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Content-Specific Codes of Parametric Vibrotactile Working
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To understand how the brain handles mentally represented information flexibly in the absence of sensory stimulation, working memory
(WM) studies have been essential. A seminal finding in monkey research is that neurons in the prefrontal cortex (PFC) retain stimulus-
specific information when vibrotactile frequencies were memorized. A direct mapping between monkey studies and human research is
still controversial. Although oscillatory signatures, in terms of frequency-dependent parametric beta-band modulation, have been
observed recently in human EEG studies, the content specificity of these representations in terms of multivariate pattern analysis has not
yet been shown. Here, we used fMRI in combination with multivariate classification techniques to determine which brain regions retain
information during WM. In a retro-cue delayed-match-to-sample task, human subjects memorized the frequency of vibrotactile stimu-
lation over a 12 s delay phase. Using an assumption-free whole-brain searchlight approach, we tested with support vector regression
which brain regions exhibited multivariate parametric WM codes of the maintained frequencies during the WM delay. Interestingly, our
analysis revealed an overlap with regions previously identified in monkeys composed of bilateral premotor cortices, supplementary
motor area, and the right inferior frontal gyrus as part of the PFC. Therefore, our results establish a link between the WM codes found in
monkeys and those in humans and emphasize the importance of the PFC for information maintenance during WM also in humans.
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Working memory (WM) research in monkeys has identified a network of regions, including prefrontal regions, to code stimulus-
specific information when vibrotactile frequencies are memorized. Here, we performed an fMRI study during which human
subjects had to memorize vibratory frequencies in parallel to previous monkey research. Using an assumption-free, whole-brain
searchlight decoding approach, we identified for the first time regions in the human brain that exhibit multivariate patterns of
activity to code the vibratory frequency parametrically during WM. Our results parallel previous monkey findings and show that
the supplementary motor area, premotor, and the right prefrontal cortex are involved in vibrotactile WM coding in humans.

/Signiﬁcance Statement

Introduction

Flexible handling of mentally represented information is the basis
for any higher cognitive process. To investigate how the brain
represents mental material in the absence of sensory stimulation,
working memory (WM) studies have been essential. For a long
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time, the dominant view was that major aspects of WM content
are maintained in prefrontal regions (Goldman-Rakic, 1995).
This view was supported by electrophysiological recordings in
monkeys finding that neurons in the prefrontal cortex (PFC)
exhibited stimulus-specific firing (Romo et al., 1999). Studies on
sensory WM by Romo and colleagues, who explored the reten-
tion of vibration frequency of tactile stimuli in nonhuman pri-
mates, were particularly influential (Herndndez et al., 2000;
Romo and Salinas, 2001, 2003a, Romo et al., 2002, 2004 ). These
seminal studies have established direct links between the observed
neuronal signals and the actual content that was memorized (Pas-
ternak and Greenlee, 2005), namely, that firing of neurons in the
PFC was modulated parametrically depending on the maintained
vibration frequency (Romo et al., 1999). Consecutive studies de-
picted a network of regions exhibiting similar WM codes while
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controlling for potentially conflating perceptual or decisional
processes (Romo and de Lafuente, 2013; Romo et al., 2012).
Romo and colleagues were able to show parametric mnemonic
representations in secondary somatosensory, medial frontal, and
premotor cortices and the PFC (Romo and de Lafuente, 2013;
Romo etal., 2012). Likewise, several human oscillatory EEG stud-
ies have emphasized the role of the right PFC in maintaining
information about the stimulus feature (i.e., vibrotactile frequen-
cy; Spitzer and Blankenburg, 2012; Spitzer et al., 2014a). How-
ever, it is still unclear whether such codes in humans indeed
reflect the WM content.

Noninvasive human brain imaging research has initially
been limited to the study of elevated activity during WM
delay periods. However, delayed activity cannot dissociate be-
tween the representation of WM content and other content-
independent functions that assist in retaining and manipulating
mental representations (Baddeley, 2012; Riggall and Postle, 2012;
Sreenivasan et al., 2014a; D’Esposito and Postle, 2015). Multi-
voxel pattern analysis (MVPA) for fMRI has recently received
substantial attention in WM research because this approach al-
lows patterns of local activity to be related directly to particular
WM contents (Norman et al., 2006; Haynes, 2015; Lee and Baker,
2016; Christophel et al., 2017) and therefore to identify brain
regions that code specific types of mental content. Controversially,
these MVPA studies largely failed to find stimulus-specific activity
in the PFC (Riley and Constantinidis, 2016). Instead, they suggest
sensory and parietal regions to exhibit stimulus-specific activa-
tion (Lee and Baker, 2016), favoring sensory recruitment models
of WM (Pasternak and Greenlee, 2005). Therefore, the view of the
human PFC’s function for WM has been reevaluated. It remains
controversial if, or under which conditions, the PFC exhibits
stimulus-specific codes (D’Esposito and Postle, 2015; Ester et al.,
2015; Postle, 2015; Lee and Baker, 2016; Riley and Constantinidis,
2016).

Meanwhile, evidence has accumulated that different types of
information are coded in different brain regions depending on
their degree of abstraction (Christophel et al., 2017). Vibratory
frequencies are not thought to be mere low-level sensory stimulus
features but are considered as “analog properties” together with
stimulus features such as intensity or duration. Most recent studies
focused on sensory aspects of WM and mainly fostered sensory re-
cruitment models of WM (Sreenivasan et al., 2014). Research on
such more abstract (analog) features has been limited.

Based on the monkey work of Romo and colleagues (Romo
and de Lafuente, 2013), we sought to investigate whether similar
regions in the human brain also exhibit activation patterns to which
MVPA is sensitive. To test which brain regions parametrically rep-
resent vibratory frequency, we applied a searchlight approach using
support vector regression (Kriegeskorte et al., 2006; Kahnt et al.,
2011) ina human version of the vibrotactile WM task. Crucially, this
approach does not make any a priori assumptions on the localization
of such representational codes.

Materials and Methods

Participants

All subjects (N = 24) were neurologically intact and right-handed, as
assessed by the Edinburgh Handedness Inventory (EHI) (Oldfield,
1971). A total of N = 22 subjects were included in the analysis (age:
26.46 * 3.38 years, 16 female, EHI: 0.87 = 0.15) because two subjects
were excluded due to excessive head motion (>9 mm). All participants
provided written informed consent for the procedure in accordance with
protocols approved by the local ethics committee of Freie Universitit
Berlin.
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Experimental design

We applied a retro-cue WM paradigm in which the presentation of two
vibrotactile sample frequencies was followed by a visual cue indicating
which of the two frequencies had to be memorized during a subsequent
delay period (Fig. 1). Subjects performed a two-alternative forced choice
task after a delay of 12 s to indicate which of two test stimuli was identical
to the memorized sample. Responses were given via right middle and
index finger button presses and left/right response mapping was ran-
domized across subjects. Vibrotactile stimuli were delivered to the left
index finger using a 16-dot piezoelectric Braille-like display (4 X 4
matrix with 2.5 mm spacing) controlled by a programmable stimula-
tor (QuaeroSys, St. Johann, Germany).

The set of vibrotactile sample stimuli contained four frequencies: 10,
22, 34, and 46 Hz (Fig. 1). All 16 pins of the Braille-like display vibrated
with equal amplitude for 600 ms with smoothed onsets and offsets. One
of the test stimuli matched the sample stimulus’ frequency, whereas the
foil stimulus was higher or lower in 50% of the trials, respectively. To
achieve equal difficulty in each trial, we adjusted the frequency of the foil
following the Weber—Fechner law (logarithmic relation between stimu-
lus and perception; Fechner, 1966) anchored at 28 + 9 Hz, resulting in
7.6 and 13.2 Hz for the 10 Hz stimulus, 16.6 and 29.1 Hz for the 22 Hz
stimulus, 25.7 and 44.9 Hz for the 34 Hz stimulus, and 34.8 and 60.8 Hz
for the 46 Hz stimulus. The mask stimulus was composed of pins vibrat-
ing at all four sample frequencies and 180° phase-shifted equivalents and
was presented for 500 ms with smoothed onsets and offsets.

Each experimental run consisted of 48 trials with a 12 s WM delay,
supplemented by 8 catch trials with delays of 4 or 8 s to ensure sustained
WM throughout the retention period. Each of six stimulus pairs was
presented equally often in a balanced stimulus order, in which each of the
four samples was memorized 12 times. Subjects were familiarized with
the task by completing 1 or 2 practice runs outside of the scanner 1-5 d
before the fMRI experiment.

fMRI data acquisition and preprocessing

fMRI data were acquired in 4 runs of 20 min on a 3 T scanner (TIM,
TRIO, Siemens) at the MRI facility of the Freie Universtit, Berlin. For
each run, 600 functional images were acquired (T2*-weighted gradient-
echo EPIL: 37 slices; interleaved order; 20% gap; whole brain; TR = 2000
ms; TE = 30 ms; 3 X 3 X 3 mm? voxel; flip angle = 90°% 64 X 64 matrix).
In addition, structural MRI data were acquired (MPRAGE, 176 sagittal
slices, TR = 1900 ms, TE = 2.52 ms, 1 X 1 X 1 mm? voxel).

Trial onsets were time locked to the functional images. This approach
allows a TR-wise analysis of the 12 s WM phase in six consecutive func-
tional images, as applied previously in the study of visual short-term
memory (Christophel et al., 2012).

Statistical analysis

Time-resolved searchlight decoding of parametric multivariate frequency
representations. To preserve the spatiotemporal structure of the fMRI
signal, no smoothing, normalization, or slice-time correction was per-
formed before classification and preprocessing was limited to spatial
realignment. fMRI data processing was performed using SPM8 (Well-
come Trust Centre for Neuroimaging, Institute for Neurology, Univer-
sity College London). Finite impulse response (FIR) models were used to
obtain runwise beta estimates for each 2 s time bin of the WM delay (to
display time courses, an additional 2 s time bin before and after the WM
delay was modeled). High-pass filtered data (cutoff 192 s) were included
in a model with a total of 132 beta estimates (4 stimuli X 8 time bins X 4
runs + 4 constants). All trials of the experiment except the catch trials
were modeled to avoid any potential biases from the exclusion of trials.
As control analysis, the identical decoding approach was performed with
beta estimates from a model containing only correct trials and revealed
virtually identical results.

To identify where in the brain information about the memorized vi-
bratory frequency was encoded, we applied a time-resolved multivariate
decoding analysis using a support vector regression (SVR) model, which
has been described previously (Kahnt et al., 2011). This approach allows
testing for local multivariate representations (activation patterns of vox-
els) that code the vibratory frequency maintained during WM. Com-
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Figure 1.

WM task for vibrotactile frequency stimuli. 4, The stimulus set was composed of four vibratory frequencies of 10, 22, 34, and 46 Hz. Vibrotactile stimuli were presented viaa 4 X 4 pin

Braille-like display to the left index finger. B, Delayed-match-to-sample paradigm was applied where two vibrotactile sample stimuli and a mask stimulus were presented consecutively to the left
index finger. A visual retro-cue indicated which of the sample frequencies had to be memorized during a subsequent 12 s delay period. After this delay, subjects performed a two-alternative forced
choice on two consecutively presented target stimuli. One stimulus was identical to the memorized stimulus and the other was a foil (randomized order). Subjects responded with right hand button
presses to indicate which of the two target stimuli was identical to their WM content. Beta estimates were derived from a FIR model for each 2 s time bin of the delay phase and entered into
independent decoding analyses. Prediction accuracy maps from the eight searchlight SVR analyses and all subjects were entered into a second-level analysis to test for above-chance decoding using

a t-contrast across the six WM delay time bins.

pared with classic support vector machine approaches, SVR does not
only distinguish between two classes of stimuli. Instead, an SVR model is
trained to predict the value of a continuous variable, here vibratory fre-
quency, based on a multivariate data vector. This is similar to a univariate
regression approach, in which the prediction of a dependent variable is
only based on one independent variable. In SVR, a data vector with multiple
independent variables (activation pattern of voxels) is used to predict a
single dependent variable (the maintained vibratory frequency).

All decoding analyses were performed using The Decoding Toolbox
(TDT) (Hebart et al., 2015), which provides an interface to apply the com-
putational routines of LIBSVM (Chang and Lin, 2011) and LIBLINEAR
(Fan et al,, 2008) to neuroimaging data. Crucially, we did not limit our
analysis by assumptions on where in the brain local activation patterns
relate to WM content. Instead, we applied a searchlight analysis (Krieges-
korte et al., 2006) in which a spherical volume of interest is moved
step-by step (voxel-by-voxel) through the entire brain. In each search-
light step, a SVR model is trained and tested on data extracted from a
local sphere of voxels. Thereby, 3-dimensional prediction accuracy maps
for the whole brain are derived for each experimental subject. Consecu-
tively, these maps allow group-level statistical testing to identify those
regions that exhibit above-chance predictions across subjects and thus,
maintain information on the memorized vibratory frequency.

The subject-level decoding analysis was performed using a leave-one-
out cross-validation scheme in combination with an SVR kernel (linear
kernel and constant regularization parameter of ¢ = 1). Independent
whole-brain searchlight decoding analyses were performed for each time

bin. Beta estimates of each of the eight time bins were first z-scaled
(normalized) across the samples for each voxel, as implemented in TDT.
In each searchlight step, z-scaled beta estimates of voxels in a four-voxel
radius sphere were extracted from each of the four maps corresponding
to the four vibratory frequencies. Next, z-scaled beta estimates were for-
warded to a fourfold cross-validation scheme in which data from three of
the four runs are used to “train” the SVR. This SVR is then used to predict
values of vibratory frequency based on the independent fourth run’s data. To
make our data comparable to previous reports, we used as a “test” measure
the prediction accuracy, defined as the Fisher’s z-transformed correlation
coefficient between the predicted value levels and the actual value levels
of the test dataset (Kahnt etal., 2011) (in TDT: “zcorr”). The center of the
searchlight was moved voxelwise through the brain and prediction accu-
racy values were saved in the corresponding whole-brain accuracy maps.
In this way, we gained a prediction accuracy map per subject reflecting
which brain regions code the value of the vibratory frequency in a mul-
tivariate way, which is considered the multivariate pendant of a paramet-
ric code (Kahnt et al., 2011). This analysis yielded eight accuracy maps
per subject, corresponding to the six timebins spanning the WM interval
and one volume before and after it (Fig. 1).

Accuracy maps were normalized to MNI space using unified segmen-
tation (as implemented in SPM8) and smoothed with a 3 mm full-width
half-maximum kernel. These were entered consecutively into a flexible
factorial second-level design (repeated measures) and a t-contrast for the
mean of the six WM time bins against zero was computed. Voxels with
above-chance prediction accuracies are reported at a threshold of p < 0.05
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Brain regions exhibiting a WM code for the memorized vibratory frequency. A, Regions with above-chance prediction accuracy across the WM delay period revealed by a t-contrast

displayed atp << 0.05, FWE corrected. This network of regions overlaps with areas previously identified in nonhuman primates (see also Table 1) and is constituted of left and right dorsal PMC (dPMC),
right IFG (rIFG; 54.1% in right Area 44 according to the anatomy toolbox; Eickhoff et al., 2005, 2007), and a cluster in the SMA/CC. B, Time courses of prediction accuracy through the WM delay phase
for the peak voxel of the five clusters depicted in A (mean = SEM). Time courses of the control analysis decoding the nonmemorized stimulus are presented in gray and do not show above-chance
prediction accuracies throughout the delay phase. €, Results of permutation testing in which the same SVR analysis was performed with permuted frequency labels of the data. The divergence of the
permutations from the order of 10, 22, 34, and 46 Hz is expressed as difference in rank order (see “Materials and Methods”). As expected if the order of frequencies determines the performance of
the SVR then a decrease in the order of frequency labels resulted in decreased prediction accuracy. This analysis thereby demonstrates that it is indeed the linear order of memorized frequencies that
constitutes the basis for high prediction accuracies in these regions. Bars with asterisk indicate a significant correlation of order and prediction accuracy for p < 0.05.

family-wise error (FWE) corrected for multiple comparisons and dis-
played with a cluster extent threshold of 35 voxels. All reported coordi-
nates are in MNI space. The SPM anatomy toolbox was used to establish
cytoarchitectonical references (Eickhoff et al., 2007).

Control analysis: decoding the nonmemorized stimulus. As a control
analysis, we tested for above-chance prediction accuracy for the non-
memorized stimulus. New FIR models were estimated, in which the
four sets of FIR regressors modeled those trials in which a particular
stimulus was presented but not memorized. Therefore, each beta im-
age was estimated with equal amounts of data (modeling the same
amount of trials) as in the original analysis. Beta images were entered
into an identical SVR searchlight and second-level analysis as in the
main analysis. No clusters with above-chance prediction accuracies
were found.

Control analysis: label permutation tests. To determine the prediction
accuracy of an SVR analysis, the beta estimates within a searchlight vol-
ume for all four ordered stimulus conditions are entered into a SVR

model. A high prediction accuracy is only expected if the activation pat-
terns in a given region represent this order of the four frequencies. To test
for the specificity of our analysis, we performed exhaustive whole-brain
SVR searchlight analyses for all possible permutations of frequency la-
bels. To this end, we determined for all possible permutations the dis-
tance from the rank order calculated as the sum of absolute difference of
adjacent ranks (e.g., the linear order of 10, 22, 34, 46 Hz has a distance of
ranks of sum(|1 — 2| + |2 — 3] + |3 — 4/) = 3 and the permutation 22, 10,
34, 46 Hz corresponds to the sum(]2 — 1| + |1 — 3| + |3 — 4]) = 4,
resulting in a difference of 1 from the linear order). Because rank order is
symmetric, the permutation analyses span 12 instead of 24 possible per-
mutations congregated into four classes of distances from the linear
order. We extracted the prediction accuracies from the group peak vox-
els of the original analysis. Figure 2C presents averaged prediction accu-
racies for the four groups of distances from the linear order.

For a statistical assessment, we tested for each time bin whether an
increase in ordering correlated with an increase in prediction accuracy.
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Table 1. Regions identified to exhibit above-chance prediction accuracy across the
WM delay period

Peak MNI coordinates

Cluster size Anatomical region X Y 7 z-score
961 Right dPMC 48 2 44 Inf
661 (C -2 12 38 7.36
478 Left dPMC —60 —4 42 5.84
67 Right IFG 54 8 4 5.02
65 SMA 10 12 70 493

Regions were revealed by a t-contrast displayed at p << 0.05, FWE corrected.

We calculated Spearman correlation coefficients for each time bin and
report significant effects at p < 0.05 (Figure 2C).

Results

Behavioral performance

Subjects (N = 22) successfully memorized the relevant informa-
tion in the demanding task, as indicated by the 62 *+ 4% (mean =
SD) correct responses over 4 fMRI runs. As expected, perfor-
mance was better for the second (64.5 * 5%) than for the first
(60 = 7%) presented stimulus (paired t-test t,,) = —2.65, p =
0.015), which was accounted for by a counterbalanced stimulus
presentation.

Multivariate mapping of regions that code the content of WM
To test which brain regions exhibit a WM code for vibratory
frequency, we conducted a time-resolved whole-brain SVR anal-
ysis. We applied an SVR approach to test in which regions infor-
mation on the order of increasing frequencies can be found by
testing where in the brain decoding performance exceeded chance
level. We computed a t-contrast of prediction accuracy versus zero
across the WM delay period within a second-level flexible factorial
design. After accounting for multiple comparisons with a conser-
vative thresholding of p < 0.05 and FWE correction, we identi-
fied five clusters of above chance decoding that match with
reports from monkey research: bilateral dorsal premotor cortex
(dPMC), a cluster in the supplementary motor area/cingulate
cortex (SMA/CC), and a cluster in the right inferior frontal gyrus
(IFG), as displayed in Figure 2A and Table 1.

As a control analysis, the study design allowed us to perform
an identical MVPA for the noncued stimulus because two sample
stimuli were presented on each trial and pairs of stimuli were
balanced (Christophel et al., 2012). Decoding of the nonmemo-
rized stimulus did not reveal any significant clusters of voxels,
demonstrating the specificity of the main analysis.

To test for the specificity of the linear ordering of stimuli with
the applied SVR approach, we performed permutation tests. To
this end, we relabeled the training and test data with all possible
permutations of frequency labels. If the order of frequencies were
crucial for the SVR’s performance, then one would expect in-
creased prediction accuracies with increasing order. We particu-
larly expected this effect during the WM delay period, but not
before or after it. The time courses for all four types of permuta-
tions across the delay period are plotted in Figure 2C. Note that
completely unordered labeling leads to chance performance of
the SVR throughout the entire WM period. With increased order,
the prediction accuracy increased for all identified regions
across the delay period. As expected from the dynamics of the
BOLD response, we found that this effect peaked between 4 and
8 s after the WM onset.

In addition to the multivariate analysis, we performed a classic
general linear model analysis and tested for univariate parametric
modulations during the WM delay phase, which did not reveal
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any significant voxels (p < 0.001, uncorrected). This suggests
that it is the combination of multiple voxels, and thus, distributed
neuronal populations, that code for the vibratory frequency
rather than an overall parametrically increased activity through-
out voxels in the identified clusters.

Discussion
Studies in nonhuman primates (Romo et al., 2012) have identi-
fied a network of brain regions where neurons exhibit firing be-
haviors that are parametrically modulated by the maintained
vibrotactile frequency. In a series of EEG experiments, Spitzer
and coworkers extended this work to humans by showing that,
consistent with the monkey reports, the retention of vibration
frequency induces a content-specific parametric beta-band mod-
ulation during delay periods, which was source-localized to the
right PFC (Spitzer and Blankenburg, 2012; Spitzer et al., 2014a).
However, until now, the mapping of brain regions that code vi-
brotactile frequency in the form of multivariate patterns during
human WM has been lacking. Here, we used a multivariate re-
gression approach to test which brain regions exhibit specific
patterns of activation for maintained vibratory frequencies. The
applied SVR approach can be considered as the multivariate
equivalent of univariate tests for parametric modulations; that is,
a classifier is trained to predict a value (here: the frequency) in-
stead of a class label (Fan et al., 2008; Kahnt et al., 2011; Hebart et
al., 2015). Therefore, the order of frequencies needs to be repre-
sented in a region to yield above-chance decoding results. With a
whole-brain searchlight approach, testing within the entire brain
for such local content-specific codes, we found that the bilateral
premotor cortices, medial frontal regions, and right IFG code
frequency-specific information. Our control analyses proved the
specificity of these results because it was not possible to detect
information on the nonmemorized stimuli and because permu-
tation tests showed that it was indeed the ordering of the frequen-
cies that enabled to decode information from these regions.

Interestingly, the identified network overlaps with brain re-
gions reported in Romo and colleagues’ monkey research (Romo
and de Lafuente, 2013; Romo et al., 2012), as well as with those in
the human EEG reports (Spitzer and Blankenburg, 2012; Spitzer
et al., 2014a). Here, we extend these findings by showing for the
first time that the right PFC also codes multivariate content-
specific stimulus information.

In parallel to the monkey data, WM content was not limited to
a single brain region; rather, a network of regions was identified.
It is reasonable to assume that the brain represents mental con-
tent depending on task demands in distributed cortical networks,
which can also exhibit different types of codes (Schlegel et al.,
2013; Larocque et al., 2014; Lewis-Peacock et al., 2015; Postle,
2015; Lee and Baker, 2016; Christophel et al., 2017). In addition
to the PFC, our analysis revealed that the bilateral dorsal premo-
tor cortices and supplementary motor regions (Romo and Sali-
nas, 2003; Hernéndez et al., 2010; Romo and de Lafuente, 2013;
Romo et al., 2012) also exhibit these codes. Dorsal premotor
cortices have been indicated to contribute to rehearsal processes
(Fegen et al., 2015), whereas details on the mechanisms underly-
ing rehearsal or refreshment of sensory contents (Chun and
Johnson, 2011) are still relatively unclear (Baddeley, 2012). Our
study shows that these regions exhibit a parametric representa-
tion of the WM content. Even though this is consistent with the
monkey reports, a direct mapping between monkey and human
anatomy remains speculative until future studies provide more
direct evidence for these regions’ functional roles. Although our
study provides a first link for the apparent gap between unit-level
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recordings and fMRI-based classification approaches, MVPA
studies are limited in their ability to identify a specific coding
schema. They also allow us to test which regions code WM infor-
mation but cannot resolve the nature of the code as such.

Our findings are in contrast to several recent WM MVPA
studies. Most of these studies have argued for sensory recruit-
ment models because they found content-specific codes predom-
inantly in sensory and posterior regions (Pasternak and Greenlee,
2005; Sreenivasan et al., 2014; Riley and Constantinidis, 2016).
Similarly, early monkey research on tactile WM supported the
notion that sensory regions are predominantly recruited to rep-
resent WM content (Zhou and Fuster, 1996, 2000). This view
aligns with the famous WM model by Alan Baddeley (Baddeley,
2012), which is based on the idea of a visuospatial sketchpad,
which is now often equated with sensory regions that are sup-
posed to act as a kind of whiteboard on which mental content is
drawn (Pasternak and Greenlee, 2005). In addition to WM stud-
ies, research on mental imagery also builds heavily on the idea
that activity in sensory regions represents the content of mental
images (Kosslyn, 2005; Tong, 2013). Indeed, it has been demon-
strated that primary somatosensory cortex is recruited for tactile
imagery (Schmidt et al., 2014).

On the contrary, frontal and prefrontal regions are well doc-
umented to activate in WM studies across different modalities,
including tactile WM (Preuschhof et al., 2006). However, these
regions are most often considered to fulfill supporting, top-down
functions rather than to represent WM content (D’ Esposito and
Postle, 2015; Myers et al., 2017). With the exception of studies on
vibrotactile frequency representations, only a few fMRI studies
have revealed prefrontal WM codes that reflect aspects of the WM
content (Lee et al., 2013; Ester et al., 2015).

One interpretation of these conflicting findings might be that
different tasks require various types of codes. Visual WM studies
mostly necessitate mentally representing very precise visuospatial
stimulus features such as orientation (Albers et al., 2013), posi-
tion (Jerde et al., 2012), motion direction (Emrich et al., 2013;
Christophel and Haynes, 2014), or the layout of a stimulus
(Christophel et al., 2012; Lee et al., 2013). These studies con-
vincingly demonstrate that such low-level or sensory-like fea-
tures are maintained in brain regions which also deal with such
type of information during perception. Therefore, Christophel
and coworkers recently suggested that it might be the level of
“abstraction” of the WM content that determines the network of
regions coding it (Christophel et al., 2017). Although primary
sensory cortices deal with low-level sensory-like material, regions
higher up in the cortical hierarchy, such as the PFC, might pro-
cess more abstract stimulus features. This view resonates well
with evidence that the right PFC processes nonverbal quantitative
types of information (Nieder and Dehaene, 2009) and the left
lateral PFC, particularly BA44, is well known for its pivotal role in
language processing. In monkeys, the right PFC has also been
associated with codes for size/length/quantity or numerosity
(Nieder and Dehaene, 2009; Nieder, 2013). These magnitude-
related stimulus properties are considered to be represented in-
dependently of sensory aspects (Walsh, 2003) and human fMRI
and EEG studies also associate them with the PFC (Pinel et al.,
2004; Nieder and Dehaene, 2009; Spitzer et al., 2014b, 2014c).
Consistent with this reasoning, the maintenance of vibrotactile
frequency might be considered a representation of an abstract,
magnitude-like representation despite a low-level stimulus fea-
ture, a type of code for hierarchically higher brain regions such as
the PFC. Even though this idea is appealing and in accordance
with our data, future research has to provide evidence for it by
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dissecting different types of information and codes, as well as
their functional contribution to goal-directed purposeful be-
havior and decision making (Romo et al., 2012), including
other modalities.

Conclusion

Our study found the right PFC, SMA/CC, and bilateral dPMC to
contain multivariate codes of retained vibratory frequencies dur-
ing human WM. These codes represented the parametric order
of the memorized frequencies and the identified network over-
lapped with previous monkey studies. Future studies will elicit
what types of WM contents are represented differentially across
species and which cellular mechanisms can be translated more
directly between them. For this endeavor, it is crucial to establish
links between different observational levels in neuroscience. The
bridges between monkey and human data in the study of WM are
rare. Our results allow initial new perspectives to unite the differ-
ent lines of literature using distinct methodologies.
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