electric images (Lewis and
Maler, 2001; Chen et al., 2005), the temporal SAR (Sim and Kim,
2012; Hofmann et al., 2013a), and the “slope-ratio” (Sim and
Kim, 2011). Of those, SAR and half-maximum width can poten-
tially be useful to analyze the sensory input during the “object
approach behavior.” They both require an analysis of the spatial
properties of static electric images and provide noisy distance
estimates that surpass the noise-level from only 3 cm onwards
(see ROC analysis; Fig. 7). This noise is partially reafferent noise
due to the animals’ movements (Engelmann et al., 2008; Sawtell
and Williams, 2008). The increasingly straight posture in vicinity
to the objects (Fig. 1F) might reflect the active effort of the ani-
mals to reduce this noise (Nelson and MacIver, 1999; MacIver et
al., 2001; Fotowat et al., 2013). A substantial weakness of these
metrics was revealed from our analyses with the finding that they
change with the location of the EIs on the animals’ body, resulting
in inaccurate or at least ambiguous result in the estimation of
distance (Fig. 3B).

We argue that incorporating the spatiotemporal dynamics, as
shown for the relative gradient, may help to overcome several of
the above limitations. This lends support to earlier theoretical
work, which suggests that the information embedded in the elec-
tric flow could exceed that of a static sensory scene analysis (Babi-
neau et al., 2007; Hofmann et al., 2013a).

To make use of this self-generated distance information, ani-
mals require knowledge about the change in the EI amplitude
between consecutive EODs, and then normalize this ratio with
respect to the current EI amplitude. Unlike the absolute ampli-
tude, the relative change is invariant with respect to object size,
shape, and material. This is the case because sensory input is
defined through its relation to the EI amplitude. This is shared by
all sensory systems that actively generate energy for sensing,
whereas other sensory systems, such as vision, lack this type of
frame of reference, and most optic flow based mechanisms can
only yield relative estimations of distance (but see van Breugel et
al., 2014).

The relative gradient can be estimated based on local sensory
input (Fig. 6), whereas spatial measures depend on a sufficiently
detailed representation of EIs over the animals’ skin. Further-
more, detection sensitivity and discriminability of the relative
gradient were better than that of the SAR (Fig. 7). To determine
the relative gradient, information on the current and recent elec-
tric image amplitude, as well as the speed, are required. These
parameters are readily available: (1) EI amplitude is an essential
parameter used in electric image analysis and was shown to be of
behavioral relevance (von der Emde et al., 1998); (2) the change
in EI amplitude is likely a key parameter encoded by the medul-
lary electrosensory lateral line lobe, which is known to extract
information based on a neuronal comparison between present
and past sensory information (Sawtell et al., 2005); and (3) the
distance traveled between successive EIs is equal to the product of
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thrust and inter-EOD interval; both are under control by the
animal and may be accessible through proprioceptive signals.
The mechanosensory lateral line could potentially provide a di-
rect measure of the external flow speed, and thus of the fish’s
velocity (Chagnaud et al., 2008; Salumäe and Kruusmaa, 2013).
The postural and kinematic adjustments during the approach
(Fig. 1E,F) allow for the change in the animals’ position to be
directly inferred and can be used to compute the relative gradient.

Further studies are necessary to determine whether and how
animals use such sensory flow measures to navigate their envi-
ronment. In active electrolocation, this may be addressed in ex-
periments using electrosensory illusions to manipulate animals’
behavior. A remaining key question is whether electric flow is
decoded in the electrosensory pathway, and if so, where this takes
place. Using closed-loop electrophysiological methods (i.e.,
recording from sensory neurons while stimulating with mim-
ics of naturalistic object-animal trajectories, or recording
freely moving animals together with the modeling procedure
used here) should yield novel insights into fundamental con-
cepts of sensory-motor interaction and its integration in the
CNS.
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mann J (2008) Active sensing in a mormyrid fish: electric images and
peripheral modifications of the signal carrier give evidence of dual fove-
ation. J Exp Biol 211:921–934. CrossRef Medline

Rasnow B (1996) The effects of simple objects on the electric field of
Apteronotus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol
178:397– 411.

Rother D (2003) Simulación de imágenes eléctricas en peces eléctricos de
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