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Learning Enhances Sensory Processing in Mouse V1 before
Improving Behavior
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A fundamental property of visual cortex is to enhance the representation of those stimuli that are relevant for behavior, but it remains
poorly understood how such enhanced representations arise during learning. Using classical conditioning in adult mice of either sex, we
show that orientation discrimination is learned in a sequence of distinct behavioral stages, in which animals first rely on stimulus
appearance before exploiting its orientation to guide behavior. After confirming that orientation discrimination under classical condi-
tioning requires primary visual cortex (V1), we measured, during learning, response properties of V1 neurons. Learning improved neural
discriminability, sharpened orientation tuning, and led to higher contrast sensitivity. Remarkably, these learning-related improvements
in the V1 representation were fully expressed before successful orientation discrimination was evident in the animals’ behavior. We
propose that V1 plays a key role early in discrimination learning to enhance behaviorally relevant sensory information.
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Introduction
How does sensory processing in visual cortex change during
learning of a stimulus’ behavioral relevance? A fundamental
property of neurons in visual cortex is to enhance the represen-
tation of those stimuli that are relevant for behavior (for review,
see Gilbert and Li, 2013; Gavornik and Bear, 2014; Maunsell,
2015). The behavioral relevance of any given stimulus needs to be
learned, though, and little is known about how visual sensory
processing changes, as the significance of that stimulus becomes
clear. Although long-lasting alterations in visual cortical process-

ing after mere exposure to specific stimuli (Frenkel et al., 2006;
Cooke and Bear, 2010; Cooke et al., 2015) or after learning (Crist
et al., 2001; Schoups et al., 2001; Ghose et al., 2002; Schwartz et al.,
2002; Furmanski et al., 2004; Li et al., 2004; Yang and Maunsell,
2004; Raiguel et al., 2006; Hua et al., 2010; Jehee et al., 2012;
Goltstein et al., 2013) have been documented amply, demonstra-
tions of dynamic changes during learning are rare (Law and Gold,
2008; Li et al., 2008; Poort et al., 2015).

How animals learn about the relevance of any stimulus has
been extensively studied at the level of behavior, where much of
the research has relied on classical conditioning. Classical condition-
ing has the advantage that the occurrence of each lesson, such as a
pairing of a stimulus with a reward, is entirely under the experimenter’s,
and not the animal’s, control (Pearce and Bouton, 2001). Therefore,
the speed of learning can be elegantly manipulated, and its time
course precisely quantified (Balsam and Gallistel, 2009).

Classical conditioning is often viewed as a reflexive, automatic
type of learning; it does, however, involve substantial cognitive
processes related to attention and decision-making. Support for
these processes comes from the analysis of single-subject learning
curves, which reveal in many learning paradigms step-like changes
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Significance Statement

Decades of research have documented that responses of neurons in visual cortex can reflect the behavioral relevance of visual
information. The behavioral relevance of any stimulus needs to be learned, though, and little is known how visual sensory
processing changes, as the significance of a stimulus becomes clear. Here, we trained mice to discriminate two visual stimuli,
precisely quantified when learning happened, and measured, during learning, the neural representation of these stimuli in V1. We
observed learning-related improvements in V1 processing, which were fully expressed before discrimination was evident in the
animals’ behavior. These findings indicate that sensory and behavioral improvements can follow different time courses and point
toward a key role of V1 at early stages in discrimination learning.
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in behavior. Such step-like changes are inconsistent with a gradual
strengthening of an association (Rescorla and Wagner, 1972) but
can readily be explained within the framework of perceptual deci-
sion making (Gallistel and Gibbon, 2000): across trials, the animal
accumulates evidence that a given stimulus reliably predicts an im-
portant event and decides to show the conditioned response once
the evidence is strong enough. The implication of these findings is
that learning curves of individual subjects can be decomposed into a
sequence of well-defined stages.

Whether progress in behavior and changes in sensory process-
ing occur in parallel, or follow different time courses, is a matter
of debate. Changes in sensory processing have been extensively
investigated in primate studies of perceptual learning (for review,
see Gilbert and Li, 2012). In those rare cases where neural activity
was measured during task performance, improvements in behav-
ioral sensitivity were largely paralleled by improvements in neural
representations (Law and Gold, 2008; Li et al., 2008). Similar obser-
vations were recently made in mouse V1, where chronic 2-photon
calcium imaging revealed changes in population selectivity in paral-
lel with progress in discrimination learning (Poort et al., 2015).
Other studies, however, have documented that learning-related
changes in neural processing can be dissociated in time from behav-
ioral effects. In those cases, learning-related changes in neural activ-
ity are rather transient; they are pronounced during initial phases of
training but relax, with additional practice, to pretraining levels, al-
though behavioral performance remains high (Zelcer et al., 2006;
Yotsumoto et al., 2008; Sarro et al., 2015).

Here, we exploited the advantages of classical conditioning
and quantified, in individual mice, the time course of orientation
discrimination learning. Learning indeed occurred in a sequence
of distinct stages, which were marked by qualitative changes in
behavior. During traversal of these stages, we measured response
properties of V1 neurons and found that the neural representa-
tion of the stimuli was improved to full extent well before animals
showed any behavioral sign of orientation discrimination. These
neural signatures likely reflect a key role of V1, which might
enhance, early in discrimination learning, behaviorally relevant
visual information.

Materials and Methods
We used 16 mice (2– 6 months old, 11 males and 5 females): 13 of the
C57BL/6J wild-type strain and 3 of the PV-Cre strain B6;129P2-
Pvalbtm1(cre)Arbr/J (JAX stock #008069). All procedures were performed
in compliance with the European Communities Council Directive 2010/63/
EC and the German Law for Protection of Animals; they were approved by
the local authorities following appropriate ethics review.

Surgical protocol. Anesthesia was induced with isoflurane (3%) and
maintained throughout the surgery (1.5%). A custom lightweight alumi-
num headpost was attached to the anterior part of the skull (OptiBond FL
primer and adhesive, Kerr Dental; Tetric EvoFlow dental cement, Ivoclar
Vivadent); two miniature screws (00 –96 � 1/16 stainless steel screws,
Bilaney) were implanted over the cerebellum serving as reference and
ground for electrophysiological recordings. Before surgery, atropine (At-
ropinsulfat B. Braun, 0.3 mg/kg sc) and analgesics (buprenorphine, 0.1
mg/kg sc) were administered, and eyes were protected with ointment
(Bepanthen). The animal’s temperature was kept at 37°C via a feedback-
controlled heating pad (WPI). Antibiotics (Baytril, 5 mg/kg sc) and a
longer-lasting analgesic (carprofen, 5 mg/kg sc) were administered for
3 d after surgery. Expression of channelrhodopsin (ChR2) in PV-Cre
mice was achieved by injecting into V1 of anesthetized animals, through
a small craniotomy, the adeno-associated viral vector rAAV5.EF1a.DIO.
hChR2(H134R)-EYFP.WPRE.hGH (Penn Vector Core, University of
Pennsylvania). A Picospritzer III (Parker) was used to inject the virus at
multiple depths while gradually retracting the pipette. Mice were given
7 d to recover before they were habituated to the experimental setup.

Before electrophysiological recordings, a craniotomy (�1.5 mm 2) was
performed over V1, 3 mm lateral to the midline and 1.1 mm anterior to
the transverse sinus (Wang et al., 2011). The craniotomy was sealed with
Kwik-Cast (WPI), which was removed and reapplied before and after
each recording session.

Experimental setup and visual stimulation. Mice were put on an air-
cushioned Styrofoam ball and head-fixed by clamping their headpost to
a rod. Movements of the ball were recorded at 90 Hz by 2 optical mice
connected to a microcontroller (Arduino Duemilanove). A computer-
controlled syringe pump (Aladdin AL-1000, WPI) delivered precise
amounts of water through a drinking spout, which was positioned in
front of the animals’ snout. Attached to the spout was a piezo element,
which registered licking behavior (Schwarz et al., 2010). The drinking
spout was present only during the conditioning experiments and re-
moved during measurements of orientation tuning. Visual stimuli were
generated with custom-written software (https://sites.google.com/a/nyu.
edu/expo/home) and presented on a liquid crystal display monitor 25 cm
in front of the animals’ eyes (Samsung 2233RZ, mean luminance of
50 cd/m 2, refresh rate 120 Hz). Luminance nonlinearities of the display
were corrected with an inverse gamma lookup table, which was regularly
obtained by calibration with a photometer. Stimuli consisted of sinusoi-
dal or square wave gratings, which were 40 –50 degrees in diameter, and
positioned to maximally overlap with the receptive fields (RFs) of the
recorded neurons. Temporal frequency was 1.5 Hz; spatial frequency was
0.02– 0.04 cycles/degree. The setup was enclosed with a black fabric cur-
tain. Eye movements were monitored under infrared illumination using
a zoom lens (Navitar Zoom 6000) coupled to a camera (Guppy AVT,
frame rate 50 Hz). Optical stimulation was delivered via an optical fiber
coupled to a light-emitting diode (LED; Doric Lenses) with a center
wavelength of 473 nm, which was driven by an LED driver (LEDD1B,
Thorlabs). The fiber core was 910 �m in diameter, and the LED light inten-
sity, measured at the tip of the fiber, was 0.7–3.5 mW/mm2. Before every
recording session, the fiber was positioned over the craniotomy, perpendic-
ular to the brain surface, at a distance of �1 mm using a micromanipulator.
The animal’s eyes were shielded from the blue light by a sheet of black non-
reflecting aluminum foil placed around the stimulation site.

Initial behavioral training. After recovery from the surgery, animals
were placed on a water restriction schedule until their weight dropped
below 85% of their ad libitum body weight. During this time, mice were
habituated to head fixation on the ball and delivery of water through the
spout, which was triggered by the animal’s licking in the absence of visual
stimuli. The animals’ weight and fluid consumption were monitored and
recorded on each day, and the animals were checked for potential signs of
dehydration. After the weight had stabilized, the classical conditioning
sessions started. These were typically performed 7 d a week, and only
during these sessions did mice receive water.

Conditioning paradigm. Animals were trained to discriminate between
two gratings: one of them drifting down and to the left (315 degrees) and
the other one down and to the right (45 degrees). We chose these two
directions because they provide comparable sensory drive to neurons
preferring horizontal gratings (i.e., 0 or 180 degrees), which are promi-
nent in mouse V1 (Kreile et al., 2011). Gratings could vary in contrast (6
levels: 1, 2, 4, 6, 16, 40, and 100%). On a given trial, contrast and direction
of movement were determined pseudo-randomly, and the grating was
presented for 3 s. The presentation of one grating was always followed by
reward delivery (2–7 �l); the other grating had no consequences. The
grating at 315 degrees was the rewarded stimulus for all but one animal;
for this one animal, the other stimulus was rewarded. The intertrial in-
terval was 8 –15 s plus a random delay drawn from an exponential distri-
bution with a mean of 10 –15 s. With such an interval, the animals cannot
predict the onset of the stimulus. A single session consisted of 120 –240
trials per day, divided into blocks of 60 trials.

Electrophysiological recordings. Extracellular recordings were per-
formed with 32-channel linear silicon probes (Neuronexus, A1x32-5
mm-25-177-A32). Electrodes were inserted perpendicular to the brain
surface and lowered to �900 �m below the surface. Wideband extracel-
lular signals were digitized at 30 kHz (Blackrock Microsystems) and an-
alyzed using the NDManager software suite (Hazan et al., 2006). Local
field potentials (LFPs) were extracted by downsampling (1250 Hz) and
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filtering (4 –250 Hz bandpass) the wideband signal. To isolate single
neurons from linear arrays, we grouped adjacent channels into five
equally sized “virtual octrodes” (eight channels per group with two chan-
nel overlap). Using an automatic spike detection threshold (Quiroga et
al., 2004), spikes were extracted from the high-pass filtered continuous
signal for each group separately. The first three principal components of
each channel were used for automatic clustering with KlustaKwik (K. D.
Harris, http://klusta-team.github.io/klustakwik), which was followed by
manual refinement of clusters (Hazan et al., 2006). In the analyses of
neural data, we only considered high-quality single-unit activity, judged
by the distinctiveness of the spike wave shape and cleanness of the refrac-
tory period in the autocorrelogram.

Measurements of eye position. The details are described by Erisken et al.
(2014). Briefly, we detected the pupil by convolving acquired camera
frames with a symmetric Gaussian filter and applied a user-defined
threshold to obtain a binary image. We then applied a morphological
opening operation, identified the most circle-like object as the pupil, and
fitted an ellipse to determine the position of its center. To identify and
compensate for translations of the eye parallel to the image plane, we also
determined the position of a landmark, which could be either the first
Purkinje image of the infrared light or a user-defined point near the tear
duct in the medial corner of the eye (Wallace et al., 2013). We computed
relative pupil displacements by subtracting, for each frame, the landmark
position from the pupil position. To convert pupil displacements to angular
displacements, we assumed that the center of eye rotation was 1.041 mm
behind the pupil (Stahl et al., 2000). We defined saccades as changes in eye
position �2 degrees. Considering that the average mouse saccade lasts
�50 ms (Sakatani and Isa, 2007), we detected saccades by taking the differ-
ence of mean eye position 60 ms before and after each time point.

Measurements of response properties. Before each classical conditioning
experiment, we mapped RF properties and measured orientation tuning.
(1) RFs were mapped with a sparse noise stimulus, consisting of 5 degree
full-contrast black and white squares, which were flashed, on a gray
background, for 150 ms at a random location in a virtual 12 � 12 grid.
Responses were fitted with a 2D ellipse to determine RF center, separately
for ON and OFF subfields (Liu et al., 2010). (2) Orientation tuning was
measured by presenting sinusoidal gratings at 100% contrast moving in a
randomly selected direction (12 levels) for a duration of 2 s. Intertrial
interval was 0.5 s. A blank screen condition (mean luminance) was in-
cluded to estimate spontaneous firing rate. Each direction was presented
20 times. Orientation tuning curves were fit with a sum of two Gaussians,
whose peaks were separated by 180 degrees as follows:
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The function has five parameters: preferred orientation �p, tuning width
�, baseline response R0, response at the preferred orientation Rp, and
response at the null orientation Rn. We determined a direction selectivity
index, as the difference in mean firing rates between opposite directions,
divided by their sum, and collapsed across opposite motion directions
unless a neuron was selective for direction (direction selectivity index
� 0.2). To combine data from animals with different stimulus-reward
assignments, we expressed a neuron’s preferred orientation relative to
the rewarded orientation.

Contrast sensitivity was measured during the classical conditioning
experiments, in which rewarded and unrewarded stimuli were presented
at a range of contrasts. Contrast responses were fitted with the hyperbolic
ratio function (Albrecht and Hamilton, 1982) as follows:

R�c� � R0 � Rmax

cn

c50
n � cn

where c is stimulus contrast. The function has four parameters: baseline
response R0, maximum response Rmax, semisaturation contrast c50, and
exponent n. In a substantial fraction of V1 neurons, responses did not
saturate with increasing stimulus contrast. In these cases, estimates of c50

hit the upper bound of meaningful values (i.e., 100%). To avoid this
limitation, we took as a measure of contrast sensitivity the contrast, at
which the neural response reached half of the maximum amplitude.

Current source density (CSD) analysis. We computed the CSD from the
second spatial derivative of the LFP (Mitzdorf, 1985) in response to
periodic visual stimulation. We smoothed the CSD in space using a tri-
angular kernel (Nicholson and Freeman, 1975) and used a value of
0.4 S/m as measure of cortical conductivity (Logothetis et al., 2007) to
approximate the CSD in units of nanoamperes per cubic millimeter. We
assigned the contact closest to the earliest polarity inversion to the base of
layer 4 (Schroeder et al., 1998). The remaining contacts were assigned to
putative supragranular, granular, and infragranular layers based on a
cortical thickness of 1 mm and anatomical measurements of the relative
thickness of individual layers in mouse V1 (Heumann et al., 1977).

Analysis of visually evoked potentials (VEPs). VEPs were analyzed by
computing the stimulus-triggered average from bandpass filtered (3–90
Hz) LFPs recorded in layer 4 during measurements of orientation tuning.
VEP amplitude was quantified by measuring trough-to-peak amplitude
(Frenkel and Bear, 2004), where the trough was defined as the minimum
value in the time interval from 0 to 100 ms after stimulus onset and the
peak as the maximum value from 50 to 200 ms.

Analysis of behavior
We quantified licking behavior on each trial by an index (lick index [LI])
as follows:

LI � �licksstimulus � licksbaseline�/�licksstimulus � licksbaseline�,

where licksstimulus is the number of licks during the final 1 s of stimulus
presentation and licksbaseline is the number of licks during the final 1 s
before stimulus presentation. This index is bound between �1 and 1,
with the two extremes indicating that licks exclusively occur during the
baseline period or during grating presentation. We assessed learning
progress by analyzing the cumulative sum of LIs (Papachristos and Gal-
listel, 2006), where changes in behavior become evident as changes in
slope. Slope changes in the cumulative sum can more easily be seen than
changes in raw indices across trials (Gallistel et al., 2004), and cumulative
sums for all three learning stages can be compared in a single panel. To
detect significant changes in slope, we performed the change the point
analysis described by Gallistel et al. (2001). To identify the transition
from the naive to the intermediate stage, we examined LIs for the re-
warded stimulus and determined the trial at which the first change point
occurred. To identify the transition from the intermediate to the trained
stage, we performed the same analysis on the difference between the
cumulative LIs for the rewarded and the unrewarded stimulus. To quan-
tify the number of slope changes, we counted how many change points
were needed before a postchange slope reached 80% of the terminal
slope, which was based on the final half of the trials. For all but one
analysis (28 of 29), we used a statistical criterion of p � 10 �6 for accept-
ing changes in slope. In the remaining case, we lowered this criterion to
p � 10 �5. To validate the placement of change points, we performed
ideal observer analyses (Macmillan and Creelman, 2005). For the first
transition, we compared the distribution of lick rates compiled from the
final second before stimulus onset against the distribution compiled
from the final second during stimulus presentation. For this analysis, we
only used trials in which the rewarded stimulus was shown and compared
classification performance in the naive versus later stages (i.e., intermediate
and trained). For the second transition, we compiled distributions of LIs for
rewarded versus unrewarded trials and compared classification performance
in the trained versus earlier stages (i.e., naive and intermediate).

Animals were considered nonlearners if their licking behavior failed to
show a transition to the trained stage within 2000 trials. Three animals,
however, did not receive the full amount of training because decreasing
quality of neural recordings led us to terminate learning sessions. In
detail, of the 16 mice we used, 1 dropped out before reaching the inter-
mediate stage; 15 mice reached the intermediate stage and received fur-
ther training. Of these 15 animals, 2 more dropped out by terminating
learning sessions; 3 mice failed to reach the trained stage and were there-
fore classified as nonlearners (see Fig. 2I, n/a).

To analyze running behavior, we transformed single-trial speed pro-
files within each session into binary vectors, in which ones marked time
points where the animal was running (speed � 1 cm/s) and zeroes those
where the animal was sitting (speed � 1 cm/s). Across trials, we computed,
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for every point in time, the percentage of trials in which the animal was
running, before averaging across sessions. To assess statistical significance,
we computed, for each session, the average percentage of run trials within
0.1–1.5 s after stimulus onset, separately for each stimulus condition and
learning stage. We then performed a mixed-design ANOVA involving the
between-subjects factor learning stage (naive vs intermediate vs trained) and
the within-subject factor stimulus (rewarded vs unrewarded).

Optogenetic suppression of V1 responses. After the animals had reached
the trained stage, in which they could discriminate the two orientations,
we combined electrophysiological recordings with photo-stimulation of
parvalbumin-expressing (PV 	) interneurons. In a random subset of tri-
als (33%), we applied photo-stimulation concurrently with the presen-
tation of the visual stimulus. In the experiments with optogenetic
suppression, we only used two levels of stimulus contrast (6% and 40%).

Analysis of neural data
Individual animals typically contributed neural data to single learning
stages.

In the analyses of neural discriminability and orientation selectivity,
we included neurons if (1) the sum of Gaussians explained �50% of the
variance in responses, and (2) their mean firing rate across stimulus
orientations was at least 1 spike/s.

The time courses of neural activity in Figure 5A, B are spike density
functions computed by convolving single-trial spike trains with a Gauss-
ian kernel (kernel resolution 10 ms, kernel width 100 ms) before averag-
ing across trials.

Neural discriminability. We quantified how well individual neurons
can discriminate the rewarded and unrewarded stimulus by extracting
single-trial firing rates in a time window from 0.1 to 1.5 s after stimulus
onset (excluding the transient part of the response) to compute a neural
d
, defined as the difference in mean response to each stimulus, divided
by the pooled SD. During this window, mean lick rates were largely
similar between stimuli across learning stages (rewarded vs unrewarded
stimulus; naive stage: p � 0.97; intermediate stage: p � 0.43; trained
stage: p � 0.07; interaction between rewarded vs unrewarded stimulus
and learning stage: p � 0.36, ANOVA). We sorted neurons according to
their relative preferred orientation into 4 bins centered on �135, �90,
�45, and 0 degrees, and performed an ANOVA on mean d
 using the
between-subject factors learning stage (naive vs intermediate vs trained),
layer (L2/L3 vs L4 vs L5/L6), and orientation bin. For post hoc com-
parisons of individual means, we used Tukey’s HSD test, with a 95%
family-wise confidence level to correct for multiple testing. Because
learning-related changes in d
 seemed to be more pronounced for neu-
rons with sharper selectivity, we excluded for this analysis neurons with
broad orientation tuning (� � 40 degrees). Our results, however, were
very similar if these neurons were included.

Orientation selectivity. To compare counts of neurons across orienta-
tion bins and learning stages, we performed a log-linear analysis of this
multidimensional contingency table. To model the observed counts, we
fitted a GLM with a Poisson link function considering the factors orien-
tation bin (4 levels) and learning stage (3 levels). To compare the distri-
butions of relative preferred orientations across learning stages without
binning (see Fig. 5F ), we used the multisample variant of the nonpara-
metric Anderson–Darling test (Scholz and Stephens, 1987). This is an
omnibus test (i.e., it provides a single test statistic to assess whether multiple
distributions differ from each other). As an alternative, we compared pairs of
distributions using the nonparametric Kolmogorov–Smirnov test, which led
to the same conclusion of no difference between learning stages (p values of
0.70, 0.25, and 0.13). To visualize how the laminar profile of tuning width �
was affected by learning (Fig. 5H), we performed a nonparametric, locally
weighted, robust polynomial regression (lowess) (Cleveland, 1979), using a
parameter value of � 0.3 for the span of the smoothing window. To assess
statistical significance, we ran an ANOVA on �, using the same design as for
d
 (see Neural discriminability).

Contrast sensitivity. In the analysis of contrast sensitivity, we included
neurons if (1) the hyperbolic ration function explained �70% of the
variance in contrast responses, and (2) the difference between baseline
and maximum response was at least 1 spikes/s. Because contrast sensitiv-
ity is bound between 0 and 100, we assessed statistical significance of

learning effects with the nonparametric Kruskal–Wallis omnibus test,
followed by pairwise comparisons using the nonparametric Mann–
Whitney test. Performing a standard ANOVA on log-transformed data
led to identical conclusions.

To assess whether locomotion affected contrast responses, we ana-
lyzed data from a separate batch of animals, unrelated to the current
study. For each neuron, we selected trials where the animals ran at least
80% and at most 20% of the time to compute contrast responses for
locomotion and stationary periods. After fitting contrast responses with
hyperbolic ratio functions (Albrecht and Hamilton, 1982), we compared
the maximum response and the contrast at half the maximum response
for locomotion versus stationary periods using paired t tests.

Lick-triggered analysis of firing rates. We computed perievent spike
histograms centered on licks during a time window from 0.1 to 1.5 s after
stimulus onset. We excluded from the analyses experiments with �10 licks
and neurons with an average firing rate �1 Hz in a 200 ms time interval
centered around lick events. To compare distributions of lick-modulation
indices across learning stages, we used the multisample variant of the non-
parametric Anderson–Darling test (see Orientation selectivity).

Results
Orientation discrimination learning unfolds as a sequence of
distinct stages
We trained 16 mice, using classical conditioning, to discriminate
the orientation of a grating stimulus and analyzed licking behav-
ior to assess learning progress (Fig. 1). The animals were head-
fixed on a spherical treadmill in front of a computer monitor, on
which we presented a drifting grating behind a stationary aper-
ture. The gratings varied along 2 orthogonal orientations and 6
levels of contrast and were presented in a random order. The
presentation of one orientation was immediately followed by a
fluid reward; the other orientation had no consequences (Fig.
1A,B). We measured licks as an indicator of learning progress,
and observed pronounced changes in licking behavior across
training sessions. Consider, for example, the sequence of training
sessions shown in Figure 1C–E. In the “naive” stage, the animal
licked spontaneously, but licking was unrelated to the visual
stimulus (Fig. 1C). In the “intermediate” stage, the animal licked
more frequently during the stimulus presentation, yet the num-
ber of licks was similar for the rewarded and unrewarded orien-
tation (Fig. 1D). In this stage, the animal likely has associated the
occurrence of either stimulus with the delivery of a reward. Finally,
in the “trained” stage, the animal showed anticipatory licks during
the rewarded orientation, and largely suppressed licks during the
unrewarded orientation (Fig. 1E). In this stage, the animal has
learned about the significance of the stimulus’ orientation.

We analyzed licking behavior of individual animals across
learning stages and found that orientation discrimination learn-
ing can be decomposed into a sequence of distinct stages (Fig. 2).
To quantify licking behavior, we computed, for each stimulus
separately, the cumulative sum of an LI, defined as the difference
in lick rates between the final second during and the final second
before stimulus presentation (Fig. 1E, black horizontal bars), di-
vided by their sum. Changes in the slope of this cumulative sum
indicate changes in the animals’ behavior. We illustrate the se-
quence of distinct learning stages in 3 example mice (Fig. 2A–C).
During the naive stage, cumulative LIs for the rewarded (blue)
stimulus and unrewarded (red) stimulus fluctuate around zero.
During the intermediate stage, the cumulative LIs rise with sim-
ilar slopes because the animals increased lick rates after stimulus
onset, regardless of its orientation. During the trained stage, the
cumulative LIs finally diverge because the animals increase fur-
ther anticipatory licking for the rewarded orientation and/or sup-
press it for the unrewarded orientation. This point of divergence
can best be seen as a change of slope in the difference between the
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cumulative LIs (Fig. 2F–H). We used
change point analyses (Gallistel et al.,
2001) to find significant changes in slope
and identify transitions between learning
stages. We defined the transition from the
naive to the intermediate stage as the first
change point in the cumulative LI for the
rewarded stimulus (Fig. 2A–C, earliest
blue circles). Analogously, we defined the
transition from the intermediate to the
trained stage as the first change point in
the difference of the two cumulative LIs
(Fig. 2F–H, earliest black circles). Relying
on the very first change points is a conserva-
tive strategy and avoids contamination by
trials from the subsequent stage. To quan-
tify how distinct these transitions were, we
determined how many change points were
needed to reach 80% of the terminal slope,
estimated from the final half of the trials.

All 3 example animals reached this crite-
rion, in the cumulative LIs and in their dif-
ference, with only one or two changes in
slope. These data indicate that there were
few but clear-cut changes in behavior; be-
fore and after these changes, behavior was
largely constant for a stretch of trials.

This distinct sequence of learning stages
was representative for the entire sample of
animals (Fig. 2D, I). For cumulative LIs
to the rewarded orientation, all animals
showed only one or two change points,
after which performance reached the ter-
minal slope (Fig. 2D). Similarly, for the
difference in cumulative LIs, all animals
reaching the trained stage required at most
two changes in slope (Fig. 2I).

To further quantify licking behavior and
validate the placement of change points,
we performed an ideal observer analyses
(Fig. 2E, J). We separated trials based on
change point locations and quantified
how well an ideal observer could decode,
from licking behavior, the presence of the
stimulus or its orientation. In the naive
stage, licking was not predictive of stim-
ulus presence (Fig. 2E; lick rate before vs
during the rewarded stimulus, area un-
der the receiver operating characteristic
[AUROC]: 0.51 � 0.01, mean, SEM, n � 15
mice). Stimulus presence, however, could
be well decoded from licking behavior
during the final two stages (0.76 � 0.02). Similarly, during the
initial two stages, licking behavior was not predictive of stimulus
orientation (Fig. 2J; LIs for rewarded vs unrewarded stimulus,
AUROC: 0.50 � 0.01, n � 10 mice); in the trained stage, however,
stimulus orientation could be well predicted by licking behavior
(0.71 � 0.02).

Analyzing licking behavior separately for each level of stimu-
lus contrast revealed that mice could detect the stimulus and
discriminate its orientation at contrasts as low as 1%, and that
stimulus contrast controlled the speed of learning (Fig. 3). In all
mice that were trained at multiple contrasts and traversed all

learning stages (n � 7), licking behavior could be used to decode
the presence of the stimulus even at 1% contrast (AUROC:
0.70 � 0.04, n � 7; Fig. 3A–D). Compared with the 2% threshold
measured in head-fixed mice pressing a lever (Histed et al., 2012),
our value is similar or potentially even better, as active behavior,
such as running on a treadmill, can further improve detection
performance (Bennett et al., 2013). Furthermore, for the majority
of mice, licking behavior reliably indicated, even at 1% contrast,
stimulus orientation (0.62 � 0.04, n � 7; Fig. 3F–I). To examine
how contrast affected the speed of learning, we extracted the first
change point at each contrast level and ranked them based on
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when they occurred; the later the change point, the higher the
rank. The transition from naive to intermediate, where the ani-
mals merely had to detect the presence of a stimulus, typically
occurred faster with high-contrast stimuli (Fig. 3E): Data points
at 1% contrast cluster around 6, indicating that LIs at 1% contrast
are last to change their slope. The transition from intermediate to

trained, however, where the animals had to discriminate orientation,
tended to occur faster for stimuli of intermediate contrasts (Fig. 3J).
In mice, improved visual performance at intermediate levels of stim-
ulus contrasts has been reported earlier (Long et al., 2015). One
potential explanation could be that our relatively large stimulus, at
high levels of contrast, engages suppressive mechanisms outside the
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classical RF (e.g., Sceniak et al., 1999; Webb et al., 2005), which might
impair decoding of stimulus orientation.

Based on these analyses of behavior, we conclude that orien-
tation discrimination learning under classical conditioning is
best described as a sequence of distinct stages, where transitions
between stages are clear-cut and performance within stages
largely constant. We next tested the hypothesis that traversing
through these well-defined stages of learning was paralleled by
changes in sensory processing in primary visual cortex.

Before studying how such distinct learning stages are reflected
in cortical sensory representations, we confirmed that orienta-
tion discrimination in a classical conditioning paradigm requires
V1. We found that discriminating grating orientation relies on V1
activity because transient optogenetic suppression of V1 neurons
impairs behavior (Fig. 4). We expressed ChR2 in PV	 inhibitory
interneurons, which we then stimulated with blue light to transiently
reduce responses of V1 neurons. We performed CSD analysis (Mitz-
dorf, 1985) on the LFPs to estimate the base of layer 4, and assigned
neurons to putative supragranular (L2/L3), granular (L4), and infra-
granular layers (L5/L6) (Fig. 4A). We photo-stimulated PV	 neu-
rons, in a subset of randomly interleaved trials, during presentation
of the stimuli at 40% or 6% contrast and observed profound reduc-
tions in responsiveness across the depth of cortex (Fig. 4C–E). These
reductions were stronger for stimuli at 6% contrast (mean suppres-
sion of 64 � 4.7%) than for those at 40% contrast (52 � 4.9%, p �
0.0006, paired t test; n � 84 neurons). When reducing the respon-
siveness of V1 neurons, anticipatory licking during the reward-
predicting stimulus was much weaker (Fig. 4F,G, left, dashed blue
line) compared with the control condition without photo-
stimulation (solid blue line). Photo-stimulation did not seem to
affect suppression of licking during the unrewarded stimulus
(red lines), indicating that the light by itself does not lead to

spurious or indifferent licking behavior. These effects of photo-
stimulation not only were specific for the rewarded stimulus, but
also depended on its contrast (Fig. 4F,G, right). A constant in-
tensity of photo-stimulation decreased anticipatory licking dur-
ing the rewarded stimulus when presented at high contrast (black
solid vs dashed line) yet nearly abolished it when presented at low
contrast (gray solid vs dashed line). These findings show that our
transient reduction of V1 activity interferes with the sensory pro-
cessing of the stimulus, and does not simply cause random be-
havior in a disoriented mouse. These findings are consistent with
previous work showing that mouse V1 is required for orientation
discrimination (Glickfeld et al., 2013; Poort et al., 2015); we con-
clude that orientation discrimination under classical condition-
ing also relies on activity in V1.

Learning shapes V1 responses well before the animals
discriminate the stimuli
Having established that orientation discrimination in our classi-
cal conditioning paradigm relies on activity in V1, we recorded,
during conditioning sessions, extracellular activity from ensem-
bles of individual V1 neurons simultaneously across the depth of
cortex. Within individual recording sessions, we interleaved con-
ditioning experiments (the “task”), with measurements of orien-
tation tuning curves outside the context of this task.

To our surprise, we found that V1 neurons showed improved
discriminability for the behaviorally relevant orientations already
in the intermediate stage, where the animals still did not discrim-
inate the stimuli (Fig. 5). To quantify how well individual neu-
rons could discriminate between the rewarded and unrewarded
orientation (the “relevant orientations”), we computed d
, de-
fined as the difference in mean firing rates relative to the pooled
SD. The value of d
 depends on the preferred orientation of a
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neuron: A neuron with preferred orientation close to the re-
warded orientation, such as the example in Figure 5A, should
have a positive d
; neurons whose preferred orientation is some-
what in between, such as the example in Figure 5B, receive com-
parable drive from both orientations and their d
 should be close
to 0. To compute d
, we focused on a response time window from
0.1 to 1.5 s after stimulus onset (Fig. 5A,B, black horizontal bar),
where anticipatory licking behavior was largely similar between
the two orientations (see Fig. 1).

We first examined V1 responses during task performance and
found that the improvements in discriminability were largely re-
stricted to neurons with preferred orientations close to either of
the relevant stimulus orientations (Fig. 5C). Binning neurons by
their preferred orientation relative to the rewarded orientation
revealed that learning improved d
 values in the two bins centered
on relative preferences of 0 (rewarded orientation) and �90 (un-
rewarded orientation; interaction between learning stage and
orientation bin, p � 0.0014, ANOVA). Follow-up analyses con-
firmed that, for the neurons with relevant orientation preference,
absolute d
 values at the intermediate stage were higher com-

pared with the naive stage (p � 0.0068, Tukey’s HSD test) and
tended to be higher than during trained stage (p � 0.061, Tukey’s
HSD test). We tested whether this selective improvement of d

values would depend on laminar location but found no evidence
(interaction between learning stage, orientation bin, and layer,
p � 0.76, ANOVA, data not shown).

To test whether improvements in neural discriminability re-
quire engagement in the task, we examined responses during
measurements of orientation tuning; although we found im-
provements outside the context of the task, they were weaker than
during task performance (Fig. 5D,E). To evaluate neural dis-
criminability without the animals being engaged in the task, we
determined d
 values from responses during measurements of
orientation tuning and also found significant improvements in d

with learning. Indeed, the improvements during measurements
of orientation tuning depended in the same way on the relative
orientation preference of the neurons (Fig. 5D; interaction be-
tween learning stage and orientation bin, p � 0.036, ANOVA).
Although learning improved discriminability outside the task, d

values during orientation tuning were not as pronounced as dur-

Time (s)
-1 0 1 2 3 4 

Fi
rin

g 
ra

te
 (H

z)

0

5

10

D
is

cr
im

in
ab

ili
ty

 d
'

gninuTksaT

Relative preferred orientation Relative preferred orientation

d'
 ta

sk
 - 

d’
 tu

ni
ng

-0.4

0

0.4

Tuning width σ
15 30 45 >50

R
el

at
iv

e 
de

pt
h 

(μ
m

)

Relative preferred orientation

Tu
ni

ng
 w

id
th

 σ

20

30

40

0

0.5

1

C
um

ul
at

iv
e

 p
ro

ba
bi

lit
y

A
bs

ol
ut

e 
d'

Fi
rin

g 
ra

te
di

ffe
re

nc
e

Task Tuning

P
oo

le
d

st
d

Rewarded
Unrewarded

Neuron 1

Neuron 2

A

B

Naive
Intermediate
Trained

EDC

HF

G

I

J

K

Fi
rin

g 
ra

te
 (H

z)

0

5

10

-2

-1

0

1

n=245
n=211
n=301

0-90 0

n=376
n=291
n=473

<-400

-300

-200

-100

0

100

200

300

400

1

1.5

3

5

3

4

-45 45 5454-09-531- -135

0-90 -45 45-135

0-90 -45 45-135

0-90 -45 45-135

Figure 5. V1 neurons show improved discriminability and sharper orientation tuning already in the intermediate learning stage. A, B, Spike rasters and density functions in response to the
rewarded (blue) and unrewarded (red) stimulus for two example neurons (units M22-14-16, M81-3-31). Insets, Preferred (black), rewarded (blue), and unrewarded (red) orientations. C, Neural
discriminability (d
) during task performance in the naive (gray), intermediate (orange), and trained stage (green). Bins represent preferred orientation relative to the rewarded orientation. D, d

values computed from responses to the same stimuli during orientation tuning measurements. E, Mean pairwise differences in d
 between task and tuning measurements across orientation bins.
F, Cumulative distribution of relative orientation preferences across learning stages. G, Learning-related changes in tuning width as a function of orientation preference relative to the rewarded
orientation, for all neurons recorded during the naive, intermediate, and trained stage. H, Tuning width (�) and laminar location for neurons in G. Trends (vertical lines) were computed with locally
weighted, robust regression (lowess). I, Absolute d
 values during task performance versus measurements of orientation tuning, separately for each learning stage. Included are only neurons from
bins centered on 0 degrees or �90 degrees in C. J, Same for differences in firing rates between rewarded and unrewarded stimuli. K, Same for pooled SD; n � 11 mice; numbers of neurons per
learning stage are given in C. Error bars indicate �1 SEM.

Jurjut et al. • Discrimination Learning in Visual Cortex J. Neurosci., July 5, 2017 • 37(27):6460 – 6474 • 6467



ing task performance (interaction be-
tween orientation bin and task, p �
0.0055). These additional improvements
in discriminability during the task can
best be seen by computing, separately for
each neuron, the difference in d
 values
between task and tuning measurements
(Fig. 5E). During the task, the mean dif-
ference in d
 values is positive for neurons
preferring the rewarded stimulus (0 de-
grees, p � 0.01, one-sided t test), negative
for neurons preferring the unrewarded
stimulus (�90 degrees, p � 0.004), and
indistinguishable from zero for all other
neurons.

Because the improvements in discrim-
inability persisted outside the task, we ana-
lyzed the orientation tuning measurements
to identify underlying neural mechanisms.
The fraction of V1 neurons preferring either
the rewarded or unrewarded stimulus was
similar overall (main effect of bin: p � 0.25,
log-linear analysis) and remained similar
across learning stages (interaction between
bin and learning stage: p � 0.79; data not
shown). We also compared, without bin-
ning, the distributions of orientation prefer-
ences across learning stages and found them
to be indistinguishable (Fig. 5F; p � 0.56,
Anderson–Darling test). These results indi-
cate that classical conditioning of orienta-
tion discrimination does not induce any systematic shift in the
distributions of orientation preferences.

While the distributions of orientation preferences did not
show systematic shifts with learning, we found substantial sharp-
ening of orientation selectivity, which was strong already in the
intermediate learning stage (Fig. 5G,H). Consistent with previ-
ous reports (Niell and Stryker, 2008; Sun et al., 2016), average
tuning width had a clear laminar profile during the naive stage: it
was narrower in L2/L3 than in L4 and L5/L6 (Fig. 5H; means of 24
vs 30 vs 37 degrees, main effect of layer, p � 10�4, ANOVA).
Tuning width in these deeper layers, however, sharpened in the
intermediate stage (orange, interaction between layer and learn-
ing stage: p � 0.038, ANOVA; intermediate vs naive in L5/L6: p �
0.0035, Tukey’s HSD test). In the trained stage (green), tuning
width was generally broad and did not vary across layers (main
effect of layer: p � 0.50, ANOVA). Unlike the improvements in
discriminability, the sharpening of orientation tuning width in
the intermediate stage did not depend on a neuron’s orientation
preference but occurred globally across the entire population (in-
teraction between learning stage and orientation bin: p � 0.33;
Fig. 5G). Together, these results indicate that the learning-related
improvements seen outside the task were largely mediated by a
sharpening of tuning width, which was most pronounced in
the intermediate stage.

Given the additional benefit of task engagement, we sought to
identify the properties of the neural response that further improved
discriminability during the task. We focused on those neurons that
showed learning-related improvements (Fig. 5C; relative orientation
preference bins at 0 and�90 degrees) and examined how absolute d

changed between tuning measurements and task performance. As
implied by the analyses of pairwise differences (Fig. 5E), d
 values
were higher during the task than during tuning measurements (Fig.

5I; main effect of task: p � 10�4, ANOVA); yet this task-related
increase did not seem to depend on learning stage (interaction be-
tween task and learning stage: p � 0.11). We decomposed d
 into
differences in firing rates (rewarded-unrewarded; Fig. 5J) and
pooled SD (Fig. 5K). Performing the task increased differences in
firing rates (main effect of task: p � 0.0047) and strongly reduced
firing rate variability (main effect of task: p � 10�4), neither of them
depended on learning stage (interaction between task and learning
stage, for both comparisons p � 0.26). Because these task-related
improvements were present at all learning stages, they likely result
from different levels of engagement. During tuning measurements,
the animals passively view a sequence of oriented gratings; during the
task, they learn to focus on visual information to anticipate reward.
These analyses indicate that being engaged in a perceptual task, as
simple as learning to anticipate reward, can improve the reliability of
sensory responses in V1.

We finally asked whether progress in orientation discrimination
would affect processing of stimulus features other than orientation;
to address this question, we examined responses of V1 neurons to
different levels of stimulus contrast (Fig. 6). Because our rewarded
stimulus and unrewarded stimulus had different orientations, com-
paring the contrast responses to these two stimuli within individual
neurons would be confounded by differences in sensory drive (Fig.
6A–C). We therefore compared contrast sensitivity in the popula-
tion of V1 neurons, measured with the same stimulus, across the
different learning stages. We fitted contrast responses with a hyper-
bolic ration function (Albrecht and Hamilton, 1982) and took as a
measure of contrast sensitivity the contrast at half the maximum
response (Fig. 6A, dotted lines).

We examined responses to the rewarded stimulus and found
that contrast sensitivities were highest, across the depth of cortex,
in the intermediate stage (Fig. 6D). Pooling neurons across layers,
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we found that contrast sensitivities differed between learning
stages (Fig. 6E; main effect of stage: p � 0.0033, Kruskal–Wallis
rank sum test). Follow-up comparisons revealed that contrast
sensitivities were higher during the intermediate than during the
naive (p � 0.032, Mann–Whitney Test) and trained stage (p �
0.00093); naive and trained stages did not differ from each other
(p � 0.21). For the unrewarded stimulus, the effects were similar
(Fig. 6F; main effect of stage: p � 0.0056, Kruskal–Wallis rank

sum test). These data show that learning to discriminate orienta-
tions not only sharpens selectivity for orientation but also im-
proves, in the intermediate stage, sensitivity for contrast.

Because our animals could rest or run at any time, we asked
whether any of the observed changes in V1 processing could be
related to the animals’ running behavior; we found that this was
not the case (Fig. 7). Because locomotion can increase the gain of
sensory responses in mouse V1 (Niell and Stryker, 2010; Bennett
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et al., 2013; Polack et al., 2013; Erisken et
al., 2014; Fu et al., 2014; Lee et al., 2014)
and reduce trial-to-trial variability of
membrane potential fluctuations (Ben-
nett et al., 2013), it could, in principle, also
bring about higher values of d
 (Fig. 5C–
E). The increases in d
 we observed, how-
ever, were not confounded by differences
in locomotion. We analyzed run-speed
profiles from single trials (Fig. 7A) to de-
termine, for each point in time, the per-
centage of trials during which the animal
was running. As the animals learned the
task, locomotion locked to the structure
of the trial (Fig. 7B–D). During the win-
dow we used to analyze neural responses,
however, the percentages of trials the ani-
mals spent running remained largely constant. Only in the
trained stage, animals ran more in response to the rewarded than
the unrewarded stimulus (Fig. 7E; interaction between learning
stage and reward: p � 10�4; ANOVA). Furthermore, d
 values
increased even outside the context of the task, where running
behavior remained indistinguishable across the entire trial dura-
tion and all learning stages (Fig. 7F–I; main effect of stage: p �
0.48, ANOVA). Similarly, we observed a narrowing of tuning
width with learning outside the context of the task (Fig. 5G),
where locomotion was identical across learning stages. Further-
more, based on previous findings (Erisken et al., 2014; Lee et al.,
2014), locomotion should not alter contrast sensitivity. We tested
this directly by analyzing data obtained from a separate batch of
naive mice, unrelated to the current study. We compared con-
trast responses between locomotion and stationary trials and
found that locomotion increased the maximum response (Fig. 7J;
p � 0.0003, paired t test) without affecting contrast sensitivity
(Fig. 7K; p � 0.20). Together, these results argue against the
possibility that the learning-related improvements in V1 sensory
processing can be explained by the animals’ running behavior.

These learning-related changes in visual processing also can-
not be explained by artifacts of eye movements (Fig. 8). We did
observe occasional eye movements, which mainly occurred along
the horizontal axis. Their overall frequency, however, was very
low (naive stage: 0.075 � 0.04 Hz; intermediate stage: 0.096 �

0.05 Hz; trained stage: 0.16 � 0.07). Although mean saccade
frequency changed with learning stage (main effect of stage, p �
0.0021, ANOVA), it was indistinguishable between the naive and
intermediate stage (p � 0.63, Tukey’s HSD test), where learning
already shaped V1 responses. In addition, across learning stages,
the distributions of eye positions were highly overlapping and
centered on a default position.

The learning-related changes in V1 sensory processing also
cannot be explained by licking artifacts (Fig. 9). First, we ob-
served changes in d
 and tuning width outside the task, where the
lick spout was completely removed from the setup. Second, we
examined licking behavior during the task and found that it only
marginally influenced V1 responses. Within the window used to
analyze the neural data, we constructed, for each neuron, perievent
spike histograms centered on licks (Fig. 9A,B). We classified neu-
rons as lick-modulated if the mean firing rate during a post-lick
period of 100 ms was outside the 99% CI around the mean firing
rate in the corresponding pre-lick period. The percentage of lick-
modulated neurons was small (naive stage: 4.5%; intermediate
stage: 5.6%; trained stage: 4.1%) and statistically indistinguish-
able across learning stages (interaction between learning stage
and lick-modulation: p � 0.49, log-linear analysis). We also com-
puted a lick-modulation index, defined as the difference in mean
pre-lick and post-lick firing rates divided by their sum, and com-
pared the distributions of these indices across learning stages
(Fig. 9C). An omnibus test showed a significant difference be-

Horizontal
Vertical

Learning stage
T

S
ac

ca
de

 fr
eq

ue
nc

y 
(H

z)

0

0.2

0.4

0.6

5 s

10 deg

DCBA

IN

0

0.1

0

0.2

P
ro

ba
bi

lit
y

Vertical 
eye position (deg)

-10 10
Horizontal 

eye position (deg)

0 -10 100

Naive

Intermediate

Trained

Figure 8. Learning-related changes in V1 processing are not an artifact of eye movements. A, Eye position was measured by tracking the pupil under infrared illumination. Top, Example image
acquired by the eye-tracking camera. White spot indicates the cornea reflection of the infrared LED. Green cross represents the estimate of the pupil center. Bottom, Example traces for vertical and
horizontal eye position. Dashed lines indicate saccades. B, Saccade frequency within 0.1–1.5 s after stimulus onset across learning stages. Data points indicate recording sessions. Error bars
indicate � 1 SEM. C, Distributions of vertical eye position. D, Distributions of horizontal eye position.

-100 0 100
0

10

20

Fi
rin

g 
ra

te
 (H

z)

-100 0 100
Time lag (ms)Time lag (ms)

-0.4 0 0.4
Lick-modulation index

0

0.5

1

C
um

ul
at

iv
e 

fre
qu

en
cy

A B C

Naive
Intermediate

Trained

Neuron 1 Neuron 2

n=594
n=484
n=684

Figure 9. Learning-related changes in V1 processing are not an artifact of licking behavior. A, B, Examples of perievent spike
histograms triggered on licks. Firing rates of neuron 1 are weakly reduced with licking; firing rates of neuron 2 are not affected
(M53-1-8, M117-22-21). C, Cumulative distributions of lick-modulation indices across the population of neurons during the naive
(gray), intermediate (orange), and trained stage (green).

6470 • J. Neurosci., July 5, 2017 • 37(27):6460 – 6474 Jurjut et al. • Discrimination Learning in Visual Cortex



tween the three distributions (p � 0.001, Anderson–Darling
test). Follow up-analyses then revealed that the indices were ac-
tually less extreme in the intermediate (orange) than in the naive
(gray, p � 0.0002) and trained stages (green, p � 0.0061). These
results argue against the possibility that the learning-related
changes in V1 processing artificially arise from differences in lick-
ing behavior.

Finally, we rejected the possibility that the learning-related
changes result from a disproportionate exposure to the two ori-
entations presented during the task (Fig. 10). In mouse V1, re-
peated exposure to a certain orientation can lead to persistent
enhancements of the visually evoked response to that stimulus
(stimulus-selective response potentiation [SRP]) (Frenkel et al.,
2006; Cooke et al., 2015). SRP, however, is typically observed
after prolonged presentation of the same stimulus at high levels of
contrast (100 – 400 blocks of stimulus presentation at 100% con-
trast) (Frenkel et al., 2006). We do not expect that our paradigm
can lead to SRP. Although we did present two orientations only
during the task, 4 of our 6 levels of stimulus contrast were below
what is required to produce SRP (�12% contrast) (Frenkel et al.,
2006). At sufficiently high levels of contrast, the two stimuli were
presented 10–15 times during the task. Interleaved measurements of
orientation tuning involved 20 presentations of a random sequence
of gratings (including the rewarded and unrewarded orientation).
Although such a protocol is unlikely to result in SRP, we directly
tested this possibility by comparing, in trained animals, evoked po-
tentials across orientations. We computed VEP traces, separately for
six stimulus orientations, by averaging the stimulus-triggered LFP
across electrode channels in layer 4 (Fig. 10A). We determined VEP
amplitudes as the trough-to-peak difference and compared them
across stimulus orientations (Fig. 10B,C). Mean VEP amplitudes
did not differ across orientations (main effect of stimulus orienta-
tion: p � 0.99, ANOVA), indicating that the learning-related
changes are not simply caused by a disproportionate exposure to the
rewarded and unrewarded orientation.

Discussion
We used a classical conditioning paradigm to investigate how
learning about the behavioral relevance of stimulus orientation
affects sensory processing in mouse V1. Analyzing behavior
in individual animals, we found that orientation discrimination
learning occurred in a sequence of distinct stages. During an
intermediate stage, well before successful discrimination was
expressed in the animals’ behavior, we observed substantial mod-
ulations of V1 activity: improved discriminability, sharper orien-
tation tuning, and higher contrast sensitivity. We propose that,
even in a simple learning paradigm, classical conditioning, learn-

ing is aided by early modulations of re-
sponses in visual cortex, which selectively
enhance the representation of those sen-
sory signals that are relevant for behavior.

Improvements in sensory processing
have long been known from perceptual
learning; there are similarities, but also
fundamental differences, between this
line of research and our study. Perceptual
learning refers to improvements in per-
ceptual performance with extensive prac-
tice (but for faster effects, see, e.g., Fahle et
al., 1995), typically involving threshold-
level stimuli (e.g., McKee and Wes-
theimer, 1978; Poggio et al., 1992;
Schoups et al., 1995). Our study, in con-
trast, uses orthogonal stimulus orienta-

tions far above discrimination thresholds of the mouse (� 10
degrees) (Andermann et al., 2010; Glickfeld et al., 2013). In per-
ceptual learning sessions, subjects already know which stimulus
feature is relevant to solve the task; in contrast, during initial
sessions of our paradigm, the behavioral relevance of grating ori-
entation is to the animal unknown. Rather than investigating
neural signatures of perceptual improvements by practice, which
can involve thousands of trials (e.g., 150,000 trials) (Yang and
Maunsell, 2004), we investigated how sensory processing changes
as the behavioral relevance of the visual input becomes clear, which
could happen after few trials only (see, e.g., Fig. 2B). Despite these
differences in task requirements and training protocols, there are
important similarities: First, perceptual learning of orientation dis-
crimination can improve selectivity of V1 neurons (e.g., Schoups et
al., 2001; Yang and Maunsell, 2004; Raiguel et al., 2006); these im-
provements, however, were strongest for neurons optimally suited
to the task, which contrasts with the global sharpening of tuning we
observed. Second, a fraction of our stimuli had contrasts close to
threshold, which might have mediated perceptual learning for stim-
ulus contrast. Third, perceptual learning can affect cortical represen-
tations outside the context of the task (e.g., Schoups et al., 2001; Yang
and Maunsell, 2004; Raiguel et al., 2006; Hua et al., 2010). Fourth,
effects of perceptual learning can depend on the level of engagement
(e.g., Crist et al., 2001; Yang and Maunsell, 2004; Polley et al., 2006; Li
et al., 2008) or the specificity of a task (Li et al., 2004). These similar-
ities might indicate that the two forms of learning share fundamental
mechanisms of cortical plasticity.

Our finding of distinct changes in behavior is consistent with
recent analyses of learning curves in individual subjects. Learning
has traditionally been understood as a smooth, hill-climbing pro-
cess, during which performance gradually increases with the
number of trials before reaching an asymptotic level. This process
is captured by the classic learning curve, often expressed as an
inverse exponential function. Such gradually increasing curves, how-
ever, might arise from averaging across subjects who, individu-
ally, show step-like changes in behavior at different points in time
(Gallistel et al., 2004). Indeed, analyses of single-subject data have
revealed abrupt changes in a number of learning paradigms, such as
autoshaping in pigeons, eye-blink conditioning in rabbits, and pro-
boscis extension in honeybees (Gallistel et al., 2004; Papachristos and
Gallistel, 2006; Bazhenov et al., 2013). Similarly abrupt changes are
present in several of our mice, suggesting that orientation discrimi-
nation learning can follow the same dynamics.

One way to account for abrupt changes in behavior is to ex-
plain conditioned responses within the framework of decision-
making (Gallistel and Gibbon, 2000; Gallistel et al., 2004). In the
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context of learning, the animal accumulates, across trials, the evi-
dence that a particular stimulus makes a difference (i.e., predicts a
reward). This evidence-accumulation process is thought operate
during the acquisition of the conditioned response. After an internal
decision-variable has reached a bound, the animal shows the condi-
tioned response (i.e., has learned). The implication is that behavior
can change abruptly, and remain at a constant level afterward, sim-
ilar to what we observed in some of our animals.

Sudden changes in behavior, however, do not necessarily im-
ply that learning abruptly changes the neural representation of
stimuli in visual cortex. It might be that some form of activity-
dependent plasticity (Caporale and Dan, 2008) leads to a gradual,
trial-by-trial strengthening of synaptic connectivity between
neurons along the early visual pathway. Such gradually changing
stimulus representations might then be fed to downstream areas,
which implement threshold-like decision processes (Bazhenov et
al., 2013; Latimer et al., 2015) that finally translate into behavior.

Does learning dynamically shift the preferences of individual
V1 neurons? If so, we should have seen improved discriminability
during task performance but not during tuning measurements,
potentially in neurons that were driven equally well by the two
stimuli (e.g., those preferring horizontal gratings). Although our
data do not suggest any such dynamic shifts of preferences with
learning, a decisive answer to this question requires longitu-
dinal tracking of orientation preferences across learning stages.
Chronic tracking during discrimination learning has been
achieved with two-photon imaging of mouse V1 (Poort et al.,
2015). Although orientation tuning was not measured, these data
reveal how the relative response to a rewarded versus unrewarded
orientation is affected by learning. In this study, learning reduced
day-to-day fluctuations in relative response strength of those neu-
rons that already showed a bias before learning. In addition, learning
biased responses of previously indiscriminate neurons toward the
rewarded stimulus. Learning has long been known to shift tuning
preferences in primary auditory cortex, in particular with fear con-
ditioning (Edeline et al., 1993), but also with other paradigms
(Weinberger, 2004). Whether learning can induce comparable shifts
in visual cortex requires further research.

Our most striking observation is that signatures of learning in
V1 were fully expressed well before the behavior indicated that
the animals had learned to discriminate the stimuli. The learning
effects on V1 responses were at least as strong, sometimes even
stronger, in the intermediate than in the trained stage. Such pro-
nounced changes in the spiking responses of V1 neurons early in
discrimination learning have not been documented yet. In a
number of studies, however, effects of learning have been shown to
wax and wane. In primary auditory cortex (A1) of gerbils, synaptic
inhibition is reduced with learning progress but returns to pretrain-
ing levels when animals become experts (Sarro et al., 2015). Tono-
topic representations of sound frequency in rat A1 can expand
during initial stages of training and later shrink again (Takahashi et
al., 2010), consistent with the observation that cortical map plasticity
in A1 is a transient phenomenon occurring during the first weeks of
training (Reed et al., 2011). CA1 neurons in rat hippocampus show
enhanced excitability during initial training but return to pretraining
levels with additional practice (Zelcer et al., 2006). Finally, BOLD
activity in human V1 increases during learning but relaxes to pre-
training levels with additional training while behavioral perfor-
mance remains high (Yotsumoto et al., 2008).

Part of these early improvements in sensory processing might
reflect the presence of a top-down signal, such as attention. We
argue that the animals cannot learn this task without attending to
the orientation of the stimulus. We speculate that attention is

focused in the intermediate stage and enhances those aspects of
the visual scene that are behaviorally relevant. Indeed, the effects
of learning we measured are reminiscent of well-known effects of
attention on neurons in visual cortex: improved selectivity for
stimulus features (David et al., 2008; O’Connell et al., 2014) and
improved sensitivity for stimulus contrast (Reynolds et al., 2000;
Martínez-Trujillo and Treue, 2002; but see Williford and Maun-
sell, 2006; Pooresmaeili et al., 2010). Attention is indeed a key
element in contemporary theories of associative learning (Mack-
intosh, 1975; Pearce and Hall, 1980; Gottlieb, 2012), and our
paradigm might be well suited to reveal attentional effects: low
levels of stimulus contrast make anticipation of the consequences
difficult, and more difficult tasks typically lead to stronger atten-
tional effects (Chen et al., 2008). Attentional modulation of V1 in
human and nonhuman primates has been shown to change with
learning (Gilbert et al., 2000; Bartolucci and Smith, 2011), which
might explain the absence of further improvements in the trained
stage. Attention, however, cannot be the only factor because im-
provements in discriminability and sharpening of orientation
tuning curves occurred even outside the context of the task.

Which neural circuits could shape V1 responses during orien-
tation discrimination learning? The activity of midbrain dopami-
nergic neurons plays a key role in learning to associate a stimulus
with reinforcement. In rodents, however, direct dopaminergic
innervation of dorsal thalamus or visual cortex is sparse (Pinaud
et al., 2006; García-Cabezass et al., 2009). Any dopaminergic con-
tribution might therefore be indirect, such as via glutamatergic
long-range projections originating in prefrontal cortex. Another
candidate mechanism is the release of acetylcholine by neurons in
the basal forebrain. In V1, acetylcholine can amplify effects of
visual attention (Herrero et al., 2008), improve behavioral dis-
crimination performance (Pinto et al., 2013), or render neurons
sensitive for the timing of reward (Chubykin et al., 2013). Which
of these potential mechanisms might shape V1 sensory process-
ing in the intermediate learning stage is an open question.

In conclusion, these early improvements in sensory process-
ing might reflect a key role of cortex in learning a visually guided
task. During discrimination learning, V1 might send a “teaching
signal” to subcortical structures, providing information about
the visual context during anticipatory licking. Such a role of sen-
sory cortex is a key element in a recent model of oculomotor
learning (Fee, 2012), which might provide a general framework
applicable to a wider range of learning paradigms. From this
perspective, V1 would enhance, already in the intermediate stage,
behaviorally relevant sensory information, which is used to learn
the mapping between stimuli and outcomes.
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