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Behavioral/Cognitive

Contextual and Developmental Differences in the Neural
Architecture of Cognitive Control

Raluca Petrican' and Cheryl L. Grady'*
'Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada, and ?Departments of Psychology and Psychiatry, University of Toronto, Ontario M6A 2E1,
Canada

Because both development and context impact functional brain architecture, the neural connectivity signature of a cognitive or affective predis-
position may similarly vary across different ages and circumstances. To test this hypothesis, we investigated the effects of age and cognitive
versus social-affective context on the stable and time-varying neural architecture of inhibition, the putative core cognitive control component, in
a subsample (N = 359, 22-36 years, 174 men) of the Human Connectome Project. Among younger individuals, a neural signature of superior
inhibition emerged in both stable and dynamic connectivity analyses. Dynamically, a context-free signature emerged as stronger segregation of
internal cognition (default mode) and environmentally driven control (salience, cingulo-opercular) systems. A dynamic social-affective context-
specific signature was observed most clearly in the visual system. Stable connectivity analyses revealed both context-free (greater default mode
segregation) and context-specific (greater frontoparietal segregation for higher cognitive load; greater attentional and environmentally driven
control system segregation for greater reward value) signatures of inhibition. Superior inhibition in more mature adulthood was typified by
reduced segregation in the default network with increasing reward value and increased ventral attention but reduced cingulo-opercular and
subcortical system segregation with increasing cognitive load. Failure to evidence this neural profile after the age of 30 predicted poorer life
functioning. Our results suggest that distinguishable neural mechanisms underlie individual differences in cognitive control during different
young adult stages and across tasks, thereby underscoring the importance of better understanding the interplay among dispositional, develop-
mental, and contextual factors in shaping adaptive versus maladaptive patterns of thought and behavior.
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The brain’s functional architecture changes across different contexts and life stages. To test whether the neural signature of a trait
similarly varies, we investigated cognitive versus social-affective context effects on the stable and time-varying neural architecture of
inhibition during a period of neurobehavioral fine-tuning (age 22-36 years). Younger individuals with superior inhibition showed
distinguishable context-free and context-specific neural profiles, evidenced in both static and dynamic connectivity analyses. More
mature individuals with superior inhibition evidenced only context-specific profiles, revealed in the static connectivity patterns linked to
increased reward or cognitive load. Delayed expression of this profile predicted poorer life functioning. Our results underscore the
importance of understanding the interplay among dispositional, developmental, and contextual factors in shaping behavior. j

/Signiﬁcance Statement

2009; Li et al., 2009; Van den Heuvel et al., 2009; Fair et al., 2010;
Graham et al., 2015; Alavash et al., 2015; Grady et al., 2016). This
work raises the possibility that an individual’s cognitive or affec-
tive characteristics may be associated with stable neural signa-
tures. Nonetheless, there is substantial evidence that the brain’s

Introduction

A rapidly growing body of research testifies to the importance of
the brain’s intrinsic functional architecture for optimal adapta-
tion across the lifespan (e.g., Hampson et al., 2006; Church et al.,
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functional architecture undergoes significant changes, both lon-
gitudinally as a reflection of development and accumulated be-
havioral history (e.g., Fair etal., 2007, 2008; Wiget al., 2011; Chan
et al., 2014) and cross-sectionally as a function of the various
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situational demands faced by an individual (Kitzbichler et al.,
2011; Moussa et al., 2011; Shirer et al., 2012; Di et al., 2013;
Mennes et al., 2013; Geerligs et al., 2015; Gonzalez-Castillo et al.,
2015). Consequently, the brain mechanisms underlying varia-
tions in a specific cognitive or affective predisposition may
change significantly across the lifespan and across various con-
texts. Characterization of such changes is important to furthering
understanding of the distinct mechanisms through which a spe-
cific predisposition impacts behavior in distinct circumstances
and life stages.

To address this issue, we examined contextual and develop-
mental effects on the neural architecture of inhibition, the puta-
tive core component of cognitive control (Friedman et al., 2008;
Miyake and Friedman, 2012), which has been linked to a wealth
of “real-life” outcomes (e.g., Joormann and D’Avanzato, 2010;
Piguet et al., 2016). There is substantial evidence that the brain
architecture supporting cognitive control shows protracted
development, which extends into the mid-20s, whereas by the
mid-30s individuals start showing subtle signs of poorer cogni-
tive performance (Toga et al., 2006; Giedd and Rapoport, 2010;
Andrews-Hanna et al., 2011; Kaller et al., 2012; Ofen et al., 2012;
Veroude et al., 2013; Chai et al., 2014; Vink et al., 2014; Bernard et
al., 2016; Kleerekooper et al., 2016; Stephanou et al., 2016). Here,
we used data from a sample of participants in the Human Con-
nectome Project (HCP) to investigate developmental changes in
the neural architecture of cognitive control during the third and
fourth decades of life, a period during which fine-tuning of its
neurobehavioral mechanisms, as well as subtle forewarning signs
of decline are likely to be observed.

Although most existing investigations assume that the func-
tional neural architecture is stable across time, there is accumu-
lating evidence that the brain demonstrates significant temporal
fluctuations not only in activity (Garrett et al., 2013), but also in
connectivity patterns (Chang and Glover, 2010; Hutchison et al.,
2013; Allen et al., 2014). Moreover, the insights provided by such
time-varying (i.e., dynamic) functional connectivity patterns re-
portedly complement and extend those obtained with traditional
stable connectivity analyses (Hutchison and Morton, 2015;
Marusak et al., 2017).

To investigate situational effects on the neural architecture of
inhibition, we focused on two contexts, which involve inhibition,
but are nonetheless likely to illuminate distinguishable mecha-
nisms associated with it. One was cognitive and involved a work-
ing memory task requiring continual updating of information, a
context in which inhibitory control plays a critical role (Gazzaley
et al., 2005; Friedman et al., 2008; Rissman et al., 2009). The
second involved social and financial rewards derived from a
theory-of-mind and a decision-making task (Izuma et al., 2008;
Liang et al., 2010), respectively. This context was included be-
cause of substantial evidence for a bidirectional relationship be-
tween cognitive control, particularly, inhibition, and reward (i.e.,
cognitive control is instrumental in regulating responses to re-
ward, but reward, in turn, influences cognitive control perfor-
mance) (Engelmann and Pessoa, 2007; Krawczyk et al., 2007;
Watanabe, 2007; Hiibner and Schldsser, 2010; Jimura et al., 2010;
Berger, 2011; Paschke et al., 2015).

Materials and Methods

Participants

The present study included 359 unrelated participants from the HCP,
whose data had been released as part of the HCP 900 subjects’ data
package in December 2015. The 359 participants included in our present
report represented the largest number of participants from the HCP 900
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subjects’ data release who were unrelated to one another and who had
completed all the behavioral and fMRI assessments of interest.

The sample included 174 men (57 between 22 and 25 years of age, 67
between 26 and 30 years of age, and 50 between 31 and 36 years of age)
and 185 women (50 between 22 and 25 years of age, 68 between 26 and 30
years of age, and 67 between 31 and 36 years of age). Although age is
presented here in the range format, as advocated by the HCP team (for
the rationale behind this age reporting strategy in HCP data releases, see
Van Essen et al., 2012), all our brain-behavior analyses used participants’
actual age in years, as available in the HCP restricted data release.

The majority of participants (N = 301) were right-handed. All partic-
ipants were screened for a history of neurological and psychiatric condi-
tions and use of psychotropic drugs, as well as for physical conditions or
bodily implants that may render their participation unsafe. Diagnosis with a
mental health disorder and structural abnormalities, as revealed by the MRI
structural scans, were also exclusion criteria. Participants provided informed
consent in accordance with the HCP research ethics board.

Inhibitory control

The National Institutes of Health’s Toolbox Flanker Inhibitory Control
and Attention Test, completed on day 2 of the participants’ HCP sched-
ule, gauged participants’ ability to focus on a given target stimulus while
inhibiting attention to stimuli (arrows, for the present sample) flanking
it. The task encompasses two types of trials: congruent (i.e., when the
target stimulus is pointing in the same direction as the “flankers”) and
incongruent (i.e., when the target stimulus is pointing in the opposite
direction from the “flankers”). The participants’ scores, included in the
HCP 900 subjects’ data package, were normalized to an average of 100
and SD of 10 (based on the full Toolbox norming sample) and were
computed by taking into account both accuracy and reaction time (i.e.,
for participants with an accuracy rate of =80%, their total score equals
their accuracy score [rescaled to the 0—5 range], whereas for participants
showing accuracy rates >80%, their total score is an average of their
accuracy score, rescaled to the 0—5 range, and their median speed on the
correct incongruent trials also rescaled to the 0-5 range).

Psychological functioning

As a measure of psychological functioning, participants completed the
Achenbach Adult Self-Report (ASR) for ages 1859 years (Achenbach,
2009) on the day of their Session 1 fMRI appointment. The ASR contains
a total of 123 items, which require participants to rate on a 3 point scale
(0, not true; 1, somewhat or sometimes true; 2, very true or often true)
how well different items described them over the previous 6 months. Raw
scores on all ASR Problem Subscales were provided in the HCP 900
subjects’ data release, available for download from the ConnectomeDB
(https://db.humanconnectome.org). A brief description of the eight
problem scales follows next.

Anxious/Depressed Problem Subscale. This subscale assesses both de-
pressive (e.g., “I cry a lot,” “I am unhappy, sad, or depressed”) and
anxiety-related (e.g., “I worry about my future,” “I am too fearful or
anxious”) problems.

Withdrawn Problem Subscale. This subscale gauges problems in inter-
personal functioning (e.g., “I don’t get along with other people,” “I have
trouble making or keeping friends”).

Somatic Complaints Problem Subscale. This subscale assesses physical
problems in the absence of known medical causes (e.g., headaches, nau-
sea, eye problems).

Thought Problem Subscale. This subscale measures obsessive or merely
unusual thought patterns (e.g., “I can’t get my mind off certain thoughts,” “I
hear sounds or voices that other people think are not there”).

Attention Problem Subscale. This subscale gauges attentional and
decision-making difficulties (e.g., “I have trouble concentrating or pay-
ing attention for long,” “I am not good at details,” “I have trouble making
decisions,” “I have trouble planning for the future”).

Aggressive Behavior Problem Subscale. This subscale assesses both par-
ticipants’ explicitly aggressive behaviors (e.g., “I argue alot,” “I am mean
to others,” “I get in many fights,” “I scream or yell a lot”), as well as their
emotional stability and reactivity to stressors (e.g., “My moods or feelings
change suddenly,” “I have a hot temper,” “I get upset too easily”).
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Rule Breaking Problem Subscale. This subscale gauges nonaggressive
behavior that conflicts with implicit or explicit social rules (e.g., “I lie or
cheat,” “I steal,” “T have trouble keeping a job”).

Intrusive Behavior Problem Subscale. This subscale measures nonag-
gressive, yet socially disruptive behavior (e.g., “I brag,” “I show off or
clown,” “I am louder than others”).

fMRI tasks

Working memory. Participants completed two runs of an n-back task,
which included as targets four categories of stimuli: faces, places, tools,
and body parts. Each run encompassed 8 task blocks (27.5 s each) and 4
fixation blocks (15 s each). The 8 task blocks corresponded to two work-
ing memory tasks (Two-back vs Zero-back), with each comprising all
four stimulus categories, presented in separate blocks. In the Two-back
working memory task, participants had to respond “target” whenever the
current stimulus was the same as the one presented two trials before. In
the Zero-back working memory task, a stimulus was presented at the
beginning of each block and the participants had to respond “target”
whenever the respective stimulus was encountered during the block.
Each block began with the 2.5 s presentation of a cue indicating task type
and, for the Zero-back task only, target stimulus, followed by 10 trials of
2.5 s each (2 s stimulus presentation and 500 ms interstimulus interval)
for a total block duration of 27.5 s. Each block contained 2 targets and 2
or 3 nontarget lures (e.g., repeated items in the wrong n-back position,
either 1-back or 3-back) to ensure that participants are actively drawing
on their memory resources to complete the task (for further discussion,
see Barch et al., 2013).

Social cognition (theory-of-mind). Participants completed two runs of a
task, adapted from Castelli et al. (2000) and Wheatley et al. (2007), in
which they were presented with short videos (20 s) of objects (squares,
circles, triangles), either interacting in a purposeful manner or just mov-
ing randomly across the screen. After each video, the participants had to
decide among three alternative answers: (1) Social Interaction: the video
portrayed a social interaction (i.e., an interaction in which the shapes
appear to take into account each other’s thoughts and emotions); (2) Not
Sure (whether the video depicted a social interaction or just random
movement); (3) No Interaction: the video showed shapes moving ran-
domly across the screen. Each of the two task runs has 5 video blocks of
23 s each (2 Mental and 3 Random in one run, 3 Mental and 2 Random in
the other run) and 5 fixation blocks (15 s each).

Incentive processing. Participants completed two runs of a task, adapted
from Delgado et al. (2000), in which they were required to guess the
number on a mystery card (represented by a “?”) to win or lose money.
They were told that potential card numbers ranged from 1 to 9 and were
asked to indicate whether they thought the mystery card number was
more or <5 by pressing one of two buttons on the response box. Feed-
back is the number on the card (generated by the program, after the
participants made their guess, as a function of whether the trial was a
reward, loss, or neutral trial) and: (1) a green up arrow with “$1” for
reward trials, (2) a red down arrow next to —$0.50 for loss trials; or (3)
the number 5 and a gray double headed arrow for neutral trials. The “?”
was presented for up to 1.5 s (if the participant responded before 1.5 s, a
fixation cross was displayed for the remaining time), followed by the
feedback for 1 s. There was a 1 s interstimulus interval with a “+” pre-
sented on the screen. The task was presented in blocks of 8 trials that were
either mostly reward (6 reward trials pseudo-randomly interleaved with
either 1 neutral and 1 loss trial, 2 neutral trials, or 2 loss trials) or mostly
loss (6 loss trials interleaved with either 1 neutral and 1 reward trial, 2
neutral trials, or 2 reward trials). In each of the two runs, there were 2
mostly reward and 2 mostly loss blocks (28 s each), interleaved with 4
fixation blocks (15 s each).

fMRI task data

Accuracy was at ceiling on the social cognition task, and it was not a
relevant measure on the incentive processing task because the sequence
of rewards and punishments was preprogrammed. Consequently, for the
social-affective context, median reaction times on the high reward (i.e.,
the reward trials on the incentive processing task and the correctly clas-
sified theory-of-mind trials from the social cognition task) and low re-
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ward trials (i.e., the punishment trials on the incentive processing task
and the correctly classified random movement trials from the social cog-
nition task) were used as outcome measures. For the working memory
task, we used the accuracy and median reaction time data from the zero- and
two-back conditions as behavioral outcomes. For ease of interpretation, the
standardized median reaction time scores in both the social-affective and
cognitive contexts were multiplied by —1 to be turned into speed scores.
Speed scores on the high and low reward value trials were highly inter-
correlated (Spearman’s rho of 0.70, p < 0.0001). Accuracy and speed
scores in the two conditions of the working memory task were signifi-
cantly intercorrelated (Spearman’s rho values of 0.53 and 0.65, respec-
tively, both p values <0.001). Likewise, within each working memory
condition, accuracy and speed were significantly intercorrelated (Spear-
man’s rho of 0.47 and 0.23, respectively, both p values <0.001).

fMRI data acquisition

Images were acquired with a customized Siemens 3T “Connectome
Skyra” scanner housed at Washington University in St. Louis (32-
channel coil). Pulse and respiration were measured during scanning.
T1-weighted anatomical scans were acquired with a 3D MP-RAGE se-
quence (TR = 2400 ms, TE = 2.14 ms, FOV = 224 mm, 320 X 320
matrix, 256 slices of 0.7 mm isotropic voxels). The high-resolution struc-
tural scan preceded the acquisition of functional scans.

Functional images were acquired with a multiband EPI sequence
(TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208 mm, 104 X 90
matrix, 72 slices of 2 X 2 mm in-plane resolution, 2 mm thick, no gap;
multiband acceleration factor = 8). For each task, two runs of equal
duration were obtained: one collected with an L-R, and the other, with an
R-L, EPI phase-coding sequence. The length of one task run (in minutes)
was as follows: 5:01 (working memory), 3:27 (social cognition), and 3:12
(incentive processing).

Individual L-R and R-L scans exhibit distinct regions of complete signal
loss, but it has been verified that the preprocessed datasets are anatomically
well aligned with one another, even in areas of complete signal loss (compare
S. M. Smith et al., 2013). Because it is only the dropout that differs
between the two scan types, it has been recommended that connectivity
analyses based on HCP data aggregate the respective metrics from the
L-R and R-L resting state scans (compare S. M. Smith et al., 2013).
Consequently, in the present report, we concatenated the L-R and R-L
runs for each of the three tasks.

fMRI data preprocessing

The present report used the preprocessed task (i.e., working memory,
social cognition, incentive processing) data from the HCP 900 subjects’
data release. These data all have been preprocessed with version 3 of the
HCP spatial and temporal pipelines (S. M. Smith et al., 2013) (for spec-
ification of preprocessing pipeline version, see http://www.humancon-
nectome.org/data). Spatial preprocessing involved removal of spatial
and gradient distortions, correction for participant movement, bias field
removal, spatial normalization to the standard MNI-152 template (2 mm
isotropic voxels), intensity normalization to a global mean, and masking
out of nonbrain voxels. Subsequent temporal preprocessing steps in-
volved weak high-pass temporal filtering with the goal of removing linear
trends in the data.

Because motion can significantly impact functional connectivity mea-
sures (Power et al., 2012; Van Dijk et al., 2012), we implemented several
additional preprocessing steps to address this potential confound. First,
after extracting the BOLD time-series from our regions of interest (ROIs,
see below), but before computing the ROI-to-ROI correlations, we used
the Denoising step in the CONN toolbox (version 16b) (Whitfield-
Gabrieli and Nieto-Castanon, 2012) to apply further physiological and
rigid motion corrections. Specifically, linear regression was used to re-
move from the BOLD time-series of each ROI the BOLD time-series of
the voxels within the MNI-152 white matter and CSF masks, respectively
(i.e., the default CONN option of five CompCor-extracted principal
components for each) (Behzadi et al., 2007), the 6 realignment parame-
ters and their first-order temporal derivatives (compare Cole et al.,
2014), as well as the main task condition effects, obtained by convolving
a boxcar task design function with the hemodynamic response function,
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and their first-order temporal derivative. Removal of the main task con-
dition effects is consistent with extant theory and practice aimed at
disentangling task-related functional connectivity from task-evoked coacti-
vation effects (Friston et al., 1997; Vatansever et al., 2015). Finally, the resid-
ual BOLD time-series were bandpass filtered (0.008 Hz < f < 0.09 Hz),
linearly detrended, and despiked (all three are default CONN denoising
steps).

Second, because even after the aforementioned corrections, some of
our network-level functional connectivity indices still displayed a num-
ber of statistically significant correlations with the average relative (i.e.,
volume-to-volume) displacement per participant (i.e., FD), a widely
used motion metric (Power et al., 2012, 2015; Satterthwaite et al., 2013),
we applied a final correction at the group level. Specifically, before con-
ducting our main analyses, for each condition, we regressed the average
relative displacement per participant from each of his or her measures of
network connectivity (see below for a description of the specific indices).

fMRI data analysis

To characterize contextual and individual difference effects on neural
architecture, we conducted both dynamic and stable functional connec-
tivity analyses. The purpose of the dynamic connectivity analyses was to
shed light on the time-varying functional interactions that were associ-
ated with age and individual differences in inhibitory control and that
took place over the entire duration of the cognitive or the social-affective
task (i.e., not tied to any specific condition within the task run). The
purpose of the stable connectivity analyses was to characterize the age
and inhibition-linked functional connectivity patterns that typified su-
perior behavioral performance in specific conditions within each of these
two contexts (i.e., high vs low cognitive load or reward value).

ROI time-series. A total of 229 nodes for 10 networks (i.e., default
[DMN], frontoparietal [FPC], cingulo-opercular [CON], salience [SAL],
dorsal attention [DAN], ventral attention [VAN], somatomotor [SM],
subcortical [SUB], auditory [AUD], and visual [VIS]) were defined for
each participant as spherical ROIs (radius 5 mm) centered on the coor-
dinates of the regions reported by Power et al. (2011) and assigned net-
work labels corresponding to the graph analyses from this earlier article.
The ROIs were created in FSL (S. M. Smith et al., 2004), using its standard
2 mm isotropic space, with each ROI containing 81 voxels. These
template space dimensions were selected because they yielded the most
adequate spatial representation of the Power atlas. The reslicing of the
functional data into the 2 mm MNI space was performed in CONN
during the Set-up stage.

For each participant, we used the CONN toolbox to compute pairwise
Pearson’s correlations among the time-series of all 229 ROIs during each
scrutinized condition. Pearson’s r has been widely used as a metric of
functional coupling in stable and dynamic connectivity studies alike
(e.g., Power etal., 2011, 2012; Zalesky et al., 2014; Vatansever et al., 2015;
Chen et al., 2016; Chan et al., 2017), most likely due to the ease of
mapping its interpretation onto the concept of functional connectivity
(i.e., Pearson’s r reflects the extent to which change in one variable is
associated with a proportional change in another variable). One caveat is
that Pearson’s r is influenced by outliers, which, in the context of func-
tional connectivity analyses (i.e., outlier scans), arise mostly due to par-
ticipant motion and physiological noise. This is why, as discussed in
fMRI data analysis, we went to great lengths to reduce the influence of
potential outlier scans (via despiking) and correct for physiological and
motion-related artifacts, both on a within-participant level (via Comp-
Cor and regression of the six motion parameters and their first-order
temporal derivatives) and at the group level (by regressing out each par-
ticipant’s summary motion statistic from each of his or her stable and
dynamic connectivity indices described below). An inspection of each
subject’s histogram of voxel-to-voxel connectivity values for each scru-
tinized condition revealed a normal distribution, approximately cen-
tered around zero, which would suggest reduced contamination from
physiological and motion-related confounds (compare Whietfield-Gabrieli
and Castanon, 2012).

Thus, for the stable connectivity analyses, we computed six correlation
matrices encompassing the pairwise correlations among the 229 ROIs in
each condition of interest: socially suggestive movement, random move-
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ment, financial gains, financial losses, and zero-back and two-back work-
ing memory. For dynamic connectivity analyses, the correlation matrices
were computed for each relevant time window (for details, see below).
For both stable and dynamic connectivity analyses, the pairwise correla-
tions among all the ROIs were expressed as Fisher’s z scores.

Consistent with existing practices aimed at maximizing interpretabil-
ity of results in neural network studies of individual or group differences
(e.g., sex or age) (Betzel et al., 2014; Satterthwaite et al., 2015), we used
both positive and negative z scores to compute the indices of interest for
both dynamic and stable functional connectivity analyses. We reasoned
that such an approach would be particularly well justified in our present
case because global signal regression, the main determinant of spurious
negative connectivity values, was not part of our preprocessing pipeline
(for further discussion on the validity of the negative correlations
obtained with the CONN toolbox, see Whitfield-Gabrieli and Nieto-
Castanon, 2012).

Dynamic connectivity: sliding window analyses. Pairwise dynamic cou-
pling among the 229 ROIs was estimated in CONN using a sliding win-
dow of 20 s in length (~28 volumes) with one TR gap in-between
windows and a “hanning weighting” (i.e., greater weight to the scans in
the middle of the window relative to the ones at the periphery) applied to
all the time points within a window. The social-affective task included
156 windows in total. In its entirety, the working memory task comprised
192 windows. To ensure that any observed differences between the two
task contexts were not due to time-series length, we eliminated 36 win-
dows from the working memory task (nine from each condition [zero-
back vs two-back] within each run [LR vs RL]). Although we favor this
analytic strategy for the main analyses herein described, we nonetheless
verified that all the reported effects hold if tests are performed on all the
windows from the working memory task.

Network-level analyses. Apart from the stable network-specific segre-
gation indices, all the other network-level metrics were computed using
the Brain Connectivity Toolbox (BCT) (Rubinov and Sporns, 2010). Before
conducting our brain-behavior analyses, average FD per participant was
regressed out from each of the network metrics described below.

Whole-brain modularity. Rather than being computed directly, mod-
ularity, that is, the degree to which a network could be divided into
well-delineated and nonoverlapping communities, is estimated using
optimization algorithms, which sacrifice some degree of accuracy for
processing speed (Rubinov and Sporns, 2010). Here, for both dynamic
and stable connectivity analyses, whole-brain modularity was estimated
using a Louvain community detection algorithm implemented in the
BCT. This algorithm partitions a network into nonoverlapping groups of
nodes with the goal of maximizing an objective modularity Q function
(Rubinov and Sporns, 2011; Betzel and Bassett, 2016). For signed net-
works, such as the ones investigated in our study, optimization of the Q
function can be achieved by either placing equal weight on maximizing
positive within-module connections and minimizing negative within-
module connections or by putting a premium on maximizing positive
connections, which have been argued to be of greater biological signifi-
cance (Rubinov and Sporns, 2011). The first form of the modularity
function Q (Traag and Bruggeman, 2009) is written as follows:

E[(w,, ef) — (w

Tt i Ye )]SMLMJ

where 8, M = = 1 if nodes i and j are in the same module and BMM =0
otherwise; ¥+ and v~ constitute the sum of all posmve (w™h) and all
negative (w ) weights in the network, respectively; w;; represents the
actual within-module positive or negative connection welghts with w™
€(0,1]; yis aresolution parameter determining the size of the identified
modules; ,t is the within-module connection strength expected by
chance and defined, for each node-to-node (i,j) connection as ef = %,
with s;" and s;- being the sum of all positive or all negative connection
welghts of node iand j, respectively, whereas v~ is the sum of all positive
or all negative connection weights in the network.

The adapted modularity function Q¥, proposed by Rubinov and
Sporns (2011), is written as follows:
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1 1
Q = e E(WJ - 'ye:;)SM,M] - ﬁZ(W; - 761’;)8M,M]
ij ij
In the above formulation, the contribution of positive weights to Q is not
affected by the presence of negative weights in the network, whereas the
contribution of negative weights to Q decreases with an increase in pos-
itive weights.

Both above formulations of the Q function have been used in prior
studies of stable and dynamic connectivity (e.g., Bassett et al., 2011; Chen
et al., 2016). Thus, particularly because it remains unclear the extent to
which different preprocessing strategies may impact the boundary be-
tween positive and negative connection weights, we tested the robustness
of our results across estimates of community structure obtained with
both Q and Q*.

The value of the resolution parameter vy is a second factor that may
affect estimates of community structure obtained with a Louvain com-
munity detection algorithm. Consequently, following recent recommen-
dations in the literature (e.g., Betzel and Bassett, 2016), we tested the
robustness of our results across three critical values of y: 1 (the default
value), 0 (a value that favors detection of larger modules), and 2 (a value
that favors detection of smaller modules) (Rubinov and Sporns, 2010).
Because we did not have any specific hypotheses regarding community
size and the delineation of negative from positive weights may still partly
depend on preprocessing strategies, for our main analyses, we present the
results based on the modularity (applicable to both stable and dynamic
connectivity) and system segregation (applicable to dynamic connectiv-
ity only) estimates aggregated across the three values of the gamma pa-
rameter and two types of negative weight treatment (i.e., symmetrical vs
asymmetrical). Nonetheless, in Tables 2, 4, and 6, we present the results
of analyses using estimates from each of the six combinations of gamma
values and negative weight treatment, to provide a sense of the robustness
of our findings against variations in the settings of the community detec-
tion algorithm.

It has been shown that the modularity function Q (in its various
forms) may show extreme degeneracy, which means that the maximal
modularity partition is “hidden” among a relatively large number of
“near-perfect” modularity partitions, which are nonetheless structurally
dissimilar from one another (Good et al., 2010). To address the fact that
the optimization landscape is characterized by the existence of this pla-
teau of high modularity partitions, we followed existing practices in
the literature (compare Braun et al., 2015; Chen et al., 2016). Thus, for
both dynamic and stable connectivity analyses, the Louvain algorithm
was initiated 100 times. Subsequently, to compute the whole-brain and
network-specific dynamic and stable modularity or segregation indices
described below, we averaged the relevant metrics over all 100 iterations.

Dynamic whole-brain modularity. Following the 100 iterations of the
community detection algorithm, run for each of the six gamma value-
negative weight combinations in each of the 156 windows from the work-
ing memory or the social-affective task, we obtained, for each participant,
12 matrices containing each node’s assignment to a community across
the 15,600 whole-brain partitions (number of partitions = number of
windows [156] X number of algorithm iterations [100]), estimated for
each of the six gamma value-negative weight combinations in each of the
two task contexts. Subsequently, we used the BCT to compute an agree-
ment matrix for each participant in each of the six gamma value-negative
weight combinations corresponding to each of the two task contexts.
Each entry in this matrix contains the number of times that a given ROI
pair was assigned to the same community across the 100 iterations of the
modularity algorithm in each relevant sliding window and gamma-
negative weight treatment combination. Using the BCT, each partici-
pant’s agreement matrix was rescaled, so that all matrix entries fell within
the [0, 1] interval. Hence, each entry in this rescaled matrix reflected the
percentage of actual interactions between two ROIs from all the possible
interactions that they could have had (15,600 within each of the two task
contexts in each of the six gamma-negative weight treatment combina-
tion). To reach a consensus clustering across all the windows within each
of the two task contexts, these rescaled agreement matrices, separately for
each gamma-negative weight treatment combination, were subjected to
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an additional modularity analysis with 100 iterations (compare Lancichi-
nettiand Fortunato, 2012; Bassett etal., 2013). The resulting whole-brain
modularity Q scores were averaged across the 100 repetitions and all six
gamma-negative weight treatment combinations and used as indices of
“spatiotemporal modularity.” Higher scores typified those brains whose
nodes showed consistent preference in their interactions (i.e., they con-
sistently interacted with some nodes and not with others) across the
whole duration of the working memory or the social-affective task. Thus,
for any given window, a node’s lack of preference in its interactions
would have resulted in variable community assignments across the 100 iter-
ations of the Louvain algorithm within each window. Likewise, a node’s lack
of consistency in its preference for certain interactions would have resulted in
variable community assignments across the different task-relevant windows.
Both a node’s lack of preference and lack of consistency would have resulted
in less differentiated patterns of interactions with the remaining nodes and,
thus, lower spatiotemporal modularity scores.

There are alternative strategies for estimating modularity and identi-
fying a consensus clustering based on dynamic connectivity patterns. For
example, multilayer modularity algorithms allow examination of com-
munity dynamics at different time scales (see Mucha et al., 2010; Bassett
etal,, 2011; Braun et al,, 2015). Nonetheless, such algorithms also require
estimation of additional free parameters (e.g., the temporal coupling
parameter between two adjacent temporal windows), which, in the con-
text of the present study, may have acted as a potential cofound when
comparing static and dynamic connectivity results.

Stable whole-brain modularity. For each of the six experimental condi-
tions (socially suggestive movement, random movement, financial gains,
financial losses, zero-back, two-back), a spatial modularity Q score was
computed by averaging across the relevant Q scores resulting from the
100 iterations of the community detection algorithm run in each condi-
tion and across all six gamma-negative weight treatment combinations.

Network-specific segregation

Dynamic network segregation. In the context of dynamic connectivity
analyses, assignment to the same community within a sliding window is
interpreted as reflecting a functional interaction (e.g., compare Braun et
al., 2015; Chen et al,, 2016). As described above, a participant’s agree-
ment matrix contained the number of times that a pair of ROIs interacted
across the 100 iterations of the Louvain algorithm in all the task-relevant
windows (156 within each of the two task contexts) and in each of the six
gamma-negative weight treatment combinations. Based on published
network labels (Power et al., 2011), we used each participant’s agreement
matrix to compute for each network a measure of spatiotemporal segre-
gation, reflecting the tendency of a network’s nodes to interact with one
another over time rather than with nodes from other networks. The
spatiotemporal segregation formula read as follows:

. . Lwithin
Spatiotemporal system segregation = ——
Ipetween

where 1,,;,;, = the average number of interactions among all the nodes

within a network and iyeuen = the average number of interactions be-
tween nodes in one network and nodes in all the remaining networks. For
the main analyses, for each of the 10 systems from Power etal. (2011), we
averaged the spatiotemporal segregation estimates obtained across the
six gamma value-negative weight treatment combinations.

Stable network segregation. Based on published network labels (Power
et al., 2011), the relevant z scores, obtained with the CONN toolbox for
each of the six experimental conditions (as described above), were aver-
aged to create indices of within-network (e.g., the average correlation
among all the DMN ROIs) and between-network (e.g., the average cor-
relation of all the DMN ROIs with the ROIs from all remaining networks)
connectivity measures. To compare relative changes in within- versus
between-network connectivity as a function of cognitive load or reward
value, we created an index of spatial segregation written as follows:

Cwithin

Spatial system segregation =
Chetween
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Figure1. @, Theloadings of the brain variables from CCA 1 on their corresponding canonical

variate. b, Scatter plots describing the linear association between the brain and the behavioral
(i.e., age and inhibitory control) canonical variates. a, C0G_, Working memory context; SAF_,
social-affective context; Q, whole-brain modularity metric. a, Networks with significant load-
ings on the respective brain variate are represented in the middle of the circular plot, separately
for the cognitive (on the left side) versus the social-affective (on the right side) context. Bars in
red represent positive loadings of a brain variable on its variate. In the circular plot, the outer-
most ring represents a canonical loading of 1.0 and the second ring (from the outside) repre-
sents a canonical loading of 0.50. Complementarily, the innermost ring represents a canonical
loading of —1.0, whereas the second ring from the center of the circular plot represents a
canonical loading of —0.50. The networks presented in Figures 1and 2 were visualized with the
BrainNet Viewer (Xia et al., 2013).

where ¢, = the average connection strength among all the nodes
within a network to which a constant (“1”) has been added to render it
positive and Cyepeen = the average connection strength between nodes in
one network and nodes in all the remaining networks to which the same
constant (“1”) has been added to render it positive.

To investigate potential links between individual differences in inhib-
itory control and stable neural architecture across the two task contexts
(social-affective vs cognitive), we subsequently created two sets of resid-
ual connectivity scores. The first set consisted of cognitive load-specific
functional connectivity measures, computed by regressing out from each
two-back connectivity index the corresponding connectivity index value
associated with the zero-back working memory condition as a control for
the specific demands associated with the working memory task and
global variations in functional architecture. Following a similar rationale,
the second set, which comprised indices of functional connectivity
evoked by high reward value stimuli, was computed by averaging the
standardized residual connectivity values specific to the Gain condition
(after regressing out the connectivity values corresponding to the Loss
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Table 1. CCA 1: dynamic functional connectivity patterns linked to superior
inhibitory control during earlier adulthood”

Canonical Standardized
Variable loadings coefficients
Brain LV
Social-affective
Somatomotor 0.18 0.08
Cingulo-opercular 0.61° 0.46
Auditory 0.05 —0.17
Default mode 0.48° 0.1
Visual 0.52° 0.34
Frontoparietal 031° 0.02
Salience 036 0.13
Subcortical 0.01 —0.10
Ventral attention 0.06 0.01
Dorsal attention 0.23 0.13
Whole-brain spatiotemporal modularity 0.51° 0.03
Cognitive
Somatomotor —0.03 —0.18
Cingulo-opercular 032 0.09
Auditory 0.19 0.12
Default mode 036 0.15
Visual 0.10 —0.08
Frontoparietal 0.28 0.18
Salience 0.53° 0.46
Subcortical 0.06 0.00
Ventral attention 0.27 0.16
Dorsal attention 0.00 —0.20
Whole-brain spatiotemporal 0.19 —0.24
Behavioral LV
Age —0.80° —0.75
Inhibitory control 0.67° 0.60
modularity

LV, Latent variable.
®Canonical loadings with absolute values >0.30.

condition) of the incentive processing task and the Mental condition
(after regressing out the connectivity values corresponding to the Ran-
dom condition) of the social cognition task.

Brain-behavior analyses

Canonical correlation analysis (CCA). To identify the relationship of dy-
namic or stable functional connectivity patterns with age and behavior,
we used CCA (Hotelling, 1936). CCA is a multivariate technique, which
seeks maximal correlations between two sets of variables by creating
linear combinations (i.e., canonical variates) from the variables within
each set. Recently, CCA has been successfully used to investigate brain-
behavior relationships in large datasets (for an analytic approach similar
to ours, see Tsvetanov et al., 2016; for a somewhat different frame-
work, see S. M. Smith et al., 2015). CCA was implemented using the
CANCORR module from SPSS 24.0.

To describe the relationship between the behavioral or brain variables
and their corresponding variates (i.e., latent factors), we include two
types of indicators, specifically, canonical loadings and standardized co-
efficients. Canonical loadings reflect the raw correlation between a brain
or behavioral variable and its corresponding variate. Standardized coeffi-
cients represent the partial correlation between a brain or behavioral variable
and its corresponding variate, after controlling for the effect of the remaining
brain or behavioral variables in the respective analysis.

To obtain reliable estimates of canonical loadings, CCA requires a
sample size at least 10 times the number of variables in the analysis (Hair
etal., 1998). Our sample size for all tests exceeded this criterion because
we had samples ~14 times the number of variables in the analysis. Be-
cause canonical loadings are homologous to factor loadings, it has been
recommended that they be subjected to similar criteria for significance (Hair
etal., 1998). Given our sample size and existing guidelines regarding sample
size requirements for significant factor loadings (Hair et al., 1998), we re-
garded as significant a canonical loading of at least 0.30.
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Table 2. Control analyses for CCA 1: canonical correlation coefficients and loadings for the analyses using connectivity indices obtained with alternate community detection

parameters (gamma resolution factor, treatment of negative weights)”

A/O AN A2 5/0 SN S/2
Variable (r=1037)* (r=0.38)* (r=1037)* (r=1037)* (r=0.38)* (r=1036)**
Brain LV
Social-affective
Somatomotor 0.19 0.21 0.28 0.22 0.16 0.23
Cingulo-opercular 0.69° 0.57° 0.4 0.70° 0.57° 0.46°
Auditory —0.03 0.05 0.17 0.09 0.01 0.09
Default mode 0.41° 0.46° 0.49° 0.42° 0.42° 0.53°
Visual 030° 0.53° 0.59° 030° 052 0.59°
Frontoparietal 0.22° 032 0.41° 0.24° 0.29° 0.43°
Salience 032 032 0.42° 0.30° 031° 0.43°
Subcortical 0.12 —0.03 0.19 0.05 —0.07 0.07
Ventral attention 0.00 0.08 0.00 —0.02 0.08 —0.02
Dorsal attention 0.29 0.24 0.18 0.30 0.22 0.24
Whole-brain spatiotemporal modularity 0.49° 047° 0.63° 0.53° 0.44 0.60°
Cognitive
Somatomotor 0.02 —0.06 0.22 0.06 —0.12 0.15
Cingulo-opercular 031° 0.30° 043° 031° 0.25° 034
Auditory 0.16 021 0.14 0.20 018 0.17
Default mode 039° 034 0.24° 0.44° 031° 0.29°
Visual —0.05 0.09 0.27 —0.02 0.06 0.21
Frontoparietal 0.31 0.27 0.35 0.31 0.24 0.32
Salience 0.43° 0.51° 0.59° 0.41° 0.48° 0.62°
Subcortical 0.23 0.05 —0.01 0.24 0.01 —0.06
Ventral attention 0.31 0.24 0.18 033 0.23 0.18
Dorsal attention 0.03 —0.06 0.30 —0.01 —0.10 0.17
Whole-brain spatiotemporal modularity 0.28 0.11 0.38 0.30 0.09 0.30
Behavioral LV
Age —0.88° —0.77° —0.99° —0.90° —0.72° —0.95°
Inhibitory control 0.55 0.70° 0.26° 0.51° 0.76° 0.40°

ALV, Latent variable; A/0, asymmetrical treatment of negative weights/gamma value of 0; A/1, asymmetrical treatment of negative weights/gamma value of 1; A/2, asymmetrical treatment of negative weights/gamma value of 2; /0,
symmetrical treatment of negative weights/gamma value of 0; $/1, symmetrical treatment of negative weights/gamma value of 1; $/2, symmetrical treatment of negative weights/gamma value of 2.

%Variables evidencing canonical loadings with absolute values >>0.30in our aggregate condition.
*p << 0.0001, **p < 0.005.

Hierarchical linear modeling (HLM) analyses. To probe the link be-
tween the life-functioning (i.e., ASR) variables and the brain connectivity
patterns, linked to age and inhibition in the social-affective versus the
cognitive context, we used HLM analysis (HLM 7.01) (Raudenbush et al.,
2013) with robust SE estimates (Raudenbush and Bryk, 2002), an appro-
priate choice for the present study, which included a relatively large
number of cases.

Univariate and multivariate outliers. Univariate and multivariate out-
liers can adversely impact data normality and, thus, have the potential to
bias the results of canonical correlation analyses (Sherry and Henson,
2005). Nonetheless, because all the reported results were unchanged when
using data from which univariate (z scores <—3.29 or >3.29) and multivar-
iate (Mahalanobis distance-based) outliers had been eliminated, we present
the results based on the full dataset. As mentioned above, for the HLM
analysis, we used the robust SE estimates to safeguard against outliers.

Results

Preliminary analyses: behavioral analyses

As expected, superior inhibitory control on the flanker task pre-
dicted faster responses on both high and low reward value trials
(Spearman’s rho values of 0.20 and 0.16, respectively, both
p values <0.005), as well in both working memory conditions
(Spearman’s rho values of 0.19 and 0.24, respectively, both
p values <0.001). Individuals with better inhibitory control also
made more accurate responses in the two-back working condi-
tion (Spearman’s rho of 0.23, p < 0.001). More mature age was
associated with somewhat slower responses in the two-back con-
dition (Spearman’s rho of —0.12, p = 0.02), as well as lower
accuracy in the zero-back condition (Spearman’s rho of —0.12,
p = 0.02), but showed no significant correlation with the remain-

ing behavioral variables (all p values >0.07). Albeit statistically
significant, the correlations between age and behavioral perfor-
mance were quite small, implying that, within a young adult
group, age can explain a relatively modest amount of variance in
cognitive and social-affective performance.

Brain analyses

Modularity in the high versus the low reward or cognitive

load conditions

To test for differences in modularity in the high versus the low
reward or cognitive load conditions, we conducted two-level hi-
erarchical linear regression analyses (HLM 7.01) (Raudenbush et
al., 2013) with robust SEs to safeguard against potential outliers
(Raudenbush and Bryk, 2002). For these analyses, we averaged
the modularity indices within the two low-reward (financial loss,
random movement) and high-reward (financial gain, social
movement) conditions, respectively. In these models, the modu-
larity indices (Level 1) were embedded in participants (Level 2). A
dummy variable coded zero for the low reward/cognitive load
condition and 1 for high reward/cognitive load condition was
introduced as the Level 1 predictor. For the sake of consistency
with the main results, we present below only the findings ob-
tained when average motion per participant in the social-
affective or cognitive context was introduced as Level 2
covariate of no interest. Nonetheless, all the results presented
below remain identical if average motion per participant is not
introduced as a Level 2 covariate. Results of two separate HLM
regression analyses provided evidence that modularity was signif-
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The loadings of the brain variables corresponding to Mode 1 (a) and Mode 2 (c) from CCA 2 on their corresponding canonical variates and the scatter plots describing the linear

association between the brain and the behavioral (i.e., age and inhibitory control) canonical variates (b, d). a, ¢, C0G_, Working memory context; SAF_, social-affective context; Q, whole-brain
modularity metric. a, ¢, Networks with significant loadings on the respective brain variate are represented in the middle of each circular plot, separately for the cognitive (on the left side) versus the
social-affective (on the right side) context. In each circular plot, bars in red represent positive loadings of a brain variable on its variate. Bars in gray represent negative loadings of a brain variable on
its variate. In each circular plot, the outermost ring represents a canonical loading of 1.0 and the second ring (from the outside) represents a canonical loading of 0.50. Complementarily, the
innermost ring represents a canonical loading of — 1.0, whereas the second ring from the center of the circular plot represents a canonical loading of —0.50. The networks presented in Figures 1and

2 were visualized with the BrainNet Viewer (Xia et al., 2013).

icantly reduced in the high, compared with low, reward (b =
—0.004, SE = 0.001, t35,, = —3.02, p = 0.003) and cognitive load
condition alike (b = —0.024, SE = 0.002, 35,, = —15.55,p < 0.001)
(for reduced modularity with increasing cognitive load, see also
Vatansever et al., 2015; Braun et al., 2015).

Control brain variables

Because the community detection analyses were conducted sep-
arately for each participant, a different number of communities
was identified for each individual in each scrutinized task condi-
tion or context. There was no statically significant correlation
between either age or inhibition and the number of dynamic
communities identified in the social-affective context or the
number of stable communities identified in the Social, Random,
Gain, Loss, or Two-Back conditions (all p values >0.18). There
were weak, albeit statistically significant, positive associations be-
tween inhibitory control and the number of dynamic communi-
ties identified in the cognitive context (r(;5,y = 0.10, p = 0.05) as
well as between age and the number of communities identified in
the zero-back condition (r;5;) = 0.12, p = 0.02). Therefore,
because the focus of our present study was on system-specific
segregation and whole-brain modularity, we opted to include the

number of communities identified in each of the six experimental
conditions and each of the two task contexts as covariates of no
interest in our analyses.

CCA

In both canonical correlation analyses described below, age (in
years) and inhibitory control (from the flanker task) were entered
as the behavioral variables. Our main analyses used the whole-
brain modularity measures and the network segregation esti-
mates aggregated across the three values of the gamma parameter
and two types of negative weight treatment (i.e., symmetrical vs
asymmetrical). Nonetheless, in Tables 2, 4, and 6, we present the
results of analyses using estimates from each of the six combina-
tions of gamma values and negative weight treatment, so that the
reader could get a sense of the robustness of our findings against
variations in the settings of the community detection algorithm.

CCA 1: dynamic connectivity

This analysis revealed one significant CCA mode (r = 0.37, p <
0.0001; for loadings of each dynamic connectivity variable on its
canonical variate, see Fig. 1a; for the relationship between the
brain and behavioral canonical variates, see Fig. 1b). This mode
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characterized the dynamic connectivity patterns of younger indi-
viduals (for the negative loading and standardized coefficient of
age, see Table 1), particularly those with superior inhibition (for
the positive loading and standardized coefficient of inhibition, as
well as for standardized coefficients for age and inhibition, both
of which are >0.30, pointing to their independent, additive ef-
fects, see Table 1). Thus, across both contexts, younger individu-
als with superior inhibition demonstrated greater temporal
cohesion in the DMN, CON, and SAL (for canonical loadings
across all gamma treatment of negative weights combinations,
see Table 2). That is, across time, as a function of increasing
inhibitory control, the nodes within each of these three networks
were increasingly more likely to interact with one another rather
than with nodes from other networks. An inspection of the stan-
dardized coefficients in Table 1 suggests that the aforementioned
effects are mainly driven by the CON in the social-affective context
and by the SAL in the cognitive context. More broadly, though, these
findings are consistent with the idea that high temporal coherence in
the DMN, CON, and SAL is a neural trait that is best expressed by
younger individuals and that is associated with positive cog-
nitive consequences (i.e., superior inhibitory control).

In addition to the aforementioned context-free effects, the
same CCA also provided evidence of context-specific functional
interaction patterns, such that, during the social-affective, but
not the cognitive task, younger individuals with superior inhibi-
tory control showed greater spatiotemporal modularity at the
whole-brain level, as well as additional spatiotemporal segrega-
tion effects in the FPC and VIS (Tables 1, 2; Fig. 1a).

CCA 2: stable connectivity

This analysis revealed two significant orthogonal CCA modes,
linking brain connectivity patterns to superior inhibition, either
during earlier (r = 0.38, p < 0.0001) or later (r = 0.35, p = 0.003)
stages of younger adulthood.

Mode 1: inhibition during earlier adulthood

The first extracted CCA mode characterized brain connectivity
patterns linked to superior inhibition during earlier adulthood
(for loadings of each stable connectivity variable on its canonical
variate, see Fig. 2a; for the relationship between the brain and
behavioral canonical variates, see Fig. 2b). Across both task con-
texts, younger individuals with superior inhibitory control dem-
onstrated greater system segregation (for all canonical loadings
and standardized coefficients from this analysis using the modu-
larity values aggregated across all gamma values and treatment of
negative weights conditions, see Table 3; for canonical loadings
for each gamma treatment of negative weights combination, see
Table 4). Common to both contexts was a link between superior
inhibition and greater DMN segregation. Context-specific asso-
ciations between system segregation and superior inhibition were
observed in the FPC under high cognitive load, as well as in the
CON, SAL, DAN, and AUD/language in response to more re-
warding stimuli. As we found with the dynamic connectivity re-
sults, this analysis provided evidence of a link between superior
inhibitory control in younger adulthood and greater whole-brain
modularity in the high-reward value condition only. An inspec-
tion of the standardized coefficients in Table 3 reveals that the
strongest unique network contributions to this brain variate are
made independently by the DMN and FPC under high cognitive
load and by the CON in response to high reward stimuli.

Mode 2: inhibition during later adulthood
The second extracted CCA mode reflected the brain connectivity
patterns most strongly linked to superior inhibition in later adult-
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Table 3. CCA 2-Mode 1: static functional connectivity patterns linked to superior
inhibitory control during earlier adulthood”

Canonical Standardized
Variable loadings coefficients
Brain LV
Social-affective
Somatomotor 0.12 —0.06
Cingulo-opercular 0.64° 0.53
Auditory 0.35° 0.21
Default mode 039 0.00
Visual 0.29 0.10
Frontoparietal 0.08 —0.27
Salience 0.30° 0.1
Subcortical 0.01 —-0.23
Ventral attention 0.28 0.19
Dorsal attention 0.40° 0.19
Whole-brain spatial modularity 0.57° 0.25
Cognitive
Somatomotor 0.11 0.06
Cingulo-opercular 0.21 —0.07
Auditory 0.07 0.07
Default mode 0.49° 034
Visual 0.17 0.08
Frontoparietal 037° 035
Salience 0.23 0.06
Subcortical 0.10 0.02
Ventral attention 0.09 —0.06
Dorsal attention 0.17 0.03
Whole-brain spatial modularity 0.19 —0.23
Behavioral LV
Age —0.93° —0.90
Inhibitory control 0.45° 037

“LV, Latent variable.
®Canonical loadings with absolute values >0.30.

hood (for all canonical loadings and standardized coefficients
from this analysis using the modularity values aggregated across
all gamma values and treatment of negative weight conditions,
see Table 5; for canonical loadings for each scrutinized gamma
treatment of negative weights combination, see Table 6; for load-
ings of each stable connectivity variable on its canonical variate,
see Fig. 2¢; for the relationship between the brain and behavioral
canonical variates, see Fig. 2d). Thus, more mature individuals
with superior inhibition showed reduced whole-brain modular-
ity in both contexts, reduced segregation in the DMN in response
to more rewarding stimuli, as well as reduced segregation in the
CON and SUB in response to greater cognitive load. In contrast,
increased VAN segregation was found in those older individuals
with better inhibitory function in response to greater cognitive
load. An inspection of the standardized coefficients in Table 5
suggests that higher scorers on the brain variate of this CCA mode
are those that, in response to higher reward value stimuli, show
relatively reduced DMN, but increased CON, segregation (com-
pared with the remaining brain indices), whereas in response to
cognitive load, they show relatively reduced CON segregation
(i.e., greater integration), but increased VAN segregation.

Control analyses

To verify that the association of age and inhibition with the iden-
tified connectivity profiles remains significant after controlling
for potential global connectivity and community structure vari-
ables, as well as demographic confounds, we first computed ca-
nonical variate scores for each participant on each of the three
identified connectivity profiles and their associated behavioral
profiles (i.e., the values plotted in Figs. 1, 2, which are based on
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Table 4. Control analyses for CCA 2 (Mode 1): canonical correlation coefficients and loadings for the analyses using connectivity indices obtained with alternate community

detection parameters (gamma resolution factor, treatment of negative weights)”

A/O AN AR 5/0 il 52
Variable (r=1038)* (r=1038)* (r=1038)* (r=1039)* (r=1038)* (r=037)*
Brain LV
Social-affective
Somatomotor 0.12 0.09 0.1 0.1 0.09 0.1
Cingulo-opercular 0.63° 0.64° 0.64° 0.62° 0.64° 0.65°
Auditory 034 034 0.35° 0.34° 0.35° 035
Default mode 0.40° 034 039° 037° 0.35° 0.38°
Visual 030 0.28 0.29 0.29 0.29 0.29
Frontoparietal 0.08 0.08 0.08 0.08 0.08 0.08
Salience 0.30° 031° 030° 030° 031° 031°
Subcortical 0.01 —0.01 0.01 0.00 —0.01 0.00
Ventral attention 0.28 0.28 0.28 0.28 0.28 0.29
Dorsal attention 0.41° 0.38° 0.40° 039° 039° 0.40°
Whole-brain spatiotemporal modularity 037° 0.36° 0.35° 031° 0.46° 029
Cognitive
Somatomotor 0.12 0.09 0.1 0.10 0.09 0.1
Cingulo-opercular 0.22 0.17 0.21 0.20 0.18 0.20
Auditory 0.07 0.05 0.07 0.06 0.06 0.07
Default mode 0.48° 0.49° 0.49° 0.48° 0.49° 0.49°
Visual 0.17 0.16 0.17 0.16 0.16 0.17
Frontoparietal 037° 037° 037° 0.36° 037° 0.38°
Salience 0.23 0.23 0.23 0.22 0.23 0.23
Subcortical 0.11 0.06 0.09 0.09 0.07 0.09
Ventral attention 0.08 0.13 0.10 0.10 0.13 0.11
Dorsal attention 0.17 0.16 0.17 0.16 0.16 0.17
Whole-brain spatiotemporal modularity —0.02 0.12 0.09 0.06 0.18 0.12
Behavioral LV
Age —0.94 —0.89 —0.93 —0.92 —0.89 —0.92
Inhibitory control 0.42° 0.54° 0.46° 0.47° 0.53° 0.47°

ALV, Latent variable; A/0, asymmetrical treatment of negative weights/gamma value of 0; A/1, asymmetrical treatment of negative weights/gamma value of 1; A/2, asymmetrical treatment of negative weights/gamma value of 2; /0,
symmetrical treatment of negative weights/gamma value of 0; $/1, symmetrical treatment of negative weights/gamma value of 1; $/2, symmetrical treatment of negative weights/gamma value of 2.

®Variables evidencing canonical loadings with absolute values >0.30 in our default aggregate condition.
*p < 0.0001.

the whole-brain modularity and system segregation indices ag-
gregated across all six gamma value-negative weight treatment
conditions). Results of partial correlation analyses in which we
controlled for global connectivity within each of the six stable
connectivity task conditions (i.e., average connectivity among all
the 229 nodes in the zero-back, two-back, social, random,
financial reward and loss conditions, respectively), number of
communities identified in each of the six stable connectivity
conditions, as well as in each of the two dynamic connectivity
contexts (i.e., working memory and social-affective task, respec-
tively), sex (compare Satterthwaite et al., 2015; Scheinost et al.,
2015), handedness, and years of education, revealed that the as-
sociation between the identified connectivity and behavioral pro-
files remained virtually unchanged (all p values <0.0001).

Connectivity profiles and in-scanner behavioral performance
To test whether the identified connectivity profiles are associated
with in-scanner behavioral performance, we conducted a canon-
ical correlation analysis. The behavioral set included the speed
scores on the high- versus low-reward value trials, as well as the
two- and zero-back accuracy and speed scores. The brain set
encompassed the canonical variate scores on the three identified
connectivity profiles associated with inhibitory control. This
analysis revealed one significant CCA mode (r = 0.31, p = 0.001;
for canonical loadings, see Table 7), which linked superior per-
formance on all tasks, but particularly accuracy on the two-back
working memory task (see standardized coefficients in Table 7),
to greater expression of the dynamic connectivity profile (i.e., greater

context-free spatiotemporal segregation in the DMN, CON, and
SAL, as well as greater whole-brain modularity coupled with
greater FPC and VIS segregation in the social-affective context)
and of the stable connectivity profile associated with inhibition
during later adulthood (i.e., reduced DMN segregation and
whole-brain modularity in the high reward condition, coupled
with reduced CON and SUB, but greater VAN, segregation in the
high cognitive load condition). An inspection of the standardized
coefficients in Table 7 suggests that the dynamic and later adult-
hood stable connectivity profiles are independently related to
working memory performance. The association between the con-
nectivity variates and behavioral performance (i.e., accuracy in the
two- and zero-back working memory conditions, as well as speed in
the zero-back condition and on the social-affective task, see Table 7)
remained significant at p << 0.0001, after controlling for global con-
nectivity and number of communities within each of the six stable
connectivity task conditions, number of communities identified in
each of the two dynamic connectivity contexts, age, years of educa-
tion, sex, and handedness.

Inhibition-linked connectivity profiles and psychological
functioning

Finally, we sought to shed some light on the “real-life” behavioral
relevance of the three identified connectivity profiles. Specifi-
cally, given their relationship with age, we were interested in
whether these connectivity profiles would have age-varying rela-
tionships with psychological functioning. To this end, we speci-
fied a two-level HLM model, in which standardized scores on the
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Table 5. CCA 2-Mode 2: static functional connectivity patterns linked to superior
inhibitory control during later adulthood”

Canonical Standardized
Variable loadings coefficients
Brain LV
Social-affective
Somatomotor —0.28 —=0.17
Cingulo-opercular 0.08 0.32
Auditory 0.00 0.00
Default mode —0.53° —047
Visual —0.12 —0.04
Frontoparietal 0.06 0.13
Salience 0.11 0.20
Subcortical —0.20 —0.15
Ventral attention 0.00 0.04
Dorsal attention —0.20 —0.04
Whole-brain spatial modularity —0.34° —0.18
Cognitive
Somatomotor —0.26 —0.24
Cingulo-opercular —0.40° —0.38
Auditory —0.14 0.1
Default mode 0.03 0.22
Visual —0.15 —=0.11
Frontoparietal 0.02 0.17
Salience —0.02 0.11
Subcortical —033° -0.3
Ventral attention 0.44° 0.42
Dorsal attention —0.04 —0.05
Whole-brain spatial modularity —0.30° —0.20
Behavioral LV
Age 037° 0.45
Inhibitory control 0.89° 0.94

“LV, Latent variable.
®Canonical loadings with absolute values >0.30.

eight ASR subscales (Level 1) were nested within individuals
(Level 2). As Level 2 predictors, we included age, scores on the
three connectivity profiles, and their interaction with age, as well
as sex, handedness, years of education, number of communities
identified in each of the two dynamic connectivity contexts,
global connectivity, and number of communities within each of
the six stable connectivity task conditions as covariates of no
interest. The robust SE results from this analysis revealed only a
significant two-way interaction between age and scores on the late
inhibition connectivity profile (Fig. 3; Table 8, y,,4). To shed some
light on this interaction, we used the online utility for two-way mul-
tilevel interactions (http://www.quantpsy.org/interact/hlm2.htm)
(Preacher etal., 2006). An assessment of the slopes, intercepts (Table
8), and variance-covariance coefficients indicated that, in the present
sample, the association between scores on the late inhibition profile
and psychological problems starts becoming significant at p < 0.05
only at its upper boundary (i.e., the estimated lower boundary is not
represented in the current sample), that is, for individuals older than
30 years of age (i.e., those whose age is >0.4232 SDs above the
sample’s average age). At this region-of-significance boundary, the
association between scores on the late inhibition profile and psycho-
logical problems is negative (b = —0.0657, SD = 0.0334, t =
—1.972). As can be inferred from Figure 3, the interaction effect can
be interpreted as evidence that expression of the late inhibition-
linked neural profile after the age of 30 shields against psychological
problems (i.e., adults >30 who express this profile more strongly
show fewer psychological problems than those >30 who show a
weaker expression of this profile).

J. Neurosci., August 9, 2017 - 37(32):7711-7726 « 7721

Discussion

To our knowledge, the present study is among the first to probe
the interplay between contextual and late developmental effects
on the neural architecture relevant to inhibition, the putative
core component of cognitive control (Friedman et al., 2008; Mi-
yake and Friedman, 2012). Thus, using whole-brain functional
connectivity measures from a large young adult sample, we doc-
ument similarities and differences in the dynamic and stable neu-
ral architecture of inhibition across two task contexts, varying in
cognitive load and reward value. Broadly, we provide evidence of
distinguishable neural profiles associated with superior inhibition
during earlier versus later stages of young adulthood. The former
profile is characterized by greater system segregation, and it emerges
both in stable and dynamic connectivity patterns. The latter profile is
typified by a combination of segregation and integration in a smaller
number of systems, and it emerges only in the stable connectivity
patterns associated with increasing cognitive load or reward value.
Of note, it is failure to develop this profile before the age of 30 that is
linked to real-life psychological problems.

The more complex neural signature of superior inhibition,
herein documented, emerged during earlier adulthood in both
stable and dynamic connectivity analyses and was associated with
both context-invariant and context-specific connectivity pat-
terns. Thus, in both stable and dynamic connectivity analyses,
younger individuals with superior inhibitory control demon-
strated greater context-free segregation in the DMN, the system
most relevant to internally oriented cognition (Andrews-Hanna
etal., 2014; Spreng et al., 2014; Konishi et al., 2015; D. V. Smith et
al., 2015; Spreng and Andrews-Hanna, 2015). Dynamically,
context-free, inhibition-linked segregation was further observed
in the CON and the SAL. Interestingly, the SAL, as the network
linked to environmentally driven behavioral control (Seeley et al.,
2007; Sridharan et al., 2008), seemed particularly important in
cognitive contexts, such as the HCP working memory task that
required continual updating of internal representations based on
external information. Complementarily, the CON as the system
linked to maintaining vigilance to the external environment
within a task context (Dosenbach et al., 2007; Sadaghiani and
D’Esposito, 2015) played a key role in the social-affective task,
which featured more ambiguous stimuli that necessitated inte-
gration of a broader array of incoming information.

Beyond context-free effects, younger individuals with supe-
rior inhibition also demonstrated context-specific connectivity
patterns. For the cognitive context, with increasing mental load,
this was observed only in the stable connectivity patterns of the
FPC, the network involved in top-down initiation of control
(Spreng et al., 2010). For the social-affective task, the inhibition-
linked segregation was observed in a larger number of systems,
both in dynamic and stable whole-brain connectivity patterns.
With respect to specific networks, it was observed in the dynam-
ics of the VIS and of the FPC. In stable connectivity analyses, in
response to stimuli of greater reward value, inhibition-linked
segregation was most clearly observed in systems linked to per-
ceptual and attentional processing (DAN, AUD), as well as those
involved in initiating and maintaining control based on environ-
mental demands (CON, SAL) (Corbetta et al., 2000; Corbetta and
Shulman, 2002; Dosenbach et al., 2007; DiQuattro et al., 2014;
Sadaghiani and D’Esposito, 2015). Thus, in response to reward-
ing stimuli, younger individuals with superior inhibition show
greater externally oriented attentional focus. This pattern of re-
sponding is distinct from the one evoked under cognitively chal-
lenging circumstances and implies that greater engagement with
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Table 6. Control analyses for CCA 2 (Mode 2): canonical correlation coefficients and loadings for the analyses using connectivity indices obtained with alternate community

detection parameters (gamma resolution factor, treatment of negative weights)”

A/0O(r=10.34, A1 (r=1034, A2(r=1034, S/0(r=10.34, S/ (r=1035, S12(r=10.34,
Variable p = 0.004) p =0.003) p = 0.003) p = 0.003) p =0.003) p = 0.003)
Brain LV
Social-affective
Somatomotor —0.28 —0.29 —0.28 —0.29 —0.29 —0.29
Cingulo-opercular 0.10 0.00 0.07 0.06 0.01 0.06
Auditory 0.01 —0.04 0.00 —0.01 —0.04 —0.01
Default mode —0.52° —0.57 —0.54° —0.54" —0.56° —0.54
Visual —-0Mm —0.15 —0.12 —0.12 —0.15 —0.13
Frontoparietal 0.06 0.05 0.06 0.06 0.05 0.06
Salience 0.12 0.08 0.1 0.1 0.08 0.10
Subcortical —0.20 —0.20 —0.20 —0.20 —0.20 —0.20
Ventral attention 0.01 —0.04 —0.01 —0.01 —0.03 —=0.01
Dorsal attention —0.19 —0.25 —0.21 —0.21 —0.24 —0.22
Whole-brain spatiotemporal modularity —0.12° —0.38° —0.28° —0.02 —0.40° —027°
Cognitive
Somatomotor —0.26 —0.27 —0.27 —0.27 —0.27 —0.27
Cingulo-opercular —0.40° —043° —041° —0.41° —042° —0.41°
Auditory —0.14 —0.15 —0.14 —0.14 —0.15 —0.14
Default mode 0.05 —0.02 0.03 0.02 —0.02 0.02
Visual —0.15 —0.17 —0.16 —0.16 —0.17 —0.16
Frontoparietal 0.04 —0.02 0.02 0.02 —0.01 0.01
Salience —0.01 —0.05 —0.02 —0.02 —0.04 —0.03
Subcortical —033° —0.34 —033° —033° —0.34 —033°
Ventral attention 0.45° 0.43° 0.44° 0.44° 0.43° 0.44°
Dorsal attention —0.03 —0.06 —0.04 —0.04 —0.06 —0.05
Whole-brain spatiotemporal modularity —0.13 —-0.23 =0.11 —0.14 —0.29 —0.10
Behavioral LV
Age 033 0.46° 037° 038° 0.45° 039°
Inhibitory control 0.91° 0.84° 0.89° 0.88° 0.859 0.88°

ALV, Latent variable; A/0, asymmetrical treatment of negative weights/gamma value of 0; A/1, asymmetrical treatment of negative weights/gamma value of 1; A/2, asymmetrical treatment of negative weights/gamma value of 2; /0,
symmetrical treatment of negative weights/gamma value of 0; $/1, symmetrical treatment of negative weights/gamma value of 1; $/2, symmetrical treatment of negative weights/gamma value of 2.

®Variables evidencing canonical loadings with absolute values >0.30 in our default aggregate condition.

Table 7. Canonical correlation of the in-scanner behavioral performance scores
with the inhibition-linked connectivity profiles”

(anonical Standardized

Variable loadings coefficients
Brain LV

Dynamic connectivity profile 0.83° 0.93

Static connectivity profile earlier adulthood 0.22 —0.21

Static connectivity profile later adulthood 0.53° 0.53
Behavioral LV

Two-back accuracy 0.81° 0.60

Zero-back accuracy 0.57° —0.02

Two-back speed 0.24 —0.36

Zero-back speed 0.72° 0.57

Speed on low reward trials 0.50° 0.1

Speed on high reward trials 0.57° 0.25

9LV, Latent variable.
®Canonical loadings with absolute values >0.30.

motivationally relevant information may be an important mech-
anism underlying successful inhibition.

Interestingly, our documented context-free neural correlates
of inhibition in younger adulthood fit well with existing theories
of cognitive control. For example, greater modularity presum-
ably reflects more specialized and efficient processing, which is
more resilient in the face of environmental challenges (Kashtan
and Alon, 2005; Kashtan et al., 2007; Braun et al., 2015; Betzel et
al., 2016; Sporns and Betzel, 2016). Such a processing mode
seems particularly well suited to facilitate the concurrent main-
tenance and manipulation of incoming task-relevant informa-

tion, key features of inhibitory control (Miyake and Friedman,
2012). Furthermore, the DMN as the pivotal network involved in
self-generated representations (Andrews-Hanna et al., 2014;
Spreng et al., 2014; Spreng and Andrews-Hanna, 2015) and the
functional component most consistently linked to inhibition in
the current study, seems to be a likely mechanism underlying the
successful maintenance of current task-relevant internal repre-
sentations, another core feature of inhibition (Friedman et al.,
2008; Miyake and Friedman, 2012). Complementarily, the two
networks expressing dynamically the inhibition-linked segrega-
tion across both cognitive and social-affective contexts (i.e., the
CON and SAL) seem particularly well suited to fulfill a third core
function of inhibition, specifically, bias perceptual processing in
the direction of task-relevant information (Miyake and Fried-
man, 2012). Indeed, the SAL reportedly orchestrates behavioral
control based on the detection of relevant (including task-relevant) en-
vironmental information (Seeley et al., 2007; Sridharan et al., 2008),
whereas the CON allegedly supports continued alertness to task-
relevant information originating in the external environment (Sad-
aghiani and D’Esposito, 2015).

Importantly, our investigation identified inhibition-linked
neural signatures not only during the earlier, but also the later,
stages of young adulthood. The more mature inhibition-linked
neural profile emerged only in static connectivity analyses as a
function of greater cognitive load or reward value, and it was
characterized by reduced context-free whole-brain modularity,
as well as reduced segregation in a small number of systems,
specifically, the DMN for the social-affective context and the
CON and SUB for the cognitive context. The role of the DMN for
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Figure 3.

Table 8. Results of the HLM analysis predicting psychological functioning from the
three identified connectivity profiles and their interaction with age”

Fixed effect Coefficient ~ SE tratio  p

Intercept, gy 0.016  0.050 0.328 0.743
Sex, Yor —0.032 0070 —0.455 0.649
Age, v, —0.068 0.035 —1.921 0.056
Handedness, yy; 0.032  0.036 0.889 0.374
Years of education, y,, —0.141 0038 —3741 <0.001
Global connectivity Two-back, y,s 0.009  0.105 0.087 0.931
Global connectivity Zero-back, y,, 0.001 0.075 0.008 0.994
Global connectivity Loss, y,, —0.197 0.124  —1.589 0.113
Global connectivity Random, 7,4 —0.076  0.083 —0.920 0.358
Global connectivity Gain, y,, 0.023  0.099 0.229 0.819
Global connectivity Social, 'y, 0.126 0.102 1.238 0.216
No. of communities (social-affective), y,;, —0.004  0.036 —0.105 0.916
No. of communities (cognitive), v, 0.001 0.032 0.037 0.971
No. of communities Two-back, y,;; 0.087  0.102 0.852 0.395
No. of communities Zero-back, v,,, 0.013  0.071 0.178 0.859
No. of communities Loss, ;s 0.118 0.125 0.942 0.347
No. of communities Random, y,;4 0.084  0.079 1.062 0.289
No. of communities Gain, y,,;, —0.042 0.092 —0.458 0.648
No. of communities Social, yy;5 =013 0101 —1.119 0.264
Dynamic connectivity scores, Yp;o 0.010  0.040 0.252 0.801
Static connectivity Mode 1 scores, ., —0.019 0.039 —0.486 0.627
Static connectivity Mode 2 scores, y,,, —0.034 0033 —1.028 0.305
Dynamic connectivity scores X Age, ,,, —0.014 0036 —0376 0.707
Static connectivity Mode 1 scores X Age, y,,; —0.018 0.032 —0.559 0.577
Static connectivity Mode 2 scores X Age, y,,, —0.074 0027 —2716 0.007

“Approximate df for all coefficients = 334.

social cognition and affective decision making is extensively doc-
umented (Andrews-Hanna et al., 2014; Spreng et al., 2014; D. V.
Smith etal., 2015; Spreng and Andrews-Hanna, 2015). Our findings
thus imply that, among more mature adults with superior inhi-
bition, processing of high reward stimuli is typified by greater
whole-brain integration of the most task-relevant network (i.e.,
the DMN). This raises the question of whether greater whole-

The relationship between life functioning and scores on the late inhibition profile as a function of age. The represen-
tations are based on estimates from the HLM model presented in Table 8, in which all other predictors apart from age, scores on the
later adulthood inhibition profile, and their interaction term have been set to their mean value. Although age was used as a
continuous variable in the analyses, for the purpose of graphing the interaction, it is broken into younger (i.e., 1 SD below the
average age of the sample) and more mature adulthood (i.e., 1 SD above the average age of the sample).

2010; van Duijvenvoorde et al., 2016),
whose importance is easily defended in
the HCP working memory task that fea-
tures stimuli that fall within recognizable
categories (Barch et al,, 2013). In the con-
text of the younger adulthood inhibition
profile, these results suggest that, with
greater maturity, individuals with supe-
rior inhibition may switch from relying on highly modular inter-
nal cognition systems (DMN, FPC) to networks linked to more
externally oriented processing (CON, SUB) that integrate informa-
tion at the whole-brain level (Helie et al., 2010; Sestieri et al., 2014;
Sadaghiani and D’Esposito, 2015). The exception to this developmen-
tal trend lies with the VAN, the system linked to bottom-up process-
ing of task-related distracters and unexpected task events (Linden et
al,, 1999; Corbetta et al., 2000; Corbetta and Shulman, 2002; Fox et
al., 2006; DiQuattro et al., 2014; Leitao et al., 2015), which, in the
high mental load condition, showed increased segregation among
the more mature individuals with superior inhibitory control.
This effect, indicative of a narrower attentional focus, may be
worth exploring in future research.

Interestingly, it was the expression of this later, but not earlier,
stable connectivity inhibition profile that predicted superior task
performance. The fact that the behaviorally optimal network or-
ganization during more complex tasks is one of reduced system
segregation, particularly with respect to the most task-relevant
systems, is compatible with extant findings that more demanding
cognitive functions, such as those linked to working memory,
benefit from a less modular brain organization that fosters better
flow of information across its component nodes (e.g., Vatansever
et al., 2015; Cohen and D’Esposito, 2016). In the context of our
study, we interpret the late inhibition profile as one end product
of the neurobehavioral fine-tuning processes assumed to occur
during the 20s (e.g., Veroude etal., 2013; Vink et al., 2014; Chai et
al., 2014) and culminate in more effective network organization.
Thus, among individuals <30 years of age, weaker expression of
the late inhibition profile is not yet indicative of developmental
abnormalities, hence the lack of a significant association with
life-functioning problems. In contrast, among individuals >30
years of age, when most neurobehavioral fine-tuning processes
have presumably concluded, poorer expression of the late inhi-
bition profile likely signals developmental abnormalities or de-
lays, hence its link to life-functioning problems.

In conclusion, we have documented contextual differences in
the dynamic and stable neural architecture linked to the putative
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core component of cognitive control. In doing so, we also pro-
vided suggestive evidence on the distinguishable neural profiles
linked to superior inhibition in younger versus more mature
adulthood. More broadly, our findings speak to the importance
of probing contextual and developmental factors in gaining a
better understanding of the neuro-functional landscape in which
a specific trait resides.
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