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Atonal homolog 1 (Atoh1) is a basic helix-loop-helix (bHLH) transcription factor that is essential for the genesis, survival, and maturation
of a variety of neuronal and non-neuronal cell populations, including those involved in proprioception, interoception, balance, respira-
tion, and hearing. Such diverse functions require fine regulation at the transcriptional and protein levels. Here, we show that serine 193
(S193) is phosphorylated in Atoh1’s bHLH domain in vivo. Knock-in mice of both sexes bearing a GFP-tagged phospho-dead S193A allele
on a null background (Atoh1 S193A/lacZ) exhibit mild cerebellar foliation defects, motor impairments, partial pontine nucleus migration
defects, cochlear hair cell degeneration, and profound hearing loss. We also found that Atoh1 heterozygous mice of both sexes (Atoh1 lacZ/�) have
adult-onset deafness. These data indicate that different cell types have different degrees of vulnerability to loss of Atoh1 function and that
hypomorphic Atoh1 alleles should be considered in human hearing loss.
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Introduction
Atonal homolog 1 (Atoh1) is a proneural basic helix-loop-helix
(bHLH) transcription factor that plays a critical role in a variety
of developmental contexts. In the nervous system, Atoh1 is re-

quired for the generation of many brainstem neurons and
multiple components of the proprioceptive and interoceptive
systems; it also regulates the proliferation and differentiation of
cerebellar granule neurons (CGNs) (Ben-Arie et al., 1997; Ber-
mingham et al., 2001; Wang et al., 2005). Beyond the nervous
system, Atoh1 regulates the development of Merkel cells, secre-
tory cells of the intestine, and the hair cells of the inner ear (Ber-
mingham et al., 1999; Yang et al., 2001; Maricich et al., 2009).
With such diverse roles, precise regulation of Atoh1 at both the
transcriptional and protein levels is essential.

Although the transcriptional regulation of Atoh1 has been well
studied, with many factors identified that bind to the enhancer
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Significance Statement

The discovery that Atonal homolog 1 (Atoh1) governs the development of the sensory hair cells in the inner ear led to therapeutic efforts
to restore these cells in cases of human deafness. Because prior studies of Atoh1-heterozygous mice did not examine or report on hearing
loss in mature animals, it has not been clinical practice to sequence ATOH1 in people with deafness. Here, in seeking to understand how
phosphorylation of Atoh1 modulates its effects in vivo, we discovered that inner ear hair cells are much more vulnerable to loss of Atoh1
function than other Atoh1-positive cell types and that heterozygous mice actually develop hearing loss late in life. This opens up the
possibility that missense mutations in ATOH1 could increase human vulnerability to loss of hair cells because of aging or trauma.
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regions of Atoh1 (Mulvaney and Dabdoub, 2012; Groves et al.,
2013), only a few studies have examined posttranslational mod-
ifications of Atoh1. Two recent studies identified phosphoryla-
tion sites that control Atoh1 stability in CGNs and inner ear hair
cells through its interaction with Huwe1 (Forget et al., 2014;
Cheng et al., 2016). In addition, serine 292 of the Drosophila
melanogaster Atonal, a highly conserved phosphorylation site in
the proneural protein classes of Ato, Ngn, and Achaete-Scute, was
shown recently to enable precise spatiotemporal control of pro-
neural activity in the fruit fly (Quan et al., 2016).

Our previous work showed that Atoh1 expression could in-
duce ectopic chordotonal organs in wild-type flies and rescue
chordotonal organ loss in atonal mutant fly embryos (Ben-Arie et
al., 2000; Wang et al., 2002). We also showed that atonal could
rescue the phenotype of Atoh1-null mice (Wang et al., 2002). To
identify critical phosphorylation sites that mediate Atoh1 func-
tion during development, we reasoned that such sites would be
evolutionarily conserved. The mouse Atoh1 protein has only one
highly structured domain, the bHLH domain, which is 100%
identical to human Atoh1 and 70% identical to the Drosophila
atonal homolog (Cai et al., 2015a). Outside of this region, the
Atoh1 peptide sequence diverges dramatically across species. Be-
cause it has been demonstrated that the bHLH domain conveys
specificity to each bHLH transcription factor (Chien et al., 1996),
we focused on phosphorylation sites within this domain.

We aligned fruit fly, frog, chicken, mouse, and human Atoh1
homologs and identified only one serine residue that could be
phosphorylated, serine 193 (S193), the mouse analog to S292
in the fruit fly (see Fig. 1A). We showed previously that the
phospho-mimetic S193D mutant loses the capability to bind to
the AtEAM, the specific binding motif of Atoh1 (Klisch et al., 2011;
Quan et al., 2016), resulting in a loss of transcriptional activity in an
in vitro luciferase assay and an in vivo fly phenotype that was identical
to that of atonal-null fruit flies (Quan et al., 2016). Because the
phospho-mimetic was likely to phenocopy the Atoh1-null allele, we
decided to generate a phospho-dead (serine to alanine) knock-in
mouse model to investigate the in vivo function of S193.

Here, we show that S193 is phosphorylated in vivo and that an
Atoh1 allele carrying a mutation in this phosphorylation site results
in specific neural, motor, and sensory deficits in mice, but at varying
levels of severity. These findings highlight the differential sensitivity
of certain cell types to Atoh1 function, suggesting that some are more
vulnerable to disease resulting from partial Atoh1 dysfunction.

Materials and Methods
Generation of Atoh1-S193A mice and genotyping
We modified an Atoh1-EGFP tagged knock-in targeting construct
( pMath1EGFP_Neo, Rose et al., 2009b) by mutating S193 to alanine
(TCC¡GCC) using the QuikChange Lightning Site-Directed Mutagen-
esis Kit (Agilent Technologies) with the following primer: 5�-CGAC
AAGAAGCTGgCCAAATATGAGACCCTACAGATGGCCC-3�. Using
albino C57BL/6 ES cells, we generated Atoh1 Atoh1 - EGFP - S193A knock-in
mice as described previously (Rose et al., 2009b) using the same geno-
typing primers (Atoh1EGFP forward: 5�-GCGATGATGGCACAGAAGG-3�;
Atoh1EGFP reverse: 5�-GAAGGGCATTTGGTTGTCTCAG-3�). Figure 1
diagrams the genomic targeting strategy (Fig. 1B), confirmation of inser-
tion locus by Southern blot (Fig. 1C), and PCR genotyping (Fig. 1D). The
genotype was sequence verified by PCR amplification of Atoh1 from
homozygous knock-in mice. For simplicity, we refer to this allele as
Atoh1-S193A throughout the text. Atoh1-lacZ control mice were geno-
typed using the primers and PCR protocol of the generic lacZ PCR from
The Jackson Laboratory (transgene forward, oIMR3054: ATCCTCTG
CATGGTCAGGTC; transgene reverse oIMR0040: CGTGGCCTGATTC
ATTCC; internal control forward, oIMR8744: CAAATGTTGCTTGTCT

GGTG; internal control reverse, oIMR8745: GTCAGTCGAGTGCA
CAGTTT).

Mouse strains, husbandry, and handling
Animal housing, husbandry, and euthanasia were conducted under the
guidelines of the Center for Comparative Medicine, Baylor College of
Medicine. Mice were housed in an American Association for Laboratory
Animal Science-certified Level 3 facility on a 14 h light cycle. After wean-
ing, all mice were group housed (two to five mice per cage) as a mixture
of genotypes. The investigators remained blind to the genotypes of all
tested mice during phenotypic characterization and behavioral testing.
Previously described mouse models are Atoh1 lacZ (Ben-Arie et al., 2000),
B6.129S7-Atoh1tm2Hzo/J (The Jackson Laboratory stock #005970), and
Atoh1-GFP (Rose et al., 2009b, B6.129S-Atoh1tm4.1Hzo/J, #013593).

Behavior assays
The following assays have been described previously, but short descrip-
tions are included below. All behavioral assays were performed with mice
of both sexes.

Open-field assay (Chao et al., 2010). Mice were habituated for 30 min
in the testing room (200-lux, 60 dB white noise), and then individually
placed in the center of an open Plexiglas chamber (40 � 40 � 30 cm) with
photo beams (Accuscan) to measure their activity. Data were analyzed by
one-way ANOVA with Tukey’s post hoc analysis.

Vertical rod assay (Matsuura et al., 1997). Mice were habituated for 30
min in the testing room and then placed individually on top of a 24-inch-
tall wooden dowel and allowed to grip the dowel with all four paws.
Latency to fall was recorded during the 2 min test. Data were analyzed by
one-way ANOVA with Tukey’s post hoc analysis.

Parallel rod foot-slip assay (Chao et al., 2010). Mice were habituated for
30 min in the testing room. Each mouse was placed in a foot-slip chamber
consisting of a Plexiglas box with a floor of parallel rods and allowed to
move freely for 10 min. Movement was recorded by a suspended digital
camera and foot slips were recorded using ANY-maze software (Stoelting).
The total number of foot slips was normalized to the distance traveled. Data
were analyzed by one-way ANOVA with Tukey’s post hoc analysis.

Rotarod assay (Chao et al., 2010). Mice were habituated for 30 min in
the testing room, and then placed on a rotating cylinder of an accelerating
rotarod apparatus (Ugo Basile) and allowed to move freely as rotation
speed increased from 5 rpm to 40 rpm over a 10 min period. Latency to
fall was recorded when the mouse fell from the rod or had ridden the rotating
rod for three revolutions without regaining control. Four consecutive trials
spaced at least 30 min apart were recorded in 1 d, and 4 consecutive days of
trials were recorded. Data from all four trials were averaged per day and
analyzed by two-way ANOVA with Tukey’s post hoc analysis.

Unrestrained whole-body plethysmography (UWBP) (Huang et al.,
2012). Mice were placed within air-flushing UWBP chambers (Buxco)
with a flow rate of 0.5 L/min. Respiratory parameters were captured using
Ponemah 3 software (DSI) and processed using MATLAB (The Math-
Works, RRID: SCR_001622). Mice were allowed to acclimate for at least
20 min and baseline breathing was recorded for at least 20 min. To
determine response to hypercapnia gas, the chamber was flushed with
hypercapnic gas (5% CO2) for 15 min, breathing was recorded for the
first 5 min of hypercapnic exposure, and mice were allowed to recover in
fresh air for 15 min. Hypoxic gas (10% O2) challenge was done in the
same manner. Data were analyzed by two-way ANOVA with Tukey’s post
hoc analysis.

Auditory brainstem response (ABR) recording (Cai et al., 2013). Mice
were anesthetized using an intraperitoneal injection of ketamine (100
mg/kg) and xylazine (10 mg/kg) and immobilized in a head holder. Pure
tone stimuli from 4 kHz to 48 kHz were generated using Tucker Davis
Technologies System 3 digital signal processing hardware and software
(RRID: SCR_014520) and the intensity of the tone stimuli was calibrated
using a type 4938, 1/4-inch pressure-field calibration microphone (Brüel
and Kjær). Response signals were recorded with subcutaneous needle
electrodes inserted at the vertex of the scalp, the postauricular region
(reference), and the back leg (ground). Auditory thresholds were deter-
mined by decreasing the sound intensity of each stimulus from 90 dB to
10 dB in 5 dB steps until the lowest sound intensity with reproducible
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and recognizable waves in the response was reached. Peak amplitude and
latency were measured using BioSig software from Tucker Davis Tech-
nologies. Mean absolute hearing thresholds � SDs (decibels SPL) were
plotted as a function of stimulus frequency (in kilohertz) for each geno-
type. Statistical analysis consisted of one-way ANOVA to reveal overall
trends accompanied by two-tailed Student’s t tests at individual frequen-
cies or intensities with adjustment of p-values for multiple comparisons
using the Tukey’s HSD method. R (version 3.2.4, R Project for Statistical
Computing, RRID: SCR_001905) was used for all statistical analyses.

Statistical analyses
Statistical significances were tested using ANOVA (one-way and two-way
as appropriate) with Tukey’s post hoc analysis using Prism 6 (GraphPad, RRID:

SCR_002798) for all analyses except for ABR data, which was analyzed
with R (version 3.2.4, R Project for Statistical Computing, RRID:
SCR_001905). Specific p-values are reported in Table 1.

X-gal staining and Nissl staining
Whole-mount X-gal staining was performed as described previously
using 1 mg/ml Bluo-Gal (Invitrogen; Huang et al., 2012). After fixa-
tion and X-gal staining, inner ears were dissected and dehydrated in
an ethanol gradient (1 h in 30% ethanol, 1 h in 50% ethanol, overnight
in 95% ethanol, and overnight in 100% ethanol at room tempera-
ture). Inner ears were cleared in methyl salicylate overnight at room
temperature. Nissl staining was performed as described previously
(Flora et al., 2007).
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Figure 1. S193 is a highly conserved phosphorylation site in Atoh1. A, Alignment of bHLH domain sequences between H. sapiens (human, NP_005163), M. musculus (mouse, NP_031526),
G. gallus (chicken, XP_004941187), X. laevis (frog, XP_004911142), and D. melanogaster (fly, NP_731223). S193 is marked white on green. Numbers indicate position of bHLH domain in protein
sequence. Identical amino acids are white on black. B, Targeting schematic of Atoh1-S193A allele. S193 is mutated to an alanine in a targeting construct that contains an EGFP coding sequence fused
to the 3� end of the Atoh1 coding sequence. Together with an frt-flanked PGK-Neo selection cassette, the mutated Atoh1-EGFP coding sequence is placed between intact Atoh1 5� and 3� homology
arms. This construct was targeted to the Atoh1 genomic locus, followed by subsequent removal of the PGK-Neo cassette as depicted. C, EcoRI-digested genomic DNA from six mouse embryonic stem
cell clones show that four of six carry the targeted allele when probed with a DNA probe that lies outside of the homology arms. Two clones (1 and 3) were selected for mouse blastocyst injection.
D, PCR genotyping of WT, Atoh1 S193A/�, and Atoh1 S193A/S193A mice. E, S193 is phosphorylated in vivo. EGFP-tagged Atoh1 was immunoprecipitated from P5 cerebella of Atoh1 GFP/GFP and
Atoh1 S193A/S193A mice and immunoblotted with GFP antibody or the generated phospho-specific antibody to S193, pAtoh1(S193).
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Cochlea isolation and sectioning
Heads from postnatal day 0 (P0) and P5 mice were fixed with 4% para-
formaldehyde for 3 h at room temperature. Embryonic day 16.5 (E16.5)
embryos were fixed in 4% paraformaldehyde for 30 min. Heads were
washed and stored in PBS at 4°C. Cochleae or utricles were dissected in
PBS after fixation. To obtain P21 and adult cochlea, whole-body perfu-
sion was performed and the inner ears were dissected and postfixed in 4%
paraformaldehyde overnight at 4°C. Cochleae or utricles were dissected
in PBS and decalcified in 500 mM EDTA overnight at 4°C. For cochlear
section staining, mouse heads were fixed for 3 h in 4% paraformaldehyde
at room temperature, washed with PBS, and cryoprotected in 30% sucrose in
PBS at 4°C until they sank. The cryoprotected heads were then embedded in
optimal cutting temperature medium and sectioned at 14 �m.

Immunohistochemistry
Primary antibodies used in this study were anti-activated Caspase 3 (act-
Casp3, 1:500, rabbit; R & D Systems catalog #AF835, RRID: AB2243952),
anti-Myosin7 (1:500, rabbit; Proteus Biosciences catalog #25-6790,
RRID: AB_2314839), and anti-p27kip1 (1:250, mouse; Thermo Fisher
Scientific catalog #MA5-12835, RRID: AB_10988513). Secondary anti-
bodies were anti-mouse Alexa Fluor 488 (1:2000, goat; Thermo Fisher
Scientific catalog #A-11029, RRID: AB_2534088) or anti-rabbit Alexa
594 (1:2000, goat; Thermo Fisher Scientific catalog #R37117, RRID:
AB_2556545). Cell nuclei were labeled by DAPI (1:10,000; Thermo Fisher
Scientific catalog #D1306, RRID: AB_2629482). The immunostaining pro-
cedure followed standard protocol using 0.1% Triton X-100 in PBS washes
and 10% goat serum in the primary antibody blocking buffer.

Quantitative PCR
The temporal bone containing the inner ear was dissected from P0 mice
and placed into 1 ml of TRIzol (Thermo Fisher Scientific) and the rec-
ommended protocol by the manufacturer was followed to isolate RNA.
First-strand cDNA was synthesized using M-MLV reverse transcriptase
(Thermo Fisher Scientific). Quantitative RT-PCR was performed using
2� SYBR green reaction mixture and the Bio-Rad CFX96 Real-Time
system. The target gene primer sets were either chosen from Primerbank
(Wang et al., 2012) or designed using Primer 3 Plus (Untergasser et al.,
2007). The following primers were used: Anxa4: forward 5�-CAAAGG
AGGAACCGTGAAAGC-3�, reverse 5�-GCATCTTCATCAGTACCGA
GG-3�; Atoh1; forward 5�-CAACGACAAGAAGCTGTCCA-3�, reverse 5�-
GAGTAACCCCCAGAGGAAGC-3�; Mgat5b: forward 5�-GAGACCCTT
TCGGCTGTTTGT-3�, reverse 5�-CCAGCATATCCATGCGCTTC-3�;
Mreg: forward 5�-GTGGTAACAATCCGTATTCCTCC-3�, reverse 5�-
TCCTCTAAGATTCGTCTCCATCG-3�; Rasd2: forward 5�-AACTGCG
CCTACTTCGAGG-3�, reverse 5�-GGTGAAAAGCATCGCCGTACT-3�;
Rbm24: forward 5�-GGGGCTACGGATTTGTCACC-3�, reverse 5�-TG
GCTGCATGATTCTTGGTTT-3�; Scn11a: forward 5�-CGACTCTT
TGGCTGCAATAGA-3�, reverse5�-AGAGCTTAGGTAACTTCCTGGAG-3�.

Western blot analysis
Protein lysates were prepared from cerebella of P5 mouse pups by tritu-
ration in lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1 mM EDTA,
0.5% Triton X-100, 1 mM PMSF; Roche Complete Protease Inhibitor)
with 1 ml syringes and 23G needles followed by 29G1/2 needles. Samples
were sonicated and rotated for 10 min at 4°C. After centrifugation at
13,000 rpm for 10 min, the supernatant was mixed with 2� NuPAGE
sample buffer and run on a NuPAGE 4 –12% Bis-Tris gradient gel in MES
Running Buffer (Thermo Fisher Scientific). Proteins were transferred to
nitrocellulose membranes using the MES NuPAGE transfer system for
1 h at 4°C. The membranes were blocked with 5% BSA in TBS with 0.1%
Tween 20 (TBST) and incubated with primary antibody overnight at 4°C
with mild agitation. After washing with TBST, the membranes were
incubated with secondary antibody for 1 h at room temperature fol-
lowed by washing. HRP was detected using the Pierce ECL detection kit.
Antibodies used were as follows: polyclonal anti-pAtoh1(S193) (1:2000,
rabbit; GenScript), polyclonal anti-GFP (1:5000, rabbit; GeneTex catalog
#GTX113617, RRID: AB_1950371), monoclonal anti-vinculin (1:5000,
mouse; Millipore catalog #MAB3574, RRID: AB_2304338), HRP-
conjugated anti-rabbit IgG (1:20,000, donkey; GE Healthcare catalog
#RPN4301, RRID: AB_2650489), and HRP-conjugated anti-mouse IgG (1:
20,000, donkey; Jackson ImmunoResearch Laboratories catalog #715-035-
150, RRID: AB_2340770).

Cycloheximide assay
DAOY cells (ATCC catalog #HTB-186, RRID: CVCL_1167) were trans-
fected using Lipofectamine LTX and Plus reagents with a ratio of Plus-
DNA-LTX of 1 �l to 1 �g to 3 �l (Thermo Fisher Scientific) per the
manufacturer’s instructions. For each sample (1.25 � 10 5 cells), 250 ng
of pcDNA3_Atoh1-GFP constructs were transfected. After 24 h, cyclo-
heximide was added to cell media to a final concentration of 10 �g/ml.
Cell lysates were collected at five time points after exposure to cyclohex-
imide: 0, 2, 4, 6, and 8 h. Western blot images were processed and quan-
tified with ImageJ (RRID: SCR_003070) with each lane normalized to the
loading control. The experiment was repeated six times.

Chromatin immunoprecipitation (ChIP)
Cochlea were dissected from P0 Atoh1 GFP/GFP and Atoh1 S193A/193A pups
and stored in DMEM with 5% FBS. Eight cochlea were collected for each
sample and centrifuged at 470 � g for 10 min at 4°C. DMEM was care-
fully removed and samples were cross-linked in 500 �l of PBS con-
taining 1% formaldehyde (VWR) for 20 min at room temperature in
a tail-over-head rotator. Fixation was quenched with 0.25 M glycine.
Cross-linked tissue was centrifuged at 470 � g for 10 min at 4°C. The
supernatant was removed and the pellet was washed with 500 �l of
ice-cold PBS three times. After removal of final PBS wash, samples
were snap frozen in liquid nitrogen and stored at �80°C. ChIP was
performed as described previously (Cai et al., 2015b). The following
primers were used for quantitative PCR after ChIP: Atoh1: forward

Table 1. Statistical analyses of behavioral data

Figure
Definition of
population

Population
size (n) Comparisona p-value

2B Individual mice 12–15 WT vs S193A/lacZ, Day 3 0.0053
WT vs S193A/lacZ, Day 4 0.0012

2C Individual mice 3 WT vs 193A/lacZ 0.0380
4A Individual mice 6 WT vs S193A/� 0.0010

WT vs S193A/S193A 0.00012
WT vs S193A/lacZ 1.40E�11
lacZ/� vs S193A/lacZ 0.000014
S193A/S193A vs S193A/lacZ 0.014

4C Individual mice,
per time point

4 –5 P0 lacZ/� vs S193A/lacZ, inner apex 0.0129

P0 lacZ/� vs S193A/lacZ, inner mid 0.0015
P0 lacZ/� vs S193A/lacZ, inner base 0.0006
P0 lacZ/� vs S193A/lacZ, outer apex �0.0001b

P0 lacZ/� vs S193A/lacZ, outer mid 0.0595
P0 lacZ/� vs S193A/lacZ, outer base �0.0001b

P5 lacZ/� vs S193A/lacZ, inner apex 0.0014
P5 lacZ/� vs S193A/lacZ, inner mid �0.0001b

P5 lacZ/� vs S193A/lacZ, inner base 0.0053
P5 lacZ/� vs S193A/lacZ, outer apex �0.0001b

P5 lacZ/� vs S193A/lacZ, outer mid �0.0001b

P5 lacZ/� vs S193A/lacZ, outer base 0.0007
P21 lacZ/� vs S193A/lacZ, outer apex 0.0013
P21 lacZ/� vs S193A/lacZ, outer mid �0.0001b

P21 lacZ/� vs S193A/lacZ, outer base �0.0001b

P5 lacZ/� vs S193A/S193A, outer apex 0.0477
P21 lacZ/� vs S193A/S193A, outer base 0.0112

5B Individual mice 3 lacZ/� vs S193A/lacZ, circumference 0.0011
6D Individual mice 5 Scn11a, WT vs S193A/S193A �0.0001b

Scn11a, WT vs S193A/lacZ �0.0001b

Mgat5b, WT vs S193A/S193A 0.0483
Mgat5b, WT vs S193A/lacZ 0.0222
Rasd2, WT vs S193A/lacZ 0.0131
Rbm24, WT vs S193A/lacZ 0.0208

aOnly significant values are listed.
bPrism 6 only reports up to four decimal points.
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5�-CCAAGAAGCGTGGGGGTAG-3�, reverse 5�-GCTTCTGTAAACT
CTGCCGG-3�; Anxa4: forward 5�-CTTTTACCTGCCCCGCCCA-3�,
reverse 5�-GAAACGGCACCTGACCTGTTA-3�; Fgf18: forward 5�-
TGTTCTAGCCCCATCAGCTT-3�, reverse 5�-GCTTGCACTACATG
GCTCTG-3�; Mgat5b: forward 5�-GGCTGCTGTCTCTGTCTTGT-3�,
reverse 5�-CCTCGAAGCCTGGAGAAGTC-3�; Mreg: forward 5�-CCT
CCTCTGGTCTCTGGGTG-3�, reverse 5�-TTCCTGTGCATAGTCGC
CTG-3�; Rasd2: forward 5�-GGCACAAAAGATGCACAGGG-3�, reverse
5�-GCAGCCTCCAAGTGTTCAA-3�; Rbm24: forward 5�-GCTACTAA
GCAGAAGGGACGG-3�, reverse 5�-ATCGAGTGGCTTAGTGGGAT-3�;
Scn11a: forward 5�-CCTGCAGTTTGCACCTTTCC-3�, reverse 5�-GGG
CAGGAGAGAAGAAACCC-3�.

Results
S193 of Atoh1 is highly conserved and phosphorylated in vivo
As noted above, we identified only one serine residue in the bHLH
domain that could be phosphorylated, S193 (Fig. 1A). Because the
phospho-mimetic (serine to aspartic acid, S193D) mutant was func-
tionally null in the fruit fly (Quan et al., 2016) and thus likely to
phenocopy the Atoh1-null allele, we decided to generate a phospho-
dead (serine to alanine, S193A) knock-in mouse model to investigate
the in vivo function of S193 (Fig. 1B–D).

To determine whether S193 is phosphorylated in vivo, we gener-
ated a phospho-specific antibody that recognizes pAtoh1(S193).
To test its specificity, we immunoprecipitated Atoh1 from P5
cerebellar lysates of Atoh1 Atoh1 - GFP/Atoh1 - GFP (Rose et al., 2009b)
and our Atoh1Atoh1 - GFP - S193A/Atoh1 - GFP - S193A mice—from here on
abbreviated as Atoh1GFP/GFP and Atoh1S193A/S193A, respectively—
using the GFP tag and immunoblotted using GFP antibodies for
total Atoh1 protein and our pAtoh1(S193) antibody (Fig. 1E).
The much weaker pAtoh1(S193) immunoreactivity from the ho-
mozygous knock-in mice indicates that our antibody is specific,
whereas the immunoreactivity in the wild-type mice indicates
that S193 is indeed phosphorylated in vivo.

Atoh1 S193A/lacZ mice have motor coordination deficits and
cerebellar foliation defects
Because Atoh1 heterozygosity is sufficient for normal cerebellar
development and our homozygous Atoh1 S193A/S193A mice did not
show the postnatal lethality phenotype of the Atoh1-null allele,
we suspected that the phospho-mutant phenotype is milder than
the null allele. Indeed, we showed previously that the phospho-
dead (S193A) mutant loses neither DNA-binding capacity nor
significant transcriptional activity in a luciferase reporter assay
(Quan et al., 2016). Nevertheless, the in vivo Atonal phospho-dead
(S292A) fly mutant did exhibit mild loss-of-function phenotypes,
specifically smaller and disorganized ommatidia (Quan et al., 2016).
We therefore generated another cohort of Atoh1-S193A mice on an
Atoh1-null background (Atoh1S193A/lacZ; Ben-Arie et al., 2000).

Mice carrying the S193A allele on either wild-type or null
backgrounds were born at the expected Mendelian ratios, their
body weights were similar to those of control cohorts (Atoh1 WT

and Atoh1 lacZ/�), and no irregular movements or behavior were
detected when observing the mice in their home cages. Because
Atoh1 plays an important role in proprioception and interocep-
tion (Rose et al., 2009a), we decided to assess their motor coor-
dination in more detail. No difference was detected between the
phospho-mutant mice and control littermates in the open-field
assay for general locomotor activity, vertical rod assay for sensori-
motor impairment, or parallel rod foot-slip assay for ataxia (n�7–9;
Fig. 2A), but Atoh1193A/lacZ mice performed significantly worse than
control littermates on days 3 and 4 of an accelerating rotarod assay
(n � 12–15, day 3: *p � 0.0053, day 4: *p � 0.0012, two-way
ANOVA; Fig. 2B). To determine the underlying anatomical ba-

sis of this motor coordination or motor learning deficit, we
performed Nissl staining on adult mouse cerebella and found
that Atoh1 S193A/lacZ mice have decreased foliation between
lobules VI and VII as assessed by the area of the molecular layer of
both lobules (outlined in pink in Fig. 2C, n � 3, *p � 0.0356,
ANOVA).

Atoh1 193A/lacZ mice have a pontine neuronal progenitor
migration defect
Atoh1 defines the rhombic lip and its lineages, which give rise to
numerous nuclei responsible for the proprioceptive, vestibular,
auditory, and respiratory systems in the hindbrain (Rose et al.,
2009a,b). Therefore, we tested respiration of the Atoh1-S193A
phospho-mutant mice using unrestrained whole-body plethysmog-
raphy (UWBP) and found no difference in baseline breathing or
hypoxic and hypercapnic respiration stress tests (Fig. 3A). We con-
cluded that Atoh1-positive neurons that regulate respiration were
intact and functional.

To determine whether the other Atoh1-positive nuclei were
affected, we evaluated �-gal expression in E16.5 hindbrains of
Atoh1 lacZ/� and Atoh1 S193A/lacZ embryos. Serial coronal sections
through the brainstem revealed that these nuclei are intact in the
E16.5 Atoh1 S193A/lacZ embryos, suggesting that S193 phosphory-
lation is not required for the initial generation of these rhombic
lip-derived, Atoh1-positive nuclei (Fig. 3B). We also evaluated
�-gal expression in postnatal day 0 (P0) mice. Interestingly, there
was a partial defect in pontine neuronal migration as shown by
the continued presence of the anterior extramural migratory
stream in the Atoh1 S193A/lacZ mice (Fig. 3C). This delay in migra-
tion was not apparent at E16.5 because pontine neuronal progen-
itor migration is ongoing and incomplete at that stage. These
findings suggest that, whereas the majority of Atoh1-dependent
neuronal progenitors are unaffected in Atoh1 S193A/lacZ mice, the
migration of pontine nucleus progenitors is partially affected.

Atoh1-S193A phospho-mutant mice are deaf and
progressively lose inner ear hair cells
The mechanosensory hair cells of the inner ear are dependent on
Atoh1 expression for proper development and survival (Ber-
mingham et al., 1999; Cai et al., 2013). To investigate whether
these Atoh1-dependent cells were affected in our Atoh1-S193A
phospho-mutant mice, we performed auditory brainstem re-
sponse (ABR) tests to assess hearing in adult mice. Atoh1 S193A/lacZ

mice were profoundly deaf by 2 months of age (n � 6, *p �
2.13e-10, two-way ANOVA; Fig. 4A, red). Atoh1 S193A/S193A mice
exhibited a milder hearing loss, with decreased ABR thresholds at
frequencies 	12 kHz (Fig. 4A). To our surprise, 2-month-old
Atoh1 lacZ/� mice, which had previously been thought to show no
effects of heterozygosity (Ben-Arie et al., 1997; Fritzsch et al.,
2005; Wang et al., 2005), also exhibited loss of hearing at fre-
quencies 	20 kHz (Fig. 4A). We then analyzed whole-mount
preparations of the cochlea stained for Myosin VIIa of these
ABR-tested mice. We discovered hair cell degeneration in the
Atoh1 S193A/lacZ, Atoh1 S193A/S193A, and Atoh1 lacZ/� mice that
were commensurate with the level of hearing loss revealed in
the ABR tests (Fig. 4B).

We next investigated how early the hair cell degeneration be-
gins by examining a series of whole-mount cochlea at the P0, P5,
and P21 time points and observed a progressive loss of cochlear
hair cells for Atoh1 S193A/lacZ and Atoh1 S193A/S193A mice (Fig. 4C).
As expected, Atoh1S193A/lacZ mice exhibited the earliest degenera-
tion, which was already evident at P0. Atoh1S193A/S193A mice, which
had an intermediate hearing loss phenotype, did not begin to exhibit
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hair cell loss until P21, and Atoh1 lacZ/� mice were indistinguishable
from wild-type mice at these early time points (Fig. 4C).

Atoh1 193A/lacZ mice lose cochlear hair cells as early as E16.5
Atoh1-null mice show cochlear hair cell death as early as E15.5
(Chen et al., 2002; Pan et al., 2011; Cai et al., 2013). To determine
whether Atoh1 193A/lacZ mice fail to specify hair cells or lose them
via cell death, we performed whole-mount cochlear staining us-
ing an anti-activated Caspase 3 antibody (ActCasp3) to mark
apoptotic cells. Atoh1 S193A/lacZ mouse cochleae show ActCasp3
staining, indicating that the hair cell loss is due to apoptosis dur-
ing development (Fig. 5A). The similarity to the phenotype of

Atoh1-null mice also suggests that the hair cell loss arises from
loss of Atoh1 function.

Atoh1-S193A phospho-mutant mice do not show hair cell loss
in the vestibular system
Because impaired vestibular function can also contribute to a
poor rotarod performance, we investigated the hair cells of the
vestibular system (Gnedeva and Hudspeth, 2015; Haque et al.,
2016). To determine the size and hair cell density of the macula
and cristae, we performed immunostaining with Myosin VIIa.
We found that both the maculae and cristae of adult Atoh1S193A/S193A

and Atoh1 S193A/lacZ mice were normal in size and hair cell density
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Figure 2. Atoh1 S193A/lacZ mice perform poorly on the rotarod and have a foliation defect in the cerebellum. A, Behavioral data showing total distance traveled and number of vertical episodes in
the open field assay, total time spent in the vertical rod assay, and number of foot slips per distance traveled in the parallel rod foot-slip assay (n � 7–9, 2-month-old mice). Shown are mean
values � SEM; there was no statistical significance. B, Latency to fall on the accelerating rotarod over the course of 4 d with 4 trials per day (n � 12–15). Shown are mean values � SEM. Day 3: *p �
0.0053, day 4: *p � 0.0012, two-way ANOVA. C, Sagittal sections of 6-week-old mouse cerebella near the midline. Black arrowheads point to foliation between lobules VI and VII. Red arrowhead
points to missing foliation between lobules VI and VII in Atoh1 S193A/lacZ mice. Cerebellar lobule area was calculated using ImageJ to outline the molecular layer of lobules VI and VII (n � 3). Scale bar,
1 mm. Data are shown as mean � SEM. *p � 0.0356, one-way ANOVA.
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(Fig. 5B), suggesting that impaired vestibular function is not a
contributing factor to the poor rotarod performance seen in the
Atoh1 S193A/lacZ mice.

Misregulation of Atoh1 target genes in Atoh1 S193A/lacZ

hair cells
To investigate the mechanism by which the Atoh1-S193A
phospho-mutant causes hair cell loss, we first investigated

whether the levels of Atoh1 RNA or protein was affected in
Atoh1 S193A/lacZ mice. Atoh1 RNA levels from the inner ear of
Atoh1 S193A/S193A mice and Atoh1 S193A/lacZ mice were similar to
those of littermate controls (Fig. 6A). Using an antibody to the
GFP tag, we found that Atoh1 protein levels were unchanged in
Atoh1 S193A/S193A mouse cerebella compared with cerebella of
Atoh1 GFP/GFP control mice, suggesting that phosphorylation of
S193 does not play a role in regulating Atoh1 protein levels (Fig.
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6B). To confirm that S193 does not affect protein stability, we
performed a cycloheximide pulse-chase assay to measure the pro-
tein half-life of both phospho-mimetic and phospho-dead S193
Atoh1 mutants in medulloblastoma DAOY cells. We found no
difference between the half-life of the phospho-mutant and the
wild-type proteins (Fig. 6C). We thus concluded that the Atoh1-
S193A mutation does not alter Atoh1 half-life or play a role in
Atoh1 protein degradation.

Next, we investigated the expression levels of previously vali-
dated Atoh1 direct target genes in the inner ear (Cai et al., 2015b).
We found that some genes had altered expression levels, whereas
others were unaffected (Fig. 6D). Anxa4 and Mreg gene expres-
sion were not changed significantly, whereas Scn11a, Mgat5b,
Rasd2, and Rbm24 were downregulated in Atoh1 S193A/lacZ mice
and only Scn11a, Mgat5b were downregulated significantly in

Atoh1 S193A/S193A mice (n � 5; Fig. 6C). As would be predicted
from the in vitro studies (Quan et al., 2016), we found that Atoh1-
S193A bound promoter DNA of its target genes similarly to
wild-type Atoh1, suggesting that the DNA-binding capacity of
Atoh1-S193A is unimpaired in vivo (Fig. 6E). These results sug-
gest that Atoh1-S193A is a hypomorphic allele that partially im-
pairs Atoh1’s ability to upregulate transcription of its target
genes in the inner ear. This would likely lead to widespread
transcriptional changes in the hair cell precursors, which we
predict would ultimately affect the differentiation and survival
of the hair cells.

Discussion
We have identified a phosphorylation site, S193, located in the evo-
lutionarily conserved bHLH region of Atoh1. Mutation from the
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serine to the nonphosphorylatable alanine,
S193A, leads to a partial loss-of-function
phenotype in mice. Atoh1S193A/lacZ mice per-
formed poorly on the rotarod assay, had
pontine nuclei progenitor migration de-
fects and cerebellar foliation defects.
Atoh1 S193A/lacZ mice were profoundly deaf
and had cochlear hair cell loss. In contrast,
Atoh1S193A/S193A mice exhibited only mod-
erate hearing deficits with cochlear hair
cell loss at P21. These data suggest that
there is a functional threshold for Atoh1
that varies with the cellular context.

It is interesting that Atoh1 is down-
regulated shortly after birth in the inner
ear with no transcripts detectable by P3
(Lanford et al., 2000), yet hair cell loss in
the Atoh1 S193A/S193A mice did not take
place until P21. This suggests that the
Atoh1-S193A mutation is not necessarily
toxic to hair cells, but may cause less effi-
cient activation of some transcripts, lead-
ing to loss of hair cell progenitors. The
expression data of Atoh1 target genes in
the inner ear support this theory: we found
fourexamplesof targetgenesthatweredown-
regulated significantly in Atoh1 S193A/lacZ

mice and two that were also downregu-
lated significantly in Atoh1 S193A/S193A

mice. Both DNA-binding and protein in-
teractions can affect a transcription fac-
tor’s ability to upregulate its target genes
properly. We have shown previously that
Atoh1-S193A is able to bind DNA and
heterodimerize with its obligate binding
partners, the E proteins (Quan et al.,
2016). However, given the transcriptional
changes that we saw in the hair cells
of Atoh1 S193A/lacZ mice and the location of
S193 in the protein interaction section of
the bHLH domain, we hypothesize that
Atoh1’s ability to interact with other pro-
teins that mediate coactivation of target
genes may be impaired. It would be inter-
esting to identify novel Atoh1-binding
partners and then investigate whether
Atoh1-S193A has decreased interactions
with these proteins.

One surprising finding was the appar-
ent hearing loss in the adult Atoh1 lacZ/�

mice. It has long been accepted that
Atoh1 lacZ/� mice are similar to wild-type
mice (Ben-Arie et al., 1997; Fritzsch et al.,
2005; Wang et al., 2005). However, the
hearing loss at higher frequencies in these
mice points to a possible haploinsuffi-
ciency phenotype. We did not see hair cell
loss in the Atoh1 lacZ/� mice before P21,
indicating that the loss of hearing that we
observed is due to either hair cell loss at a
later time point or hair cell dysfunction.
Atoh1 is highly expressed in the developing
sensory epithelium; it is possible that lower
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(negative control) of P0 Atoh1 GFP/ GFP and Atoh1 193A/193A mice (n � 5). Data are shown as mean � SEM. n.s., Not significant.
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levels of Atoh1 are sufficient for hair cell survival but cannot keep up
with the transcriptional demand for hair cells to differentiate prop-
erly and become functional, eventually leading to their dysfunction
or death.

It is intriguing that, although cochlear and vestibular hair cells
come from the same pool of Atoh1-positive precursors, the hair
cells in the vestibular system seem to be more resilient. Studies
showed that deletion of Atoh1 from the cochlea before E15.5
leads to rapid cell death, whereas deletion of Atoh1 in the utricle
only decreased expression of myosin VIIa, causing failure of ste-
reocilia to form (Cai et al., 2013; Chonko et al., 2013). These early
differences suggest that the transcriptional landscape differs be-
tween cochlear and utricle hair cells. Certainly, there are temporal
differences between these two organs with regard to mechanical
sensitivity: hair cells become mechanically sensitive between E16
and P0 in the utricle, but not until between P0 and P4 in the
cochlea (Géléoc and Holt, 2003; Lelli et al., 2009).

It is also noteworthy that the inner hair cells of the cochlea
seem to be the first and most affected in the Atoh1-S193A mice.
This is unusual because most noise, blast, drug damage, and aging
paradigms show that the outer hair cells are killed first (Govaerts
et al., 1990; Bohne et al., 2000; Sha et al., 2008; Cho et al., 2013).
One of the few examples of inner hair cells dying first is a study in
which Neurog1 was knocked into the Atoh1 locus (Jahan et al.,
2012). A milder phenotype was seen in a compound mutant of
Neurog1 knocked into the Atoh1 locus together with a floxed
Atoh1 allele (Jahan et al., 2015). It is unclear why the inner hair
cells are more sensitive to changes in Atoh1 levels or activity, but
our findings have demonstrated a clear differential sensitivity
among inner hair cells, outer hair cells, and utricle hair cells.

In addition to the inner ear hair cell defects, we discovered
milder defects in pontine nucleus progenitor migration and miss-
ing foliation between lobules VI and VII of the cerebellum in the
Atoh1 S193A/lacZ mice. Although the anatomical defects in both the
pontine nuclei and the cerebellum can contribute to the poor
performance motor performance of the Atoh1 S193A/lacZ mice, it is
difficult to prove causality. However, associations between al-
tered coordination and both pontine and cerebellar foliation de-
fects have been described in humans and mice. Human patients
with lesions in the basilar pons exhibit several motor coordina-
tion deficits (Schmahmann et al., 2004). In addition, mice with
cerebellar foliation defects have motor coordination deficits
(Chen et al., 2005, 2008, Rosin et al., 2015). One study in partic-
ular reported on motor coordination problems and the absence
of lobule VI/VII foliation in TR4� / � mice that is strikingly sim-
ilar to our cerebellar foliation defect (Chen et al., 2005).

We have shown previously that Atoh1 is required for the birth
and proliferation of rhombic lip progenitors; the absence of
Atoh1 results in the complete loss of mature neurons that derive
from the rhombic lip, including both cerebellar granule and pon-
tine nuclei neurons (Ben-Arie et al., 1997; Wang et al., 2005). In
contrast, our present study suggests that not all neuronal progen-
itors from the rhombic lip are affected by the Atoh1-S193A mu-
tation. The cerebellum is largely normal, suggesting that the
CGNs are unaffected by the mutation. With the exception of the
pontine nucleus, many other brainstem nuclei seem to be unaf-
fected, suggesting that the pontine nuclei are the most affected
lineage of the rhombic lip progenitors. The lack of foliation be-
tween lobules VI and VII could be due to less mossy fiber projec-
tion from the pontine nuclei. The cerebellum receives the
majority of its mossy fiber input from the pontine nuclei and it
has been shown that the pontine nuclei project heavily to lobules

VI and VII in the cerebellum (Cicirata et al., 2005), implying a
direct connection between the two phenotypes. This suggests that
proper foliation of the mature cerebellum is dependent, not just
on the cells populating the cerebellum, but also on proper pro-
jections from distant neurons.

Other phosphorylation sites of Atoh1 have been described
previously (Tsuchiya et al., 2007; Forget et al., 2014; Cheng et al.,
2016). Serines 52 and 56 were shown to affect Atoh1 stability.
These findings, however, were not reproduced (Tsuchiya et al.,
2007; Cheng et al., 2016). Serines 328, 339, and 334 have also been
implicated in altering Atoh1 stability, specifically through inter-
actions with E3 ubiquitin ligase Huwe1 (Forget et al., 2014;
Cheng et al., 2016). These sites are located in the serine-rich
C-terminal domain found only in vertebrate homologs of Atoh1
(Mulvaney and Dabdoub, 2012). S193, however, is located in the
highly conserved bHLH domain and is thus found, not only in
humans and other vertebrate species, but also in flies. In addition,
S193 does not seem to affect Atoh1 protein stability, but rather,
mimicking phosphorylation (S193D) at this residue abolishes
Atoh1’s ability to bind DNA, rendering the phospho-mutant
protein functionally null (Quan et al., 2016).

A recent study characterized mice carrying a methionine to
isoleucine mutation in the bHLH region (M200I; Atoh1 trhl/trhl;
Sheykholeslami et al., 2013). Similar to our Atoh1-S193A mice,
Atoh1 trhl/trhl mice present with hearing loss and loss of cochlear
hair cells. In addition, Atoh1 trhl/trhl mice have a trembling gait and
smaller cerebella with a lack of foliation in all lobules, indicating
that this M200I point mutation results in a stronger hypomor-
phic phenotype than our Atoh1-S193A mice. It was not tested
whether the M200I point mutation alters DNA binding,
dimerization with E proteins, or transcriptional activity of Atoh1,
but it is likely that at least one of these functions is affected given
its location in the bHLH region.

In sum, we have created and characterized an Atoh1 knock-in
mouse bearing a mutation in the most evolutionarily conserved
serine of the bHLH. Our mouse model will be a useful tool with
which to study Atoh1 function in specific cell populations while
circumventing the perinatal death phenotype that is seen in the
Atoh1-null mouse. The effect of Atoh1-S193A on other Atoh1-
dependent cell populations is currently unknown, but would be
worthy of investigation. Most importantly, this work may con-
tribute to a better understanding of the genetics behind human
deafness, which affects one in every 500 newborns and 278 mil-
lion individuals worldwide (Shearer and Smith, 2012). We pro-
pose that Atoh1 haploinsufficiency and Atoh1 point mutations
may cause human deafness, particularly later-onset hearing loss,
in the absence of other symptoms.
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